JP2000057865A - Manufacture of compound superconductive wire - Google Patents

Manufacture of compound superconductive wire

Info

Publication number
JP2000057865A
JP2000057865A JP11158600A JP15860099A JP2000057865A JP 2000057865 A JP2000057865 A JP 2000057865A JP 11158600 A JP11158600 A JP 11158600A JP 15860099 A JP15860099 A JP 15860099A JP 2000057865 A JP2000057865 A JP 2000057865A
Authority
JP
Japan
Prior art keywords
superconducting wire
composite
wire
based metal
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11158600A
Other languages
Japanese (ja)
Other versions
JP3273764B2 (en
Inventor
Yoshio Kubo
芳生 久保
Kunihiko Egawa
邦彦 江川
Hiroko Higuma
弘子 樋熊
Takayuki Nagai
貴之 永井
Hidefusa Uchikawa
英興 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15860099A priority Critical patent/JP3273764B2/en
Publication of JP2000057865A publication Critical patent/JP2000057865A/en
Application granted granted Critical
Publication of JP3273764B2 publication Critical patent/JP3273764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict decrease of Jc to the minimum and increase an N value, by rolling, thinning, and thus unifying layered sheets of a Cu-based metallic material and of a first base metal material forming an alloy layer therewith, packing a plurality of composite single-core wires obtained by winding it around a second base metal material into a cylindrical container made of Cu to form a composite rod, and drawing and further heat treating it. SOLUTION: An Nb-Sn compound superconductive wire has Nb3 Sn filaments embedded in a bronze layer at intervals so as not to contact each other. In order to embed therein as many Nb3 Sn filaments as possible, the intervals of the filaments in a boundary area of an ε-phase bronze layer produced by preliminary heat treatment at 300 to 600 deg.C are made greater than in the other areas and a precursor of the superconducting wire is heat treated. In the preliminary heat treatment, prior to the heat treatment of the precursor of the superconductive wire, it is previously heated to 300 to 600 deg.C to diffuse an Sn- based metallic material in a center into a surrounding Cu-based metallic material, and thus the bronze layer of a Cu-Sn alloy is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高磁界超電導マグ
ネット用の化合物系超電導線およびその製法に関する。
とくに、本発明はNb−Sn化合物系超電導線およびそ
の製法に好適に適用できる。
The present invention relates to a compound superconducting wire for a high magnetic field superconducting magnet and a method for producing the same.
In particular, the present invention can be suitably applied to an Nb-Sn compound-based superconducting wire and a method for producing the same.

【0002】[0002]

【従来の技術】従来、超電導線はブロンズ法あるいは内
部拡散法といわれる方法等で製造されている。
2. Description of the Related Art Conventionally, superconducting wires have been manufactured by a method called bronze method or internal diffusion method.

【0003】図23および図24は、それぞれ特公昭6
1−16141号公報に記載された、従来の内部拡散法
による熱処理前のNb3Sn系超導電線の先駆体および
熱処理後のNb3Sn系超電導線の断面を示す説明図で
ある。なお、本明細書において熱処理前、すなわち超電
導化前の線材を超電導線の先駆体といい、熱処理後の超
電導化されたものを超電導線という。図23において、
41は熱処理前の超電導線の先駆体、43は熱処理によ
り超電導となるNb基金属フィラメント、44はたとえ
ばTaなどの障壁層、45は無酸素銅などの安定化層、
46はCu基金属材、47はSn基金属材であり、図2
4において48は熱処理後の超電導線、49は超電導化
されたNb3Snフィラメント、50は低Sn濃度ブロ
ンズである。
FIG. 23 and FIG.
Described 1-16141 discloses an explanatory view showing a cross section of a conventional precursor and Nb 3 Sn based superconducting wire after the heat treatment of the Nb 3 Sn based superconducting wire before the heat treatment by an internal diffusion method. In this specification, a wire before heat treatment, that is, a wire before superconductivity is called a precursor of a superconducting wire, and a superconducting wire after heat treatment is called a superconducting wire. In FIG.
41 is a precursor of the superconducting wire before heat treatment, 43 is an Nb-based metal filament which becomes superconducting by heat treatment, 44 is a barrier layer such as Ta, 45 is a stabilizing layer such as oxygen-free copper,
46 is a Cu-based metal material and 47 is a Sn-based metal material.
In 4, 48 is a superconducting wire after heat treatment, 49 is a superconducting Nb 3 Sn filament, and 50 is a bronze with a low Sn concentration.

【0004】前記超電導線は、超電導線の先駆体を高温
(一般的には600〜800℃)で熱処理することによ
り、Nb基金属フィラメントにNb3Sn化合物を生成
せしめて得られたものである。
The superconducting wire is obtained by subjecting a precursor of the superconducting wire to a heat treatment at a high temperature (generally 600 to 800 ° C.) to generate an Nb 3 Sn compound on the Nb-based metal filament. .

【0005】内部拡散法を用いるNb3Sn系超導電線
の製造法は以下のとおりである。まず、Nb基金属材を
Cuチューブに挿入し、ある径まで断面減少加工をして
単芯線を得る。この単芯線を適当な長さに截断し、Cu
製の容器中に複数充填する。ただし、中央部にはCu棒
または複数のCu線などのCu基金属材を配置する。容
器中の空気を排除し、蓋を溶接して密封し、押出し加工
したのち、中心のCu基金属材を機械的に穿孔する。こ
の孔にSn基金属材を挿入し、Cu製の容器の周囲にT
aやNbのチューブ、さらにその周囲にCuのチューブ
を被覆し、断面減少加工する。なお、大電流容量化する
ためには、得られた複合線を複数Cuチューブ中に充填
して断面減少加工する。最終径にまで断面減少したのち
ツイスト加工し、熱処理を施す。この熱処理によりSn
は周囲のCu中に拡散し、Cu−Sn合金を形成し、さ
らに、Nb基金属フィラメントと反応し、その一部また
はすべてにNb3Snが生成する。
A method for manufacturing an Nb 3 Sn-based superconducting wire using the internal diffusion method is as follows. First, an Nb-based metal material is inserted into a Cu tube, and the cross section is reduced to a certain diameter to obtain a single core wire. Cut this single core wire to an appropriate length,
Into multiple containers. However, a Cu-based metal material such as a Cu rod or a plurality of Cu wires is disposed at the center. After the air in the container is eliminated, the lid is welded and sealed, and after extruding, the central Cu-based metal material is mechanically perforated. A Sn-based metal material is inserted into this hole, and T
A tube of a or Nb, and further, a tube of Cu is coated around the tube, and the cross section is reduced. In order to increase the current capacity, the obtained composite wire is filled in a plurality of Cu tubes to reduce the cross section. After the cross section is reduced to the final diameter, twist processing and heat treatment are performed. By this heat treatment, Sn
Diffuses into the surrounding Cu to form a Cu—Sn alloy, and further reacts with the Nb-based metal filament to generate Nb 3 Sn in part or all of the filament.

【0006】前記内部拡散法における超電導線の先駆体
は、Cu基金属材中にNb基金属フィラメントとSn基
金属材のコアとが埋設された構造を有する。とくに、超
電導特性の1つである臨界電流密度(Jc)を少しでも
大きくするために、Nb基金属フィラメントは、なるべ
く密にCu基金属材中に埋設されている。超電導線は液
体ヘリウム温度まで冷却して用いると、電気抵抗を生じ
ることなく大電流を流すことが可能となる。
The precursor of the superconducting wire in the internal diffusion method has a structure in which an Nb-based metal filament and a Sn-based metal core are buried in a Cu-based metal material. In particular, in order to increase the critical current density (Jc), which is one of the superconducting characteristics, as much as possible, the Nb-based metal filament is embedded as densely as possible in the Cu-based metal material. When the superconducting wire is used after being cooled to the temperature of liquid helium, a large current can flow without causing electrical resistance.

【0007】[0007]

【発明が解決しようとする課題】従来の内部拡散法によ
り生産される化合物系超電導線は、以上のようにSn基
金属材がモジュールの中心に配置されるために、Nb3
Snフィラメント相互の間隔は通常のブロンズ法と比較
して約半分程度と狭い。そのため、超電導線の先駆体の
熱処理時にNb基金属フィラメントがたがいに接触結合
して、超電導線の電気的特性である有効フィラメント径
(deff)の値(試料形状を円柱とし、超電導線の磁化
の幅をΔM、そのときの臨界電流密度をJcとしたと
き、deff=3πΔM/4μ0Jcで与えられる)が増大
し、その結果、直流電流に対しては問題を生じないが、
パルス電流の通電時には大きなヒステリシス損失を生
じ、超電導コイルの発熱により安定性が損なわれるとい
う問題点がある。
THE INVENTION Problems to be Solved] To the compound superconducting wire produced by the conventional internal diffusion process, the above Sn-based metal material as is located in the center of the module, Nb 3
The distance between Sn filaments is as narrow as about half as compared with the ordinary bronze method. Therefore, during the heat treatment of the precursor of the superconducting wire, the Nb-based metal filaments come into contact with each other, and the value of the effective filament diameter (d eff ), which is the electrical characteristic of the superconducting wire (the sample shape is a cylinder, and the magnetization of the superconducting wire is Is given by d eff = 3πΔM / 4μ 0 Jc, where ΔM is the width of ΔM and the critical current density at that time is Jc. As a result, no problem occurs with respect to the DC current,
There is a problem that a large hysteresis loss occurs when a pulse current is applied, and stability is impaired due to heat generation of the superconducting coil.

【0008】また、内部拡散法ではSn基金属材が中央
部に配置されているので、Sn拡散のための予備熱処理
時にSn濃度に勾配が生じる。したがって、Sn濃度に
依存してNb3Snフィラメントの組成が変動し、超電
導特性の1つであるn値(超電導線における長手方向の
均一性を示す指標。V∝Inで示される式におけるn
値。nが大きいほど超電導特性が優れている)が低くな
るという問題もある。
In the internal diffusion method, since the Sn-based metal material is disposed at the center, a gradient occurs in the Sn concentration during the preliminary heat treatment for Sn diffusion. Therefore, the composition of the Nb 3 Sn filament varies depending on the Sn concentration, and the n value (an index indicating the uniformity of the superconducting wire in the longitudinal direction, which is one of the superconducting characteristics; n in the equation represented by V∝In)
value. There is also a problem that the higher the n is, the better the superconductivity is).

【0009】本発明はかかる問題を解決するためになさ
れたもので、超電導線の有効フィラメント径が大幅に減
少され、併せて超電導線のJcの減少が最小限にとどめ
られ、かつ、n値を増大させた化合物系超電導線を提供
することを目的とする。
The present invention has been made in order to solve such a problem, and the effective filament diameter of the superconducting wire is greatly reduced, the Jc of the superconducting wire is reduced to a minimum, and the n value is reduced. It is an object to provide an increased compound superconducting wire.

【0010】[0010]

【課題を解決するための手段】本発明の化合物系超電導
線の第1の製造方法は、Cu基金属材と、該Cu基金属
材と合金層を形成する第1の基金属材Xとの積層板を先
ず圧延し、減厚して一体化し、これを第2の基金属材Z
の棒に巻回して得た複合単芯線をCu製円筒容器内に複
数充填して複合棒をつくる工程と、(B)前記複合棒を
伸線加工して超電導線の先駆体とする工程と、(C)前
記超電導線の先駆体を熱処理する工程とを備えたもので
ある。
A first method for manufacturing a compound superconducting wire according to the present invention comprises the steps of forming a Cu-based metal material and a first base metal material X forming an alloy layer with the Cu-based metal material. The laminated plate is first rolled, reduced in thickness and integrated, and this is mixed with a second base metal material Z.
(C) a step of filling a plurality of composite single-core wires obtained by winding the rod into a cylindrical container made of Cu to form a composite rod; and (B) drawing the composite rod to form a precursor of a superconducting wire. , (C) heat treating the precursor of the superconducting wire.

【0011】本発明の化合物超電導線の第2の製造方法
は、Cu基金属材と該Cu基金属と合金層を形成する第
1の基金属材Xとの積層板を先ず圧延し、減厚して一体
化した複合体をCu製円筒容器内に充填し、該複合体に
複数の穿孔を設け、各孔に第2の基金属材Zを充填して
複合棒をつくる工程と、(B)前記複合棒を伸線加工し
て超電導線の先駆体とする工程と、(C)前記超電導線
の先駆体を熱処理する工程とを備えたものである。
In a second method for producing a compound superconducting wire according to the present invention, a laminate of a Cu-based metal material and a first base metal material X forming an alloy layer with the Cu-based metal is first rolled and reduced in thickness. (C) filling a composite body integrated by the above-described steps into a Cu cylindrical container, providing a plurality of perforations in the composite, filling each hole with a second base metal material Z to form a composite rod; And (c) heat treating the precursor of the superconducting wire by drawing the composite rod.

【0012】本発明の化合物超電導線の第3の製造方法
は、円柱状Cu基金属材の中心に第1の穿孔を設け、該
第1の穿孔の周囲に複数の第2の穿孔を設け、前記第2
の穿孔にCu基金属と合金を形成する第1の基金属材X
を充填し、前記第1の穿孔に第2の基金属材Zを充填し
て複合単芯線を形成し、該複合単芯線をCu製円筒容器
内に複数充填して複合棒を形成する工程と、(B)前記
複合棒を伸線加工して超電導線の先駆体とする工程と、
(C)前記超電導線の先駆体を熱処理する工程とを備え
たものである。
In a third method for manufacturing a compound superconducting wire according to the present invention, a first perforation is provided at the center of a columnar Cu-based metal material, and a plurality of second perforations are provided around the first perforation. The second
Base metal material X that forms an alloy with Cu base metal in perforations
Filling the first perforation with a second base metal material Z to form a composite single core wire, and filling a plurality of the composite single core wires in a Cu cylindrical container to form a composite rod. (B) drawing the composite rod to form a precursor of a superconducting wire;
(C) heat treating the precursor of the superconducting wire.

【0013】本発明の化合物超電導線の第4の製造方法
は、前記第2の基金属材ZがTi、Ta、Hf、Mo、
ZrおよびVよりなる群から選ばれた少なくとも1種を
含有するようにしたものである。
In a fourth method for manufacturing a compound superconducting wire according to the present invention, the second base metal material Z is made of Ti, Ta, Hf, Mo,
It contains at least one member selected from the group consisting of Zr and V.

【0014】本発明の化合物超電導線の第5の製造方法
は、前記第1の基金属材XがTi、In、Ge、Siお
よびMnよりなる群から選ばれた少なくとも1種を含有
するようにしたものである。
In a fifth method for manufacturing a compound superconducting wire according to the present invention, the first base metal material X contains at least one selected from the group consisting of Ti, In, Ge, Si and Mn. It was done.

【0015】本発明の化合物超電導線の第6の製造方法
は、前記Cu基金属材がTi、In、Ge、Siおよび
Mnからなる群から選ばれた少なくとも1種を含有する
ようにしたものである。
In a sixth method for producing a compound superconducting wire according to the present invention, the Cu-based metal material contains at least one selected from the group consisting of Ti, In, Ge, Si and Mn. is there.

【0016】[0016]

【作用】本発明の化合物系超電導線の製造方法は、Sn
またはGaを分散して配置するため、中心のSnまたは
Gaコアが不要となり、そのぶんだけフィラメントを埋
めるスペースが広くなるので、フィラメント間隔を従来
の内部拡散法で得られるものよりも約30%広げること
ができ、熱処理後に得られる超電導線において超電導フ
ィラメント同士が接触している確率が格段に減り、有効
フィラメント径の値が大幅に減少する。その結果、パル
ス電流の通電時に発生するヒステリシス損失が大幅に減
少し、超電導コイルの安定性が向上する。
The method for producing a compound superconducting wire of the present invention comprises the steps of:
Alternatively, since Ga is dispersed and arranged, the central Sn or Ga core is not required, and the space for burying the filament is increased by that amount, so that the filament interval is increased by about 30% than that obtained by the conventional internal diffusion method. The probability that the superconducting filaments are in contact with each other in the superconducting wire obtained after the heat treatment is significantly reduced, and the value of the effective filament diameter is greatly reduced. As a result, the hysteresis loss generated when the pulse current is supplied is greatly reduced, and the stability of the superconducting coil is improved.

【0017】また、SnまたはGaの拡散距離が短くな
って拡散後の含量が一定となり、その結果、生成される
Nb3Snフィラメントの組成も均一になり、超電導特
性の1つであるn値が向上する。あわせてSnまたはG
a拡散の予備熱処理時間も短くてすみ、コストの低減が
図れる。
Further, the diffusion distance of Sn or Ga becomes short and the content after diffusion becomes constant. As a result, the composition of the generated Nb 3 Sn filament becomes uniform, and the n value, which is one of the superconducting characteristics, is reduced. improves. Also Sn or G
The time required for the preliminary heat treatment for a diffusion can be shortened, and the cost can be reduced.

【0018】[0018]

【発明の実施の形態】以下、本件第1および第2の発明
を問わず、超電導線およびその先駆体の説明において
は、説明を簡単にするためすべてNbおよびSnを用い
た場合について説明する。しかし、以下の説明において
はいちいち断わらないが、NbをVと、SnをGaと置
きかえることができ、Nb3Sn以外の化合物を用いて
もまったく同様の超電導線が得られる。Nb3Sn以外
ではV3Gaがとくに実用的である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Regardless of the first and second aspects of the present invention, in the description of a superconducting wire and its precursor, a case where Nb and Sn are all used for simplicity will be described. However, not one by one otherwise specified in the following description, and V to Nb, Sn, it can be replaced with Ga, exactly the same superconducting wires be used a compound other than Nb 3 Sn are obtained. Other than Nb 3 Sn, V 3 Ga is particularly practical.

【0019】また、本発明で用いられる「A基金属…」
という表現は、A金属を主体とするものであって、純粋
なものでも、また添加剤の加わったものであってもよい
ことを意味する。熱処理などの結果、該金属を基本金属
として他の金属との間に合金あるいは金属間化合物を生
成する場合があるので「A基金属…」という表現が用い
られる。
Further, the "base A metal ..." used in the present invention.
The expression means that the substance is mainly composed of the metal A and may be pure or may have an additive. As a result of heat treatment or the like, an alloy or an intermetallic compound may be formed between the metal and another metal using the metal as a base metal, so the expression “A base metal...” Is used.

【0020】まず、本件第1の発明について具体的に説
明する。
First, the first invention of the present case will be specifically described.

【0021】本件第1の発明のNb−Sn化合物系超電
導線は、ブロンズ層中にNb3Snフィラメントが、た
がいに接触、結合しないような間隔で埋め込まれた形を
しているものである。Nb3Snフィラメントをたがい
に接触しないような間隔とし、かつ、なるべく数多くの
Nb3Snフィラメントを埋めるために、Nb基金属フ
ィラメントの接触がおこりやすい領域、すなわち300
〜600℃の予備熱処理により生じるε相ブロンズ層の
境界領域において、Nb基金属のフィラメントの間隔を
他の領域よりも大きくし、超電導線の先駆体を熱処理す
る。
The Nb-Sn compound superconducting wire according to the first aspect of the present invention has a shape in which Nb 3 Sn filaments are embedded in the bronze layer at intervals so as not to contact and couple with each other. Nb 3 Sn filaments and mutually contact No such intervals, and, in order to fill the possible number of Nb 3 Sn filaments are prone area Contact Nb base metal filaments, i.e. 300
In the boundary region of the ε-phase bronze layer generated by the preliminary heat treatment at a temperature of up to 600 ° C., the distance between the filaments of the Nb-based metal is made larger than in other regions, and the precursor of the superconducting wire is heat-treated.

【0022】予備熱処理は、超電導線の先駆体を熱処理
して超電導線とする際に、あらかじめ300〜600℃
に加熱して中央部のSn基金属材を周囲のCu基金属材
中に拡散せしめて、Cu−Sn合金のブロンズ層を形成
させるためのものである。前記予備熱処理に引続いて熱
処理が行なわれる。
In the preliminary heat treatment, when the precursor of the superconducting wire is heat-treated into a superconducting wire, it is previously heated to 300 to 600 ° C.
To diffuse the central Sn-based metal material into the surrounding Cu-based metal material to form a bronze layer of a Cu—Sn alloy. Heat treatment is performed subsequent to the preliminary heat treatment.

【0023】前記Nb−Sn化合物系超電導線は、いわ
ゆる内部拡散法によって得られるものであって、Cu基
金属材で被覆されたNb基金属フィラメントを伸線加工
して得られる単芯線を、ビレット内に充填し、押出し加
工して複合体を得るか、または穿孔加工したCu板を重
ねてブロック体とし、前記穿孔箇所に単芯線を挿入して
から押出し加工をして複合体をえ、そののち、前記複合
体の中央部を穿孔して、Sn基金属棒を挿入後、伸線加
工して超電導線の先駆体をえ、該超電導線の先駆体を6
00〜800℃で100〜200時間の熱処理をして得
られるものである。また、単芯線を充填したビレットを
中空押出しや冷間加工することによって管状の複合体を
え、該管状の複合体の中心部にSn基金属棒を挿入後伸
線加工して超電導線の先駆体としてもよい。かくしてC
u基金属材中のNb基金属フィラメントの一部または全
部がNb3Snとなり、その結果、Cu基金属材中にN
3Snフィラメントが埋設された形の超電導線が得ら
れる。
The Nb-Sn compound superconducting wire is obtained by a so-called internal diffusion method, and a single core wire obtained by drawing an Nb-based metal filament coated with a Cu-based metal material is converted into a billet. Filled and extruded to obtain a composite, or a perforated Cu plate is overlapped to form a block, and a single core wire is inserted into the perforated portion and extruded to obtain a composite, and the composite is obtained. Then, after punching the center of the composite, inserting a Sn-based metal rod, drawing a wire to obtain a precursor of the superconducting wire, and changing the precursor of the superconducting wire to 6
It is obtained by heat treatment at 100 to 800 ° C. for 100 to 200 hours. Further, a tubular composite is obtained by hollow extrusion or cold working of a billet filled with a single core wire, an Sn-based metal rod is inserted into the center of the tubular composite, and then wire drawing is performed to lead a superconducting wire. It may be a body. Thus C
Part or all of the Nb-based metal filament in the u-based metal material becomes Nb 3 Sn, and as a result, N
A superconducting wire in which the b 3 Sn filament is embedded is obtained.

【0024】本件第1の発明の超電導線においては、前
記熱処理の過程で中心のSn基金属材がCu基金属材と
反応して生ずるε相ブロンズ層の境界領域にあるNb3
Snフィラメントがたがいに接触しないように、フィラ
メントを細くするか、粗に配置するかしてフィラメント
間の間隔を大きくしてあるので、ヒステリシス損失の観
点からすぐれた電気的性質が得られる。
In the superconducting wire according to the first aspect of the present invention, Nb 3 in the boundary region of the ε-phase bronze layer generated by the reaction of the central Sn-based metal material with the Cu-based metal material during the heat treatment.
Since the distance between the filaments is increased by making the filaments thin or coarsely arranged so that the Sn filaments do not come into contact with each other, excellent electrical properties can be obtained from the viewpoint of hysteresis loss.

【0025】前記ε相ブロンズ層とは、熱処理により中
心のSn基金属材がCu基金属材中に拡散してブロンズ
を形成する際に、300〜600℃の温度範囲において
生じるCu−Sn合金の相の一種であって、化学式がC
3Snで示される金属間化合物を意味する。前記ε相
ブロンズ層はα相ブロンズ層に比べて固くてもろい性質
がある。600〜800℃で熱処理をすると、ε相は一
旦生じたのち、最終加熱温度の段階では消失するもので
ある。ε相は中心から外周に向かって形成され、ε相ブ
ロンズ層とCu基金属材との境界はSnの量によっても
異なるが、通常、中心から超電導線の先駆体の(障壁層
を有する場合は障壁層内の)半径の約50〜70%の距
離に位置する。415℃で超電導線の先駆体を加熱した
際に生じるε相ブロンズ層の境界は前記超電導線の半径
の50〜70%の距離に位置する。600℃を超える温
度ではε相はα相に変り、ほぼ全面に拡がる。
The ε-phase bronze layer is a layer of Cu—Sn alloy generated in a temperature range of 300 to 600 ° C. when a central Sn-based metal material is diffused into a Cu-based metal material by heat treatment to form bronze. A kind of phase, whose chemical formula is C
It means an intermetallic compound represented by u 3 Sn. The ε-phase bronze layer has a hard and brittle property compared to the α-phase bronze layer. When heat treatment is performed at 600 to 800 ° C., the ε phase is generated once and then disappears at the stage of the final heating temperature. The ε-phase is formed from the center toward the outer periphery, and the boundary between the ε-phase bronze layer and the Cu-based metal material varies depending on the amount of Sn. At a distance of about 50-70% of the radius (within the barrier layer). The boundary of the ε-phase bronze layer generated when the precursor of the superconducting wire is heated at 415 ° C. is located at a distance of 50 to 70% of the radius of the superconducting wire. At a temperature exceeding 600 ° C., the ε phase changes to the α phase and spreads over almost the entire surface.

【0026】前記超電導線の先駆体の熱処理の際に形成
されるNb3Snフィラメントがたがいに接触しやすく
なる理由は定かではないが、Nb基金属フィラメントが
Nb 3Snになる際にNb基金属フィラメントの体積が
30%ほど増加すること、加熱中はフィラメントが動き
やすいことなどのために、Nb3Snフィラメントがた
がいに接触する機会が多くなると考えられる。この動き
はε相ブロンズ層の拡がりの境界領域でとくに甚だし
い。
The superconducting wire is formed during heat treatment of the precursor.
NbThreeSn filaments easily contact each other
It is not clear why, but Nb-based metal filaments
Nb ThreeWhen it becomes Sn, the volume of the Nb-based metal filament becomes
30% increase, filament moves during heating
NbThreeSn filament
It is thought that there will be more opportunities for contact with the turtle. This movement
Is particularly large in the boundary region of the expansion of the ε-phase bronze layer.
No.

【0027】Nb3Snフィラメントがε相ブロンズ層
境界領域でたがいに接触しないようにするには、熱処理
前のNb基金属フィラメント間の間隔を、前記Nb基金
属フィラメントの直径の0.45倍以上とすることが好
ましく、さらに0.48倍以上とするのがとくに好まし
い。前記の値は実験的に求められるもので、Nb基金属
フィラメント間の距離が前記の値未満の場合には、熱処
理後の超電導線のJcは大きくなるが、Nb3Snフィ
ラメントの接触が多く生じやすく、deffすなわち交流
ロスが大きくなり、パルス用超電導線として使用するに
は不適当となる。たとえば0.38倍の場合には、d
effが500μmとなりパルス用超電導線としての使用
に耐えない。
In order to prevent the Nb 3 Sn filaments from contacting each other at the boundary region of the ε-phase bronze layer, the interval between the Nb-based metal filaments before the heat treatment should be 0.45 times or more the diameter of the Nb-based metal filaments. And more preferably 0.48 times or more. The above value is obtained experimentally. If the distance between the Nb-based metal filaments is less than the above value, the Jc of the superconducting wire after the heat treatment becomes large, but the contact of the Nb 3 Sn filament often occurs. Therefore, d eff, that is, the AC loss becomes large, and it is unsuitable for use as a pulse superconducting wire. For example, in the case of 0.38 times, d
The eff becomes 500 μm, and it cannot be used as a superconducting wire for pulse.

【0028】Nb基金属フィラメントの間隔を拡げる必
要のある範囲は、熱処理によって生ずるε相ブロンズ層
の境界領域であって、超電導線の先駆体の中心から、超
電導線の先駆体を415℃で熱処理したときに生成する
ε相ブロンズ層の境界までの距離の0.7〜1.4倍の
距離を半径とする範囲が好ましく、とくに0.9〜1.
2倍の範囲が好ましい。前記範囲外までNb基金属フィ
ラメントの間隔を拡げると、Nb基金属フィラメントの
数が少なくなり、その結果、最終的に得られる超電導線
のJcが小さくなって好ましくない。境界までの距離は
超電導線の断面を研磨し、光学顕微鏡または電子顕微鏡
による写真から求めることができる。
The range in which the interval between the Nb-based metal filaments needs to be increased is the boundary region of the ε-phase bronze layer generated by the heat treatment, and the precursor of the superconducting wire is heat-treated at 415 ° C. from the center of the precursor of the superconducting wire. The radius is preferably 0.7 to 1.4 times the distance to the boundary of the ε-phase bronze layer formed at the time of the above, and particularly 0.9 to 1.
A range of two times is preferred. If the interval between the Nb-based metal filaments is increased beyond the above range, the number of the Nb-based metal filaments decreases, and as a result, Jc of the finally obtained superconducting wire becomes undesirably small. The distance to the boundary can be obtained by polishing a cross section of the superconducting wire and taking a photograph with an optical microscope or an electron microscope.

【0029】本件第1の発明の超電導線の先駆体を得る
には、たとえば以下のような方法がある。
In order to obtain the precursor of the superconducting wire according to the first aspect of the present invention, there are the following methods, for example.

【0030】(1)Cu基金属材の中心にNb線が埋め
込まれた、Cuの肉厚の異なる2種類の単芯線を作製
し、Cuビレット中の中心付近にはCu基金属棒を、そ
の周囲に単芯線を充填する。この際、超電導線を得るた
めの熱処理の過程で生じるε相ブロンズ層の境界となる
領域には前記肉厚の単芯線を配し、その内側および外側
に肉薄の単芯線を配する。
(1) Two types of single-core wires having different thicknesses of Cu in which an Nb wire is embedded in the center of a Cu-based metal material are produced, and a Cu-based metal rod is provided near the center of the Cu billet. Fill the periphery with a single core wire. At this time, the thick single-core wire is arranged in a region which is a boundary of the ε-phase bronze layer generated in the process of heat treatment for obtaining a superconducting wire, and the thin single-core wire is arranged inside and outside thereof.

【0031】前記単芯線は同じ太さのNb棒を肉厚の異
なる2種のCuパイプに挿入し延伸して得られる。
The single core wire is obtained by inserting Nb rods of the same thickness into two types of Cu pipes having different wall thicknesses and stretching the same.

【0032】この際、肉厚の異なる2種の単芯線の径
(断面が円形ならば直径、正多角形ならば対辺間距離)
が同一となるように延伸すれば、肉厚のCuをもつ単芯
線の場合のほうが中のNb線が細くなる。したがって、
ε相ブロンズ層の境界領域のNb基金属フィラメント間
の間隔は肉薄の単芯線よりも大きくなる。
At this time, the diameters of two types of single core wires having different wall thicknesses (the diameter is a circular cross section, and the distance between opposite sides if a regular polygon).
Are stretched to be the same, the middle Nb wire becomes thinner in the case of a single core wire having a thick Cu. Therefore,
The spacing between Nb-based metal filaments in the boundary region of the ε-phase bronze layer is larger than that of a thin single core wire.

【0033】また、延伸する際に、Cuが肉厚である単
芯線は径を大きく、Cuが肉薄である単芯線は径を小さ
く作製すれば、Cuが肉厚である単芯線を詰めた部分の
Nb基金属フィラメント間距離は、Cuの肉厚の差に応
じて広くなり、いずれの場合でもNb基金属フィラメン
ト間の間隔を大きくすることができる。
Further, when the stretching is performed, if the single core wire having a thicker Cu is made larger in diameter, and the single core wire having a thinner Cu is made smaller in diameter, a portion where the single core wire having a thick Cu is packed is formed. The distance between the Nb-based metal filaments becomes wider according to the difference in the thickness of Cu, and in any case, the distance between the Nb-based metal filaments can be increased.

【0034】そののち、前記単芯線とCu基金属棒とを
充填したCuビレットを延伸処理して複合体とし、中心
部のCuを穿孔して、Sn基金属棒を挿入する。
After that, the Cu billet filled with the single core wire and the Cu-based metal rod is stretched to form a composite, and the Cu at the center is perforated, and the Sn-based metal rod is inserted.

【0035】前記単芯線とCu基金属棒とを充填したC
uビレットを延伸処理する際、中空押出し、冷間加工な
どの方法によって管状の複合体とし、その中空部にSn
基金属材を挿入してもよい。こののち、必要に応じて複
合体外側をSnに対する拡散障壁材、たとえばTaで覆
い、さらに安定化材をかぶせて伸線処理をして超電導線
の先駆体とする。そののち、該超電導線の先駆体を30
0〜600℃に予備熱処理して、中央のSn基金属材を
Nbフィラメントの周囲にあるCu基金属中に拡散せし
め、ブロンズを生成させる。そののちさらに600〜8
00℃で熱処理して超電導線を得る。
C filled with the single core wire and a Cu-based metal rod
When the u billet is stretched, it is formed into a tubular composite by a method such as hollow extrusion or cold working.
A base metal material may be inserted. Thereafter, if necessary, the outside of the composite is covered with a diffusion barrier material for Sn, for example, Ta, and further covered with a stabilizing material and subjected to wire drawing to obtain a precursor of a superconducting wire. After that, the precursor of the superconducting wire is
Preliminary heat treatment at 0 to 600 ° C. causes the central Sn-based metal material to diffuse into the Cu-based metal around the Nb filament to produce bronze. After that another 600-8
Heat treatment is performed at 00 ° C. to obtain a superconducting wire.

【0036】前記安定化材は超電導線を得るための熱処
理の際にもブロンズ化されない層を形成するものであっ
て、超電導線の最外部に前記安定化材からなる層を設け
ることによって、電気的、熱的な処理に対してより安定
な超電導線が得られる。安定化材としてはCuのほかに
高純度Alなども使用できる。前記ブロンズ化を防止す
るためにはSn−Cu複合体と安定化材の層との間にS
nの拡散を妨たげる障壁層を設けるのがよい。障壁層を
形成する材料としてはTaが好ましいが、Nb、Vなど
も使用できる。
The stabilizing material forms a layer that is not bronze even during heat treatment for obtaining a superconducting wire. By providing a layer made of the stabilizing material at the outermost portion of the superconducting wire, A more stable superconducting wire can be obtained for thermal and thermal treatments. As the stabilizing material, high-purity Al or the like can be used in addition to Cu. In order to prevent the bronzing, a S
It is preferable to provide a barrier layer that prevents diffusion of n. As a material for forming the barrier layer, Ta is preferable, but Nb, V and the like can also be used.

【0037】(2)単芯線をCuビレットに充填する
際、ε相ブロンズ層の境界の内側はすべてCu基金属棒
を充填し、境界のすぐ外側には肉厚の単芯線を、さらに
その外側に肉薄の単芯線を充填し、あとは(1)と同様
に処理をする。
(2) When filling a single core wire into a Cu billet, the inside of the boundary of the ε-phase bronze layer is all filled with a Cu-based metal rod, a thick single core wire is provided immediately outside the boundary, and further outside the boundary. Is filled with a thin single-core wire, and the same processing is performed as in (1).

【0038】(3)Cuビレット内に多数の孔を有する
無酸素銅板を重ねて充填し、孔にNbを挿入する。前記
無酸素銅円板にあける孔の位置は(1)の場合の単芯線
を充填する位置に相当する。その際、ε相ブロンズ層の
境界となる領域の穴の間隔を他の部分よりも広くとる。
以後は(1)の場合と同じ処理をする。
(3) An oxygen-free copper plate having a large number of holes is stacked and filled in a Cu billet, and Nb is inserted into the holes. The positions of the holes in the oxygen-free copper disk correspond to the positions where the single core wire is filled in the case of (1). At this time, the interval between the holes in the region that is the boundary of the ε-phase bronze layer is made wider than the other portions.
Thereafter, the same processing as in the case of (1) is performed.

【0039】なお前記中心部のSn量が少なくてもすむ
ように、前記複合体の外側をあらかじめSnメッキして
もよい。
The outside of the composite may be previously plated with Sn so that the amount of Sn at the center may be small.

【0040】第1の発明の超電導線は、後述する第2の
発明と同様にNb3Snフィラメント中に微量元素とし
てTi、Ta、Hf、In、Ge、Si、Ga、Mo、
2r、VおよびMnよりなる群から選ばれた少なくとも
1種の元素を0.01〜5重量%含んでもよい。各微量
元素を含有することによる効果は、第2の発明の場合と
同様である。
The superconducting wire of the first invention comprises Ti, Ta, Hf, In, Ge, Si, Ga, Mo, as trace elements in the Nb 3 Sn filament, as in the second invention described later.
At least one element selected from the group consisting of 2r, V and Mn may be contained in an amount of 0.01 to 5% by weight. The effect of containing each trace element is the same as in the case of the second invention.

【0041】前記微量元素を含むNb3Snを得るには
以下のような方法がある。
There are the following methods for obtaining Nb 3 Sn containing the trace elements.

【0042】(i)0.01〜10重量%のTi、I
n、Ga、Ge、SiおよびMnよりなる群から選ばれ
た少なくとも1種を含有したSn合金または前記金属粉
を混合成形したSnを用いる。前記添加量が0.01重
量%未満では効果が認められず、10重量%をこえると
供給されるSn量が少なくなるので生成するNb3Sn
量が減り特性の低下をきたす。
(I) 0.01 to 10% by weight of Ti, I
An Sn alloy containing at least one selected from the group consisting of n, Ga, Ge, Si and Mn, or Sn obtained by mixing and molding the above metal powder is used. When the amount is less than 0.01% by weight, the effect is not recognized. When the amount is more than 10% by weight, the amount of Sn to be supplied becomes small, so that Nb3Sn produced is reduced.
The amount is reduced, and the characteristics are deteriorated.

【0043】(ii)0.01〜5重量%のTi、Ta、
Hf、Mo、ZrおよびVよりなる群から選ばれた少な
くとも1種を含むNb合金または前記金属粉を混合し、
成形したNbを用いる。前記添加量が0.01重量%未
満では、効果が認められず、5重量%をこえるとNb量
が少なくなるので生成するNb3Sn量が減り、特性の
低下をきたす。
(Ii) 0.01 to 5% by weight of Ti, Ta,
Mixing an Nb alloy containing at least one selected from the group consisting of Hf, Mo, Zr and V or the metal powder,
Use molded Nb. When the amount is less than 0.01% by weight, no effect is obtained. When the amount is more than 5% by weight, the amount of Nb is reduced, so that the amount of Nb3Sn produced is reduced and the characteristics are deteriorated.

【0044】(iii)0.01〜5重量%のTi、I
n、Ge、SiおよびMnよりなる群から選ばれた少な
くとも1種を含むCuを用いる。前記添加量が0.01
重量%未満では効果が得られず、5重量%を超えると加
工性が著しく悪化する。またCu基金属材に0.01〜
1重量%のSnを含有させると加工性をあげることがで
きる。
(Iii) 0.01 to 5% by weight of Ti, I
Cu containing at least one selected from the group consisting of n, Ge, Si and Mn is used. The amount added is 0.01
If the amount is less than 5% by weight, the effect cannot be obtained. In addition, 0.01 to
When 1% by weight of Sn is contained, workability can be improved.

【0045】本件第2の発明の超電導線の先駆体は以下
のようにして得られるものである。
The precursor of the superconducting wire according to the second aspect of the present invention is obtained as follows.

【0046】(I)Cu基金属板とSn基金属板とを交
互に重ね、圧延して一体化したCu−Sn複合体をつく
り、該複合体を無酸素銅容器中に縦に充填し、該充填さ
れた容器を押し出し加工してCu−Sn複合棒とする。
つぎに、該複合棒の縦方向に複数個の孔を穿孔して各孔
にNb基金属棒を挿入し、伸線加工する。
(I) A Cu-based metal plate and a Sn-based metal plate are alternately stacked and rolled to form an integrated Cu—Sn composite, and the composite is vertically filled in an oxygen-free copper container. The filled container is extruded to form a Cu-Sn composite rod.
Next, a plurality of holes are drilled in the longitudinal direction of the composite rod, and an Nb-based metal rod is inserted into each of the holes to perform wire drawing.

【0047】(II)Nb基金属棒の周囲にCuとSnと
からなる複合体を被覆して得られる複合単芯線を無酸素
銅容器中に密に多数充填し、該容器を伸線加工する。
(II) A large number of composite single-core wires obtained by coating a composite of Cu and Sn around an Nb-based metal rod are densely filled in an oxygen-free copper container, and the container is drawn. .

【0048】なお、必要に応じて伸線加工の前にSnに
対する障壁材で覆い、さらに安定化材のパイプをかぶせ
て伸線処理をするのが好ましい。超電導線の先駆体は、
最外層がSnを含まないCuまたはAlの層であるのが
好ましい。障壁材とは、熱処理中に拡散したSnが最外
層の安定化材にまで達するのを防ぐ障壁となるものであ
る。
If necessary, it is preferable that the wire is covered with a barrier material for Sn before the wire drawing, and the wire is drawn with a pipe of a stabilizing material. The precursor of superconducting wire is
Preferably, the outermost layer is a layer of Cu or Al containing no Sn. The barrier material is a barrier that prevents Sn diffused during the heat treatment from reaching the outermost stabilizing material.

【0049】前記CuとSnとの複合体におけるSnの
割合は複合体中1〜99重量%が好ましく、13〜20
重量%であるのがとくに好ましい。Snの量が1重量%
未満の場合は、Snの量が不足してNb3Snが充分に
生成し難く、99重量%を超えるとSnの体積率が増え
すぎて柔かくなりすぎ、加工が困難となる。
The proportion of Sn in the composite of Cu and Sn is preferably 1 to 99% by weight in the composite, and 13 to 20% by weight.
% By weight is particularly preferred. 1% by weight of Sn
If the amount is less than the above, the amount of Sn is insufficient, so that it is difficult to generate Nb 3 Sn sufficiently. If the amount exceeds 99% by weight, the volume ratio of the Sn becomes too large, becomes too soft, and processing becomes difficult.

【0050】前記複合単芯線は以下のような方法で得ら
れる。
The composite single core wire is obtained by the following method.

【0051】(a)Nb基金属棒をCu基金属パイプに
挿入し、押し出し加工して単芯線とし、該単芯線の外面
をSnメッキして複合単芯線を得る。
(A) A Nb-based metal rod is inserted into a Cu-based metal pipe and extruded to form a single core wire, and the outer surface of the single core wire is Sn-plated to obtain a composite single core wire.

【0052】(b)外壁に、その長さ方向に複数の孔が
穿孔された無酸素銅容器の前記穿孔部にSn棒を挿入
し、前記無酸素銅容器の中央にNb基金属棒を挿入し、
押し出し加工して複合単芯線を得る。
(B) An Sn rod is inserted into the perforated portion of the oxygen-free copper container having a plurality of holes perforated in its outer wall in the length direction, and an Nb-based metal rod is inserted into the center of the oxygen-free copper container. And
It is extruded to obtain a composite single core wire.

【0053】(c)2枚のCu板間にSn板を挟み、圧
延して一体化したCu−Sn複合体板、または少なくと
も片面にSnメッキしたCu板を、Nb基金属棒の周囲
に数回巻きつけ、押し出し加工して複合単芯線を得る。
(C) A Cu-Sn composite plate integrated by rolling and sandwiching an Sn plate between two Cu plates, or a Cu plate having Sn plated on at least one side, is provided around the Nb-based metal bar by several steps. Twisted and extruded to obtain a composite single core wire.

【0054】本件第2の発明の超電導線の先駆体の各N
b基金属フィラメント間の距離は、熱処理の際にフィラ
メントが互いに接触しないためには、直径の14/10
0以上であることが必要であって、30/100以上で
あることがとくに好ましい。しかし間隔が広すぎると超
電導線中のNb3Snフィラメントの数が少なくなって
Jcの値が減少し、間隔が狭すぎるとdeff値が大きく
なるから前記の値以上の範囲でできるだけ接近させるこ
とが望ましい。
Each N of the precursor of the superconducting wire of the second invention
The distance between the b-based metal filaments is 14/10 of the diameter so that the filaments do not contact each other during heat treatment.
It is necessary to be 0 or more, and it is particularly preferable that it is 30/100 or more. However, if the interval is too wide, the number of Nb 3 Sn filaments in the superconducting wire decreases, and the value of Jc decreases. If the interval is too narrow, the d eff value increases. Is desirable.

【0055】第2の発明の超電導線は、まず、CuとS
nとの複合体をブロンズ化するために、処理時間と20
0〜600℃の範囲から温度を適当に選び、超電導線の
先駆体に予備熱処理を行なったのち、ひきつづいて60
0〜800℃に約100〜200時間加熱してNb基金
属フィラメントをNb3Snフィラメントとすることに
よって得られる。なお、前記予備熱処理ののち一旦冷却
してからあらためて600〜800℃に加熱しても差支
えない。
The superconducting wire according to the second invention is characterized in that Cu and S
processing time and 20 minutes to bronze the complex with
The temperature is appropriately selected from the range of 0 to 600 ° C., and the precursor of the superconducting wire is subjected to a preliminary heat treatment.
Was heated to 0 to 800 ° C. to about 100 to 200 hours is obtained by the Nb-based metal filaments and Nb 3 Sn filaments. After the preliminary heat treatment, it may be cooled once and then heated again to 600 to 800 ° C.

【0056】前記Nb3Snフィラメントはまた、微量
元素としてTi、Ta、Hf、In、Ge、Si、G
a、Mo、Zr、VおよびMnよりなる群から選ばれた
少なくとも1種の元素を0.01〜5重量%含んでいて
もよい。
The Nb 3 Sn filament also contains Ti, Ta, Hf, In, Ge, Si, G
At least one element selected from the group consisting of a, Mo, Zr, V and Mn may be contained in an amount of 0.01 to 5% by weight.

【0057】前記微量元素としてTi、Ta、Hf、M
o、ZrまたはVの少なくとも1種を含有するNb3
nフィラメントを用いると高磁界側のJcが向上する。
また、InまたはGaを用いた場合には、低中磁界側の
Jcが向上するほか線材の加工性がよくなる。また、G
e、SiまたはMnの添加は交流ロスの低減に効果があ
る。
As the trace elements, Ti, Ta, Hf, M
Nb 3 S containing at least one of o, Zr and V
When n filaments are used, Jc on the high magnetic field side is improved.
In addition, when In or Ga is used, Jc on the low and medium magnetic field side is improved, and workability of the wire is improved. G
The addition of e, Si or Mn is effective in reducing AC loss.

【0058】前記微量元素を含むNb3Snを得るには
以下のような方法がある。
There are the following methods for obtaining Nb 3 Sn containing the trace elements.

【0059】(i)Ti、In、Ga、Ge、Siおよ
びMnよりなる群から選ばれた少なくとも1種を0.0
1〜10重量%含有したSnを用いる。前記含有量が
0.01重量%未満では効果が認められず、10重量%
を超えると供給されるSn量が少なくなるので生成する
Nb3Sn量が減り、特性の低下をきたす。
(I) at least one member selected from the group consisting of Ti, In, Ga, Ge, Si and Mn is added to 0.0
Sn containing 1 to 10% by weight is used. If the content is less than 0.01% by weight, no effect is observed and 10% by weight
If the amount exceeds Nb, the amount of Sn to be supplied decreases, so that the amount of Nb3Sn generated decreases, resulting in deterioration of characteristics.

【0060】(ii)Ti、Ta、Hf、Mo、Zrおよ
びVよりなる群から選ばれた少なくとも1種を0.01
〜5重量%含むNbを用いる。前記含有量が0.01重
量%未満では効果が認められず、5重量%を超えるとN
bの量が減るために最終的に生成するNb3Sn量が減
り特性の低下をきたす。
(Ii) at least one selected from the group consisting of Ti, Ta, Hf, Mo, Zr and V is 0.01%
Nb containing up to 5% by weight is used. When the content is less than 0.01% by weight, no effect is obtained.
Since the amount of b decreases, the amount of Nb 3 Sn finally generated decreases, resulting in a deterioration in characteristics.

【0061】(iii)Ti、In、Ge、SiおよびM
nよりなる群から選ばれた少なくとも1種を0.01〜
5重量%含むCuを用いる。前記含有量が0.01重量
%未満では効果が認められず、5重量%を超えると加工
性が著しく悪化する。また、Cu基金属材に0.01〜
1重量%のSnを含有せしめると加工性を上げることが
可能となる。
(Iii) Ti, In, Ge, Si and M
at least one selected from the group consisting of
Cu containing 5% by weight is used. When the content is less than 0.01% by weight, no effect is obtained. When the content is more than 5% by weight, processability is remarkably deteriorated. In addition, 0.01 to
When 1% by weight of Sn is contained, workability can be improved.

【0062】(iv)Cu基金属材とSn基金属材からな
る複合体の表面に、Ti、In、Ge、Si、Mn、N
iおよびSnよりなる群から選ばれた少なくとも1種の
元素をメッキする。なお、Tiの場合には、その薄板を
前記複合体の板に重ねて使用してもよい。
(Iv) Ti, In, Ge, Si, Mn, and N are formed on the surface of the composite comprising the Cu-based metal material and the Sn-based metal material.
At least one element selected from the group consisting of i and Sn is plated. In the case of Ti, the thin plate may be used by overlapping it with the plate of the composite.

【0063】(v)Nb基金属材の表面にTi、Ta、
Hf、Mo、ZrおよびVよりなる群から選ばれた少な
くとも1種の元素をメッキする。
(V) Ti, Ta,
At least one element selected from the group consisting of Hf, Mo, Zr and V is plated.

【0064】以下、本発明の超電導線の製造法を図面に
基づいて具体的に説明する。なお、実施の形態1〜4は
本件第1の発明の実施の形態、実施の形態5〜12は本
件第2の発明の実施の形態である。
Hereinafter, a method of manufacturing a superconducting wire according to the present invention will be specifically described with reference to the drawings. The first to fourth embodiments are embodiments of the first invention, and the fifth to twelfth embodiments are embodiments of the second invention.

【0065】実施の形態1 図1は、Cu製のビレットに組み込んだ押出し加工前の
複合体の断面構成を示す説明図である。図1において、
1は複合体、2はビレット、13aおよび13bは以下
に記載するNb単芯線、4aはCu基金属材からなる線
(以下、Cu基金属線という)を表わす。
Embodiment 1 FIG. 1 is an explanatory view showing a cross-sectional structure of a composite before extrusion processing incorporated in a billet made of Cu. In FIG.
Reference numeral 1 denotes a composite, 2 denotes a billet, 13a and 13b denote Nb single-core wires described below, and 4a denotes a line made of a Cu-based metal material (hereinafter referred to as Cu-based metal wire).

【0066】まず、超電導線の先駆体のNb基金属フィ
ラメントとなるべき2種類のNb単芯線13aおよび1
3bを作製した。すなわち、直径11mmの丸棒状のN
b基金属棒を内径および外径がそれぞれ11.8mm、
16.8mmのCu基金属パイプ中に挿入したあと、伸
線加工を行なって対辺間が4.2mmの六角線とした
(図1における13a)。同様にして直径11mmの丸
棒状のNb基金属棒と内径および外径がそれぞれ11.
8mm、18.4mmのCu基金属パイプとからCuの
肉厚が単芯線13aよりも厚い、単芯線(対辺間が4.
2mmの六角線)13bを得た。
First, two types of Nb single-core wires 13a and 13a to become Nb-based metal filaments as precursors of superconducting wires
3b was produced. That is, a round bar-shaped N having a diameter of 11 mm
b base metal rod is 11.8 mm in inner diameter and 11.8 mm outer diameter,
After being inserted into a 16.8 mm Cu-based metal pipe, drawing was performed to form a hexagonal line with a 4.2 mm gap between the opposite sides (13a in FIG. 1). Similarly, a round bar-shaped Nb-based metal rod having a diameter of 11 mm and an inner diameter and an outer diameter of 11.
From the 8 mm and 18.4 mm Cu-based metal pipes, a single core wire (thickness between opposite sides is 4.10 mm thicker than the single core wire 13 a).
A 2 mm hexagonal line) 13b was obtained.

【0067】前記Nb単芯線13a、13bおよび対辺
間が4.2mmの六角のCu基金属線4aとを図1に示
すように中心から外周方向に向かって、Cu基金属線4
aを7層、単芯線13aを2層、単芯線13bを3層、
さらに単芯線13aを5層の構成でビレット内に充填し
た(ただし図1では中心部から外周に向けて1列だけ描
き表わされている)。この構成を選んだ理由は、中央部
に配置されるSn基金属材とCu基金属線とが熱処理に
よって合金化してε相ブロンズ層を生成する際に、ε相
ブロンズ層の境界が中心から第3層目と第4層目のNb
単芯線の間に形成されるので、第3層〜第5層のNb基
金属材フィラメントの直径を前記のようにやや細くして
伸線加工後のフィラメント間隔をやや広げ、熱処理によ
って生成するNb3Snフィラメント相互の接触を防ぐ
ためである。
The Nb single-core wires 13a and 13b and the hexagonal Cu-based metal wire 4a having a distance between opposite sides of 4.2 mm are connected to the Cu-based metal wire 4a from the center toward the outer periphery as shown in FIG.
a, seven layers of single-core wire 13a, three layers of single-core wire 13b,
Furthermore, the single core wire 13a was filled in the billet in a five-layer configuration (however, only one line is drawn from the center to the outer periphery in FIG. 1). The reason for choosing this configuration is that when the Sn-based metal material and the Cu-based metal wire arranged in the center are alloyed by heat treatment to form the ε-phase bronze layer, the boundary of the ε-phase bronze layer is shifted from the center to the second. Nb of the third and fourth layers
Since it is formed between the single core wires, the diameter of the Nb-based metal material filaments in the third to fifth layers is slightly reduced as described above to slightly widen the distance between the filaments after drawing, and Nb generated by heat treatment. This is to prevent mutual contact of the 3 Sn filaments.

【0068】こののち、ビレットの押出し加工を行な
い、つづいて押し出された複合体の中央部を穿孔してS
n基金属棒を挿入したのち、伸線加工を行なって複合線
を得た。この複合線をSnの拡散に対する障壁材である
Taパイプ中に挿入し、さらにそのパイプに安定化のた
めのCuパイプをかぶせて2次複合を行なったのち、線
径0.5mmまで伸線加工を行なった。
After that, the billet is extruded, and the center of the extruded composite is pierced to form a billet.
After inserting the n-base metal rod, wire drawing was performed to obtain a composite wire. This composite wire is inserted into a Ta pipe, which is a barrier material for Sn diffusion, and further covered with a Cu pipe for stabilization, and then subjected to a secondary composite, followed by drawing to a wire diameter of 0.5 mm. Was performed.

【0069】前記のようにして作製した超電導線の先駆
体に、予備熱処理を行なったのち熱処理を施し、Nb基
金属フィラメント部分にNb3Snを形成せしめ、Nb
−Sn系超電導線を得た。この熱処理における温度およ
び時間は、熱拡散反応によって超電導体が形成される温
度であることが必要であり、Nb3Snの場合には60
0〜800℃で100〜200時間であった。
The precursor of the superconducting wire manufactured as described above is subjected to a preliminary heat treatment, and then to a heat treatment to form Nb 3 Sn on the Nb-based metal filament portion.
A -Sn superconducting wire was obtained. The temperature and time in this heat treatment need to be a temperature at which a superconductor is formed by a thermal diffusion reaction, and in the case of Nb 3 Sn, it is 60 ° C.
100-200 hours at 0-800 ° C.

【0070】図2は、このようにして作製された熱処理
後の超電導線の断面構造を示す説明図であり、9は熱処
理後の超電導線、10はNb3Snフィラメント、11
は低Sn濃度ブロンズ、7はTaからなる障壁層、8は
Cuからなる安定化層である。
FIG. 2 is an explanatory view showing the cross-sectional structure of the heat-treated superconducting wire manufactured in this manner, where 9 is the superconducting wire after the heat treatment, 10 is the Nb 3 Sn filament, 11
Is a low Sn concentration bronze, 7 is a barrier layer made of Ta, and 8 is a stabilizing layer made of Cu.

【0071】ε相ブロンズ層の境界領域のNb基金属フ
ィラメントは他の部分のフィラメントに対してやや細い
ので、フィラメント間距離はやや広くなる。
Since the Nb-based metal filament in the boundary region of the ε-phase bronze layer is slightly thinner than the other filaments, the distance between the filaments is slightly wider.

【0072】前記低Sn濃度ブロンズとは、熱処理過程
でいったん生じるブロンズのSn含量(約18〜20重
量%)よりも低含量(約3〜10重量%)のSnを含む
ブロンズのことを指し、熱処理によってSnが拡散し、
Nb3Snが生成される結果、Sn含量が低くなるもの
であって、超電導線の中心からNbフィラメントにいた
る領域がほぼこれに該当する。
The low Sn concentration bronze refers to a bronze containing Sn having a lower content (about 3 to 10% by weight) than the Sn content (about 18 to 20% by weight) of the bronze once formed during the heat treatment. Sn diffuses by the heat treatment,
As a result of the generation of Nb 3 Sn, the Sn content is reduced, and the region from the center of the superconducting wire to the Nb filament substantially corresponds to this.

【0073】前記のごとくして得られた超電導線のJc
およびdeffの測定を液体ヘリウム中で行なった。その
結果、Jcに関しては、B=12Tの磁界においてJc
=820A/mm2という値が得られた。この値は今ま
での通常の構成の超電導線の特性にくらべ、Nb3Sn
の占積率が少なくなっているため、Jc特性では5%減
少しているものの、deffに関しては9μmと今までの
値(36μm)に対して約1/4の値が得られた。した
がって、総合的な評価としてJc/deff値で両者を比
較すると、本発明により3.8倍の向上が達成されるこ
とがわかる。
The Jc of the superconducting wire obtained as described above
And d eff measurements were made in liquid helium. As a result, with respect to Jc, in a magnetic field of B = 12T, Jc
= 820 A / mm 2 was obtained. This value is Nb 3 Sn compared to the characteristics of the conventional superconducting wire having a normal configuration.
Although the space factor of the Jc characteristic is reduced by 5%, the d eff is 9 μm, which is about 1 / of the previous value (36 μm). Therefore, comparing the two with the Jc / d eff value as a comprehensive evaluation, it can be seen that a 3.8-fold improvement is achieved by the present invention.

【0074】実施の形態2 図3は、Cu製のビレットに組み込んだ押出し加工前の
複合体断面の構成の別の態様を示す説明図である。4b
はCu基金属棒を表わす。
Embodiment 2 FIG. 3 is an explanatory view showing another aspect of the structure of the cross section of the composite before extrusion processing incorporated in a billet made of Cu. 4b
Represents a Cu-based metal rod.

【0075】まず、超電導線の先駆体のNb基金属フィ
ラメントとなる2種類のNb単芯線13cおよび13d
をつぎのように作製した。すなわち、直径11mmの丸
棒状のNb基金属棒を内径および外径がそれぞれ11.
8mmと16.8mmのCu基金属パイプ中に挿入した
あと、線径4.2mmまで伸線加工を行なってCuの肉
厚が薄い単芯線13cを作製した。また同様にして内径
および外径がそれぞれ11.8mmと18.4mmのC
u基金属パイプ中に直径11mmの丸棒状のNb基金属
棒を挿入して伸線加工を行ない、線径4.6mmのCu
の肉厚が厚い単芯線13dを得た。この実施の形態2に
おいては、Cuの厚さを変えた太さの異なる2種類の単
芯線を用いることによって、フィラメント間の接触がと
くに起こりやすいε相の境界領域のフィラメント間隔を
広げた。
First, two types of Nb single-core wires 13c and 13d, which are Nb-based metal filaments as precursors of the superconducting wire, are used.
Was prepared as follows. That is, a round bar-shaped Nb-based metal rod having a diameter of 11 mm was used for the inner and outer diameters of 11.2 mm respectively.
After being inserted into 8 mm and 16.8 mm Cu-based metal pipes, wire drawing was performed to a wire diameter of 4.2 mm to produce a single core wire 13c having a thin Cu wall. In the same manner, C having an inner diameter and an outer diameter of 11.8 mm and 18.4 mm, respectively.
A round bar-shaped Nb-based metal rod having a diameter of 11 mm is inserted into a u-based metal pipe and wire-drawing is performed.
A thick single core wire 13d was obtained. In the second embodiment, by using two types of single-core wires having different thicknesses in which the thickness of Cu is changed, the filament interval in the boundary region of the ε phase in which contact between filaments particularly easily occurs is increased.

【0076】図3に示したように、中心に直径が20m
mのCu基金属棒4b、ついで外周に向かって単芯線1
3cを2層、単芯線13dを3層、そして単芯線13c
を4層の構成でビレット内に詰めた(図3では一部の単
芯線は省略されている)。この構成を選んだ理由は、実
施の形態1の場合と同様である。このようにして丸棒状
の単芯線を組み込んだことによって生じた隙間部分にC
u基金属の細線を挿入した(図3ではCu基金属の細線
が省略されている)あと、押出し加工を行なって複合体
を得た。このあと、押し出された複合体の中央部を穿孔
してSn基金属棒を挿入し、再び伸線加工を行ない、複
合線を得た。該複合線をSnの拡散障壁材であるTaパ
イプ中に挿入し、安定化のためのCuパイプをかぶせて
2次複合を行なったのち、線径0.5mmまで伸線加工
を行なって超電導線の先駆体を得た。
As shown in FIG. 3, the center has a diameter of 20 m.
m-based metal rod 4b, and then a single core wire 1
3c, two layers of single core wire 13d, and three layers of single core wire 13c
Was packed in a billet in a four-layer configuration (in FIG. 3, some single-core wires are omitted). The reason for selecting this configuration is the same as in the first embodiment. In this manner, C is added to the gap created by incorporating the round rod-shaped single core wire.
After inserting the thin wire of the u-based metal (the thin wire of the Cu-based metal is omitted in FIG. 3), extrusion was performed to obtain a composite. Thereafter, a central portion of the extruded composite was perforated, a Sn-based metal rod was inserted, and drawing was performed again to obtain a composite wire. The composite wire is inserted into a Ta pipe, which is a Sn diffusion barrier material, covered with a Cu pipe for stabilization, and subjected to secondary composite, and then drawn to a wire diameter of 0.5 mm to perform superconducting wire. Got a pioneer.

【0077】前記のようにして作製した超電導線の先駆
体について、予備熱処理にひきつづいて600〜750
℃で100〜200時間の熱処理を行ない、Nb−Sn
系超電導線を得た。図4は、このようにして製作した熱
処理後の超電導線の断面構成を示す説明図であって、9
は熱処理後の超電導線、10はNb3Snフィラメン
ト、11は低Sn濃度ブロンズ層、7はTaの障壁層、
8はCuの安定化材である。
The precursor of the superconducting wire manufactured as described above was subjected to a preliminary heat treatment, followed by 600 to 750.
Heat treatment at 100 ° C. for 100 to 200 hours to obtain Nb—Sn
A superconducting wire was obtained. FIG. 4 is an explanatory view showing a cross-sectional configuration of the heat-treated superconducting wire manufactured as described above.
Is a superconducting wire after heat treatment, 10 is an Nb 3 Sn filament, 11 is a low Sn concentration bronze layer, 7 is a Ta barrier layer,
Reference numeral 8 denotes a Cu stabilizing material.

【0078】以上のようにして得られた超電導線のJc
およびdeffの測定を液体ヘリウム中で行なったとこ
ろ、JcはB=12Tの磁界においてJc=805A/
mm2という値が、deffに関しては6μmという値が得
られた。したがって、総合的な評価としてJc/deff
値で両者を比較すると、本発明により従来の超電導線よ
り5.6倍の向上が達成されることがわかる。
The Jc of the superconducting wire obtained as described above
And d eff were measured in liquid helium, and Jc was found to be Jc = 805 A / at a magnetic field of B = 12 T.
A value of mm 2 and a value of 6 μm for d eff were obtained. Therefore, Jc / d eff as a comprehensive evaluation
Comparing the values with each other shows that the present invention achieves a 5.6-fold improvement over the conventional superconducting wire.

【0079】実施の形態3 図5は、Cu製のビレットに組み込んだ押出し加工前の
複合体の構成を示した斜視図であり、1は押出し加工前
の複合体、2はCu製のビレット、13は超電導線の先
駆体のフィラメントになるNb基金属棒、4cは円盤状
のCu基金属材を表わす。
Embodiment 3 FIG. 5 is a perspective view showing a structure of a composite before extrusion processing incorporated in a billet made of Cu, wherein 1 is a composite before extrusion, 2 is a billet made of Cu, Reference numeral 13 denotes an Nb-based metal rod serving as a precursor filament of a superconducting wire, and 4c denotes a disk-shaped Cu-based metal material.

【0080】円盤状のCu基金属材4cは以下のように
して作製した。すなわち、直径160mm、厚さ10m
mの無酸素銅の円盤上に直径4.95mmの孔を309
個、NCボール盤を用いて穿孔した。このときの孔は、
内側から外周に向かって第1層目と2層目との間は密
に、2層目から4層目の間は粗に、4層目と5層目との
間は密に配置した。前記円盤状のCu基金属材4cを3
0枚、孔の位置が合うように、外径180mm、内径1
60mmの無酸素銅製のビレット容器中に挿入した。つ
ぎに、直径4.9mmのNb基金属棒13を前記30枚
重ねた銅板の孔に充填し、最後に内部を真空引きして蓋
を溶接することで複合ビレットを製造した。なお、無酸
素銅の円盤へのNb基金属棒の挿入は容易であった。
The disk-shaped Cu-based metal material 4c was produced as follows. That is, diameter 160mm, thickness 10m
309 mm of oxygen-free copper disc with a hole of 4.95 mm diameter
Each was perforated using an NC drilling machine. The hole at this time is
From the inside toward the outer periphery, the first and second layers were densely arranged, the second to fourth layers were coarsely arranged, and the fourth and fifth layers were densely arranged. The disc-shaped Cu-based metal material 4c is
0 sheets, outer diameter 180 mm, inner diameter 1
It was inserted into a 60 mm oxygen-free copper billet container. Next, an Nb-based metal rod 13 having a diameter of 4.9 mm was filled in the holes of the 30 stacked copper plates, and finally the inside was evacuated and the lid was welded to produce a composite billet. The insertion of the Nb-based metal rod into the oxygen-free copper disk was easy.

【0081】前記複合ビレットを押出し加工し、押し出
された複合体の中央部を穿孔してSn基金属棒を挿入し
てから伸線加工を行ない複合線を得た。これをSnの拡
散障壁材であるTaのパイプ中に挿入し、安定化のため
のCuパイプをかぶせて2次複合を行なったのち、線径
0.5mmまで伸線加工を行なった。
The composite billet was extruded, a central portion of the extruded composite was pierced, a Sn-based metal rod was inserted, and a drawing process was performed to obtain a composite wire. This was inserted into a pipe made of Ta, which is a Sn diffusion barrier material, covered with a Cu pipe for stabilization, and then subjected to secondary composite, followed by drawing to a wire diameter of 0.5 mm.

【0082】前記のようにして作製した超電導線の先駆
体について、予備熱処理にひきつづいて600〜750
℃で100〜200時間の熱処理を行ない、Nb−Sn
系超電導線を得た。図6はこのようにして作製した熱処
理後の超電導線の断面構成を示す説明図であり、9は熱
処理後の超電導線、10はNb3Snフィラメント、1
1は低Sn濃度ブロンズ、7はTaからなる障壁層、8
はCuからなる安定化層である。
The precursor of the superconducting wire manufactured as described above was subjected to a preliminary heat treatment, followed by 600 to 750.
Heat treatment at 100 ° C. for 100 to 200 hours to obtain Nb—Sn
A superconducting wire was obtained. FIG. 6 is an explanatory view showing the cross-sectional structure of the heat-treated superconducting wire manufactured in this manner, where 9 is the superconducting wire after the heat treatment, 10 is the Nb 3 Sn filament, 1
1 is a bronze having a low Sn concentration, 7 is a barrier layer made of Ta, 8
Is a stabilizing layer made of Cu.

【0083】かくして得られた超電導線のJcおよびd
effの測定を液体ヘリウム中で行なったところ、Jcは
B=12Tの磁界においてJc=930A/mm2とい
う値が、deffに関しても6μmという値が得られた。
したがって、総合的な評価としてJc/deff値で両者
を比較すると、本発明により従来の超電導線より6.5
倍の向上が達成されることがわかる。
Jc and d of the superconducting wire thus obtained
When eff was measured in liquid helium, Jc was found to be Jc = 930 A / mm 2 at a magnetic field of B = 12 T, and d eff was also found to be 6 μm.
Therefore, comparing the two with the Jc / d eff value as a comprehensive evaluation, the present invention shows that the conventional superconducting wire is 6.5 in comparison with the conventional superconducting wire.
It can be seen that a two-fold improvement is achieved.

【0084】実施の形態4 超電導線に求められる要求スペックとして、Jc特性よ
りもdeff特性の一層の改善が求められる場合がある。
この要求を達成するためには、実施の形態1における態
様の一変形として、熱処理の過程でε相ブロンズ層が生
成した際に、Nb基金属フィラメントが前記ε相ブロン
ズ層境界の外側のみ存在するように、あらかじめ単芯線
を配置する。このようにすることによってNb3Snフ
ィラメント相互の接触、結合を抑制することができ、d
effの値の効果的な低減が可能となる。
[0084] As required specifications required of the fourth superconducting wire embodiment, there is a case where further improvement of d eff properties are required than Jc properties.
In order to achieve this requirement, as a modification of the mode of the first embodiment, when the ε-phase bronze layer is generated during the heat treatment, the Nb-based metal filament exists only outside the ε-phase bronze layer boundary. So that a single core wire is arranged in advance. By doing so, contact and bonding between Nb 3 Sn filaments can be suppressed, and d
The value of eff can be effectively reduced.

【0085】図7は、Cu製のビレットに組み込んだ押
出し加工前の複合体断面の構成を示す説明図であり、1
は押出し加工前の複合体、2はCu製のビレット、13
e、13fは六角形状のNb単芯線、4aは対辺間が
4.2mmの六角形状のCu基金属線である。前記単芯
線13eおよび13fは、実施の形態1に記載した態様
の場合よりもフィラメント間隔を広げるため、13eで
は内径および外径がそれぞれ11.8mm、17.4m
mのCuパイプ中に、13fでは内径および外径がそれ
ぞれ11.8mm、19.3mmのCuパイプ中に直径
が11mmの丸棒状のNb基金属棒を挿入したあと、伸
線加工を行なっていずれも対辺間が4.2mmの六角形
状の単芯線としたものである。
FIG. 7 is an explanatory view showing the structure of the cross section of the composite before extrusion processing incorporated in a billet made of Cu.
Is a composite before extrusion, 2 is a billet made of Cu, 13
Reference numerals e and 13f denote hexagonal single-core Nb wires, and reference numeral 4a denotes a hexagonal Cu-based metal wire having a distance between opposite sides of 4.2 mm. The single-core wires 13e and 13f have an inner diameter and an outer diameter of 11.8 mm and 17.4 m, respectively, in order to increase the filament interval as compared with the case of the embodiment described in the first embodiment.
After inserting a round bar-shaped Nb-based metal rod having a diameter of 11 mm into a Cu pipe having an inner diameter and an outer diameter of 11.8 mm and an outer diameter of 19.3 mm at 13f, respectively, at 13f, wire drawing was performed. Is a hexagonal single-core wire having a distance between opposite sides of 4.2 mm.

【0086】これらのNb単芯線を図7に示したよう
に、中心から外周に向ってCu基金属線4aを7層、単
芯線13fを3層さらに単芯線13eを7層配置した構
成でビレット内に詰めた。図7では、断面の全面に組み
込まれている単芯線13e、13fおよびCu基金属棒
4aを中心部から外周へかけて1列のみ表示されてい
る。このあと、ビレットの押出し加工を行ない、つづい
て押し出された複合体の中央部を穿孔してTiが1.5
重量%添加された直径が14mmのSn合金を挿入した
あと、伸線加工を行なって複合線を得た。この複合線の
周囲に厚さ約30μmのSnメッキを施したあと、Sn
の拡散障壁材であるTaパイプ中に挿入し、安定化のた
めのCuパイプをかぶせて2次複合を行なってから、線
径0.5mmまで伸線加工を行なった。Snメッキを行
なった理由は、Snを複合体の外周部に分散させること
で中央部分に配置されるSn基金属材の量を減らし、こ
の中央部に配置されたSnがε相ブロンズを生成したと
き、該ε相ブロンズの領域を少しでも小さくするためで
ある。
As shown in FIG. 7, these Nb single-core wires have a billet structure in which seven layers of Cu-based metal wires 4a, three single-core wires 13f, and seven single-core wires 13e are arranged from the center to the outer periphery. Packed inside. In FIG. 7, only one line is shown from the center to the outer periphery of the single core wires 13e and 13f and the Cu-based metal rod 4a incorporated on the entire cross section. Thereafter, the billet was extruded, and then the center of the extruded composite was pierced to reduce the Ti to 1.5%.
After inserting the Sn alloy with a diameter of 14 mm added by weight%, wire drawing was performed to obtain a composite wire. After applying a Sn plating of about 30 μm thickness around the composite wire,
Was inserted into a Ta pipe, which is a diffusion barrier material, and covered with a Cu pipe for stabilization to form a secondary composite, and then drawn to a wire diameter of 0.5 mm. The reason for performing the Sn plating was to reduce the amount of the Sn-based metal material disposed in the central portion by dispersing Sn in the outer peripheral portion of the composite, and the Sn disposed in the central portion generated ε-phase bronze. This is because the region of the ε-phase bronze is sometimes reduced as much as possible.

【0087】このようにして作製した超電導線の先駆体
に予備熱処理につづいて600〜800℃で100〜2
00時間の熱処理を施し、Nb−Sn系超電導線を得
た。この熱処理温度は、熱拡散反応によって超電導体が
形成される温度であり、Nb3Snの場合には600〜
800℃である。図8は、このようにして作製された熱
処理後の超電導線の断面構成を示す説明図であり、9は
熱処理後の超電導線、10はNb3Snフィラメント、
11は低Sn濃度ブロンズ、7はTaからなる障壁層、
8はCuからなる安定化層である。
The precursor of the superconducting wire thus produced was subjected to a preliminary heat treatment at 600 to 800 ° C. for 100 to 2 hours.
Heat treatment was performed for 00 hours to obtain an Nb-Sn-based superconducting wire. The heat treatment temperature is the temperature at which the superconductor is formed by thermal diffusion reaction, 600 in the case of Nb 3 Sn
800 ° C. FIG. 8 is an explanatory view showing the cross-sectional structure of the heat-treated superconducting wire manufactured in this way, 9 is a superconducting wire after heat treatment, 10 is an Nb 3 Sn filament,
11 is a low Sn concentration bronze, 7 is a barrier layer made of Ta,
Reference numeral 8 denotes a stabilizing layer made of Cu.

【0088】得られた前記超電導線について液体ヘリウ
ム中でJcおよびdeffの測定を行なった。
The obtained superconducting wire was measured for Jc and d eff in liquid helium.

【0089】その結果、Jcに関してはB=12Tの磁
界においてJc=720A/mm2という値が得られ
た。この値は今までの通常の構成の超電導線の特性と比
べて、Nb3Snの占積率が少なくなっているため、J
c特性では16%減少している。しかし、deffに関し
ては4μmと今までの値(36μm)に対して約1/9
の小さい値が得られた。この値は実施の形態1〜3と比
べても優れている。したがって、総合的な評価としてJ
c/deff値で両者を比較すると、本発明により7.5
倍の向上が達成されることがわかる。
As a result, a value of Jc = 720 A / mm 2 was obtained at a magnetic field of B = 12 T for Jc. This value is smaller than that of the conventional superconducting wire of the conventional configuration because the space factor of Nb 3 Sn is smaller.
In the c-characteristic, it is reduced by 16%. However, d eff was 4 μm, which is about 1/9 of the previous value (36 μm).
Was obtained. This value is superior to those of the first to third embodiments. Therefore, J as a comprehensive evaluation
Comparing the two with the c / d eff value, 7.5 according to the present invention.
It can be seen that a two-fold improvement is achieved.

【0090】以上の実施の形態1〜4では超電導線とし
て、Cuで代表される安定化層とTaで代表される拡散
障壁層をもっている超電導線について述べたが、安定化
材や拡散障壁材は省略しても差支えない。
In the first to fourth embodiments, superconducting wires having a stabilizing layer represented by Cu and a diffusion barrier layer represented by Ta have been described as superconducting wires. You can omit it.

【0091】実施の形態5 図9は本件第2の発明の超電導線の先駆体、すなわち延
伸加工によって断面縮小をした熱処理前の超電導線の先
駆体の断面の構成を示す説明図である。図9において、
21は超電導線の先駆体、22はCu基金属材とSn基
金属材との複合体、23はNb基金属フィラメントを表
わす。図10は前記超電導線の先駆体を熱処理して得ら
れた超電導線断面の構成を示す説明図であって、24は
超電導線、25はNb3Snフィラメント、26は熱処
理によってSnが拡散し、Nbと反応した結果低Sn濃
度となったブロンズ層を示す。
Fifth Embodiment FIG. 9 is an explanatory view showing a cross-sectional structure of a precursor of a superconducting wire according to the second invention, that is, a precursor of a superconducting wire before heat treatment which has been reduced in cross-section by stretching. In FIG.
21 is a precursor of a superconducting wire, 22 is a composite of a Cu-based metal material and a Sn-based metal material, and 23 is an Nb-based metal filament. FIG. 10 is an explanatory view showing the configuration of a superconducting wire cross section obtained by heat-treating the precursor of the superconducting wire, wherein 24 is a superconducting wire, 25 is an Nb 3 Sn filament, 26 is Sn diffused by heat treatment, A bronze layer having a low Sn concentration as a result of reacting with Nb is shown.

【0092】前記Cu基金属材とSn基金属材との複合
体22を、以下の方法で作製した。まず、厚さ2mmの
無酸素銅板10枚の間に、厚さ1mmのSn板9枚を交
互に重ね合わせて圧延し一体化した厚さ15mmの厚板
を、外径180mm、内径160mmの無酸素銅の容器
中に、積層面を縦にして密に充填した。つぎに、内部を
真空引きして蓋を溶接し、該無酸素銅容器を冷間で静水
圧押し出し加工を行ない、直径90mmの棒状の複合体
を作製した。最後に、この棒状の複合体の外周部分の無
酸素銅を、旋盤で外周切削を行って取り除き、直径が8
0mmの円柱状の複合体22を得た。
The composite 22 of the Cu-based metal material and the Sn-based metal material was manufactured by the following method. First, a 15 mm thick plate obtained by alternately stacking and rolling nine 9 mm-thick Sn plates between 10 oxygen-free copper plates having a thickness of 2 mm was used to form a plate having a 180 mm outer diameter and a 160 mm inner diameter. The container was densely packed in a container of oxygen copper with the stacking surface vertical. Next, the inside was evacuated and the lid was welded, and the oxygen-free copper container was subjected to cold isostatic pressing to produce a rod-shaped composite having a diameter of 90 mm. Lastly, the oxygen-free copper in the outer peripheral portion of the rod-shaped composite was removed by performing outer peripheral cutting with a lathe, and the diameter was 8 mm.
A 0 mm cylindrical composite 22 was obtained.

【0093】前記直径80mmの複合体22を長さ10
0mmに切断し、直径4.1mmの孔を127個穿孔し
た。つぎに、直径4.0mm、長さ100mmのNb基
金属線を前記複合体の孔に挿入し、外径90mm、内径
80mmの無酸素銅の容器中に前記複合体を入れ、内部
を真空引きして蓋を電子ビーム溶接することで複合ビレ
ットを製造した。該複合ビレットを冷間で静水圧押し出
し加工を行なったのち、外周部分の無酸素銅を旋盤で外
周切削を行なって取り除いてから伸線加工を行ない、最
終径でツイスト加工を行なって、線径0.2mmの超電
導線の先駆体を得た。得られた超電導線の先駆体につい
て、予備熱処理にひきつづき600〜800℃で50〜
200時間の熱処理を行ない、Nb基金属フィラメント
部分にNb3Sn超電導体を形成させ超電導線を得た。
The composite 22 having a diameter of 80 mm was
It was cut to 0 mm and 127 holes with a diameter of 4.1 mm were drilled. Next, an Nb base metal wire having a diameter of 4.0 mm and a length of 100 mm was inserted into the hole of the composite, the composite was placed in a container of oxygen-free copper having an outer diameter of 90 mm and an inner diameter of 80 mm, and the inside was evacuated. The composite billet was manufactured by subjecting the lid to electron beam welding. After the composite billet is subjected to cold isostatic pressing, the oxygen-free copper in the outer peripheral portion is removed by cutting the outer periphery with a lathe and then wire drawing is performed. A precursor of a 0.2 mm superconducting wire was obtained. The precursor of the obtained superconducting wire was subjected to a preliminary heat treatment at a temperature of 600 to 800 ° C and a temperature of 50 to 500 ° C.
A heat treatment was performed for 200 hours to form a Nb 3 Sn superconductor on the Nb-based metal filament portion to obtain a superconducting wire.

【0094】得られた超電導線のJcおよびdeffの測
定を、液体ヘリウム中で行なったところ、JcはB=1
2Tの磁界において550A/mm2という値が、d
effに関しては5μmという値が得られた。従来の内部
拡散法によって得られるNb3Sn超電導線との比較に
おいて、総合的な評価としてJc/deff値で両者を比
較すると、本発明により従来の超電導線より4.4倍の
向上が達成されることがわかる。
When the Jc and d eff of the obtained superconducting wire were measured in liquid helium, Jc was B = 1.
The value of 550 A / mm 2 in a 2T magnetic field is d
As for eff , a value of 5 μm was obtained. In comparison with the Nb 3 Sn superconducting wire obtained by the conventional internal diffusion method, when the two are compared by Jc / d eff value as a comprehensive evaluation, a 4.4-fold improvement over the conventional superconducting wire is achieved by the present invention. It is understood that it is done.

【0095】実施の形態6 図11は本件第2の発明の超電導線の先駆体のNb基金
属フィラメントとなる複合単芯線の構成の一実施の形態
を示す説明図である。図11において、23bはTiを
1重量%有するNb基金属棒、28はCu基金属、29
はCu基金属材表面のメッキを示す。前記複合単芯線は
つぎのように製作した。すなわち、Tiを1重量%添加
した直径11mmのNb基金属棒を、内径および外径が
それぞそれ11.8mm、18.4mmのCuパイプ中
に挿入したのち、伸線加工を行なって対辺が4.2mm
の六角形状の単芯線とした。該単芯線の表面にSnメッ
キ7を約100μmの厚さに施して、図11に示したよ
うな複合単芯線を得た。
Embodiment 6 FIG. 11 is an explanatory view showing an embodiment of the structure of a composite single-core wire serving as an Nb-based metal filament of a precursor of a superconducting wire according to the second invention. In FIG. 11, 23b is an Nb-based metal rod having 1% by weight of Ti, 28 is a Cu-based metal, 29
Indicates plating on the surface of the Cu-based metal material. The composite single core wire was manufactured as follows. That is, an Nb-based metal rod having a diameter of 11 mm to which 1% by weight of Ti has been added is inserted into Cu pipes having an inner diameter and an outer diameter of 11.8 mm and 18.4 mm, respectively. 4.2mm
Hexagonal single core wire. The surface of the single core wire was coated with Sn plating 7 to a thickness of about 100 μm to obtain a composite single core wire as shown in FIG.

【0096】前記のごとく作製した複合単芯線1225
本を、外径180mm、内径160mmの無酸素銅製の
ビレット内に充填し、真空排気と蓋の電子ビーム溶接を
行なって複合ビレットとした。つぎに、該複合ビレット
を冷間で静水圧押し出し加工を行なったのち、伸線加工
を行ない、複合体を得た。得られた複合体をSnの拡散
障壁材であるTaパイプ中に挿入し、安定化のためのC
uパイプをかぶせて2次複合化し、伸線加工を行ない、
最終径でツイスト加工を施して、線径0.3mmの超電
導線の先駆体を得た。
The composite single core wire 1225 manufactured as described above
The book was filled in an oxygen-free copper billet having an outer diameter of 180 mm and an inner diameter of 160 mm, and evacuated and electron-beam welded on the lid to form a composite billet. Next, the composite billet was subjected to cold isostatic extrusion, followed by wire drawing to obtain a composite. The obtained composite is inserted into a Ta pipe which is a Sn diffusion barrier material, and C
Cover with u pipe to make secondary composite, wire drawing,
Twist processing was performed on the final diameter to obtain a precursor of a superconducting wire having a wire diameter of 0.3 mm.

【0097】図12は得られた超電導線の先駆体の断面
の構成を示す説明図である。図12において、21は超
電導線の先駆体、23bはTiを1重量%有するNb基
金属フィラメント、30はTa障壁層、31は安定化の
ためのCu層、32はCu基金属材、33はCu基金属
材表面のSnメッキを示す。
FIG. 12 is an explanatory view showing the structure of the cross section of the precursor of the obtained superconducting wire. In FIG. 12, 21 is a precursor of a superconducting wire, 23b is an Nb-based metal filament having 1% by weight of Ti, 30 is a Ta barrier layer, 31 is a Cu layer for stabilization, 32 is a Cu-based metal material, and 33 is a Cu-based metal material. 4 shows Sn plating on the surface of a Cu-based metal material.

【0098】得られた超電導線の先駆体について、予備
熱処理にひきつづき600〜800℃で50〜200時
間の熱処理を行ない、Nb基金属フィラメント部分にN
3Snを形成させて超電導線を得た。図13は得られ
た超電導線断面の構成を示す説明図であって、図中24
は超電導線、25はNb3Snフィラメント、26は低
Sn濃度ブロンズ、30はTaからなる障壁層、31は
安定化のためのCu層を示す。
The precursor of the obtained superconducting wire was subjected to a preliminary heat treatment, followed by a heat treatment at 600 to 800 ° C. for 50 to 200 hours.
A superconducting wire was obtained by forming b 3 Sn. FIG. 13 is an explanatory view showing the configuration of the cross section of the obtained superconducting wire.
Denotes a superconducting wire, 25 denotes an Nb 3 Sn filament, 26 denotes a bronze having a low Sn concentration, 30 denotes a barrier layer made of Ta, and 31 denotes a Cu layer for stabilization.

【0099】かくして得られた超電導線のJcおよびd
effの測定を液体ヘリウム中で行なった。その結果、J
cに関してはB=12Tの磁界において850A/mm
2という値が、deffに関しては3μmという値が得られ
た。従来の内部拡散法によって得られる、Tiを含有す
るNb3Sn超電導線との比較において、総合的な評価
としてJc/deff値で両者を比較すると、本発明によ
り従来の超電導線より7.1倍の向上が達成されること
がわかる。
Jc and d of the superconducting wire thus obtained
The measurement of eff was performed in liquid helium. As a result, J
For c, 850 A / mm in a magnetic field of B = 12 T
A value of 2 and a value of 3 μm for d eff were obtained. In comparison with a Nb 3 Sn superconducting wire containing Ti obtained by a conventional internal diffusion method, when both are compared by Jc / d eff value as a comprehensive evaluation, the present invention shows that the conventional superconducting wire is 7.1 better than the conventional superconducting wire. It can be seen that a two-fold improvement is achieved.

【0100】実施の形態7 図14は、本件第2の発明の超電導線の先駆体の製造に
用いられる断面縮小加工前の複合単芯線の構成の一例を
示す説明図である。図14において32はCu基金属
材、23aはNb基金属棒、34はInを7重量%含有
するSn基金属棒を示す。前記複合単芯線はつぎのよう
に作製した。
Seventh Embodiment FIG. 14 is an explanatory diagram showing an example of a configuration of a composite single core wire before section reduction processing used for manufacturing a precursor of a superconducting wire according to the second invention. In FIG. 14, 32 indicates a Cu-based metal material, 23a indicates an Nb-based metal bar, and 34 indicates a Sn-based metal bar containing 7% by weight of In. The composite single core wire was manufactured as follows.

【0101】すなわち、まず図14に示すごとく直径が
3.5mmの穴を8個設けた外径25mm、内径14m
mの無酸素銅製のビレット容器の中央に直径13.9m
mのNb基金属棒を挿入し、7重量%のInを含む直径
が3.4mmのSn基金属棒8本を周辺の各穴に挿入し
た。前記ビレット容器の内部を真空引きして蓋を電子ビ
ーム溶接してから冷間で静水圧押し出し加工を行なった
のち、伸線加工を行ない、対辺が4.2mmの六角形状
の複合単芯線を得た。
That is, first, as shown in FIG. 14, an outer diameter of 25 mm and an inner diameter of 14 m provided with eight 3.5 mm diameter holes.
13.9 m diameter in the center of an oxygen-free copper billet container
m of Nb-based metal rod was inserted, and eight Sn-based metal rods having a diameter of 3.4 mm and containing 7% by weight of In were inserted into each of the peripheral holes. After the inside of the billet container was evacuated and the lid was subjected to electron beam welding, cold isostatic pressing was performed, followed by wire drawing to obtain a hexagonal composite single core wire having a 4.2 mm opposite side. Was.

【0102】前記複合単芯線1225本を実施の形態6
と同様のCu製のビレット内に充填後、内部を真空引き
し、蓋を電子ビーム溶接した。この複合ビレットを冷間
で静水圧押し出し加工を行なったのち伸線加工を行な
い、複合線を得た。つぎに、該複合線をSnの拡散障壁
材であるTaパイプ中に挿入し、さらに安定化のための
Cuパイプをかぶせて2次複合化し、伸線加工を行なっ
た。そののち、この線材を最終径でツイスト加工を行な
って、線径0.3mmの超電導線の先駆体を得た。
The 1225 composite single-core wires were used in Embodiment 6
After filling in the same billet made of Cu, the inside was evacuated and the lid was electron beam welded. The composite billet was subjected to cold isostatic extrusion and then drawn to obtain a composite wire. Next, the composite wire was inserted into a Ta pipe, which is a Sn diffusion barrier material, and further covered with a Cu pipe for stabilization to form a secondary composite, followed by wire drawing. Thereafter, this wire was subjected to a twisting process at a final diameter to obtain a precursor of a superconducting wire having a wire diameter of 0.3 mm.

【0103】図15は前記超電導線の先駆体の断面の構
成を示す説明図である。図中21は超電導線の先駆体、
23aはNb基金属フィラメント、30はTa障壁層、
31は安定化のためのCu層、32はCu基金属材、3
4はInを7重量%含有するSn基金属材を示す。
FIG. 15 is an explanatory view showing the configuration of a cross section of the precursor of the superconducting wire. In the figure, 21 is a precursor of a superconducting wire,
23a is an Nb-based metal filament, 30 is a Ta barrier layer,
31 is a Cu layer for stabilization, 32 is a Cu-based metal material, 3
Reference numeral 4 denotes a Sn-based metal material containing 7% by weight of In.

【0104】得られた超電導線の先駆体について、予備
熱処理にひきつづき600〜800℃で50〜20時間
の熱処理を行ない、Nb基金属フィラメント部分にNb
3Sn超電導体を形成させ超電導線を得た。得られた超
電導線の断面形状は、図13と同様であった。
The precursor of the obtained superconducting wire is subjected to a preliminary heat treatment, followed by a heat treatment at 600 to 800 ° C. for 50 to 20 hours.
A 3Sn superconductor was formed to obtain a superconducting wire. The cross-sectional shape of the obtained superconducting wire was the same as in FIG.

【0105】得られた超電導線のJcおよびdeffの測
定を液体ヘリウム中で行なった。その結果、Jcに関し
てはB=12Tの磁界において633A/mm2という
値が、deffに関しては3μmという値が得られた。従
来の内部拡散法によって得られる、Inを含有するNb
3Sn超電導線との比較において、総合的な評価として
Jc/deff値で両者を比較すると、本発明により従来
の超電導線より7.0倍の向上が達成されることがわか
る。
The Jc and d eff of the obtained superconducting wire were measured in liquid helium. As a result, a value of 633 A / mm 2 was obtained for Jc in a magnetic field of B = 12 T, and a value of 3 μm was obtained for d eff . Nb containing In obtained by a conventional internal diffusion method
In comparison with a 3Sn superconducting wire, when both are compared by Jc / d eff value as a comprehensive evaluation, it is understood that the present invention achieves a 7.0-fold improvement over the conventional superconducting wire.

【0106】実施の形態8 図16は、本件第2の発明の超電導線の製造に用いられ
る、断面縮小加工前の複合単芯線の構成を示す説明図で
あって、22bはTiを1重量%含有するCuとSnと
の複合体、23aはNb基金属棒を示す。
Eighth Embodiment FIG. 16 is an explanatory view showing the configuration of a composite single core wire before section reduction used for manufacturing a superconducting wire according to the second invention of the present invention. A composite of Cu and Sn contained therein, and 23a indicates an Nb-based metal rod.

【0107】複合体22bは、Tiを1重量%含有する
厚さ1mmのCu板2枚の間に、厚さ1mmのSn板を
重ねて圧延し、一体化して厚さ1mmの薄板にしたもの
である。この薄板状の複合体22bを縦×横が140m
m×1000mmの大きさに切断して、直径が10m
m、長さが1000mmの丸棒状のNb基金属棒の周囲
に簀巻き状に巻いたのち、内径および外径がそれぞれ1
8mmおよび19mmの無酸素銅のパイプ35中に挿入
した。つぎに、前記パイプ35を伸線加工して対辺が
4.2mmの六角形状の複合単芯線を得た。
The composite 22b is obtained by stacking a 1 mm-thick Sn plate between two 1 mm-thick Cu plates containing 1% by weight of Ti, rolling and integrating them into a 1 mm-thick thin plate. It is. This thin plate-shaped composite 22b is 140m long and wide.
Cut to size of mx 1000mm, diameter is 10m
m, after winding in a wrapped shape around a round Nb-based metal rod having a length of 1000 mm, the inner diameter and the outer diameter are each 1
It was inserted into 8 mm and 19 mm oxygen free copper pipes 35. Next, the pipe 35 was subjected to wire drawing to obtain a hexagonal composite single core wire having an opposite side of 4.2 mm.

【0108】前記複合単芯線1225本を外径180m
m、内径160mmの無酸素銅製のビレット内に充填し
たのち、ビレット内を真空排気し、蓋を電子ビーム溶接
した。つぎにこのビレットを冷間で静水圧押し出し加工
を行なったのち、伸線加工を行ない、複合線を得た。該
複合線をSnの拡散障壁材であるTaパイプ中に挿入
し、安定化のためのCuパイプをかぶせて2次複合化
し、伸線加工を行なった。これを最終径でツイスト加工
を行ない、線径0.3mmの超電導線の先駆体を得た。
The above-mentioned 1225 composite single-core wires are formed with an outer diameter of 180 m.
After filling into a billet made of oxygen-free copper having a diameter of 160 mm and an inner diameter of 160 mm, the inside of the billet was evacuated, and the lid was subjected to electron beam welding. Next, this billet was subjected to cold isostatic extrusion, followed by wire drawing to obtain a composite wire. The composite wire was inserted into a Ta pipe, which is a Sn diffusion barrier material, covered with a Cu pipe for stabilization to form a second composite, and wire drawing was performed. This was subjected to twist processing at the final diameter to obtain a precursor of a superconducting wire having a wire diameter of 0.3 mm.

【0109】図17は前記超電導線の先駆体の断面の構
成を示す説明図であり、図中22bはTiを1重量%含
有するCuとSnとの複合体、23aはNb基金属フィ
ラメント、30はTa障壁層、31は安定化材としての
Cu、32はCu基金属材を示す。
FIG. 17 is an explanatory view showing the structure of a cross section of the precursor of the superconducting wire. In the figure, 22b is a composite of Cu and Sn containing 1% by weight of Ti, 23a is an Nb-based metal filament, 30a is Denotes a Ta barrier layer, 31 denotes Cu as a stabilizing material, and 32 denotes a Cu-based metal material.

【0110】得られた超電導線の先駆体について、予備
熱処理にひきつづき600〜800℃で50〜200時
間の熱処理を行ない、Nb基金属フィラメント部分にN
3Sn超電導体を形成させて超電導線を得た。該超電
導線の断面形状は、図13と同様であった。
The precursor of the obtained superconducting wire was subjected to a preliminary heat treatment, followed by a heat treatment at 600 to 800 ° C. for 50 to 200 hours.
A superconducting wire was obtained by forming a b 3 Sn superconductor. The cross-sectional shape of the superconducting wire was the same as in FIG.

【0111】得られた超電導線のJcおよびdeffの測
定を液体ヘリウム中で行なった。その結果、Jcに関し
てはB=12Tの磁界において900A/mm2という
値が、deffに関しては3μmという値が得られた。し
たがって、従来の内部拡散法Tiを含有するによって得
られる、Nb3Sn超電導線との比較において、総合的
な評価としてJc/deff値で両者を比較すると、本発
明により従来の超電導線より7.5倍の向上が達成され
ることがわかる。
The Jc and d eff of the obtained superconducting wire were measured in liquid helium. As a result, a value of 900 A / mm 2 was obtained for Jc in a magnetic field of B = 12 T, and a value of 3 μm was obtained for d eff . Therefore, in comparison with the Nb 3 Sn superconducting wire obtained by containing the conventional internal diffusion method Ti, when comparing both with Jc / d eff value as a comprehensive evaluation, according to the present invention, it is 7 times better than the conventional superconducting wire. It can be seen that a 0.5-fold improvement is achieved.

【0112】実施の形態9 図18は、本件第2の発明の超電導線の製造に用いられ
る、断面縮小加工前の複合単芯線の構成を示す説明図で
ある。図18において22cは表面がSnメッキされた
Cu基金属材からなる複合体、23cは表面がTiメッ
キされたNb基金属棒、35は無酸素銅パイプを示す。
Ninth Embodiment FIG. 18 is an explanatory view showing the structure of a composite single core wire before the cross-section reduction processing, which is used for manufacturing the superconducting wire of the second invention. In FIG. 18, reference numeral 22c denotes a composite made of a Cu-based metal material whose surface is plated with Sn, 23c denotes an Nb-based metal rod whose surface is plated with Ti, and 35 denotes an oxygen-free copper pipe.

【0113】まず、超電導線のフィラメントになる直径
10mmのNb基金属棒の表面に、電解メッキによりT
iを約45μm電着させた。つぎに、幅約200mm、
厚さ0.5mmの無酸素銅板の表面にSnメッキを約
0.1mm施してCu−Sn複合体22cを得た。該複
合体を、TiメッキされたNb基金属棒23cを芯金に
して、約5層簀巻き状に巻き、内径および外径がそれぞ
れ18×19mmの無酸素銅のパイプ中に挿入したの
ち、伸線加工して対辺が4.2mmの六角形状の複合単
芯線を得た。
First, the surface of an Nb-based metal rod having a diameter of 10 mm, which becomes a filament of a superconducting wire, is electroplated to form a T
i was electrodeposited at about 45 μm. Next, about 200mm in width,
The surface of the oxygen-free copper plate having a thickness of 0.5 mm was plated with Sn about 0.1 mm to obtain a Cu-Sn composite 22c. The composite was wound into a five-layer winding using a Ti-plated Nb-based metal rod 23c as a core metal, inserted into an oxygen-free copper pipe having an inner diameter and an outer diameter of 18 × 19 mm, and then expanded. The wire was processed to obtain a hexagonal composite single core wire having a 4.2 mm opposite side.

【0114】得られた複合単芯線1225本を実施の形
態6と同様のCu製のビレット内に充填し真空排気と蓋
の電子ビーム溶接とを行ない、冷間で静水圧押し出し加
工を行ない、伸線加工し、複合線を得た。該複合線をさ
らに伸線加工し、最終径でツイスト加工を行なって、線
径0.3mmの超電導線の先駆体を得た。
The obtained 1225 composite single-core wires were filled in the same billet made of Cu as in the sixth embodiment, evacuated and electron-beam welded to the lid, and subjected to cold isostatic pressing and cold elongation. The wire was processed to obtain a composite wire. The composite wire was further drawn and twisted with a final diameter to obtain a precursor of a superconducting wire having a wire diameter of 0.3 mm.

【0115】図19は前記超電導線の先駆体の断面の構
成を示す説明図である。図19において22cは表面が
SnメッキされたCu複合体、23cは表面がTiメッ
キされたNb基金属材フィラメント、31は安定化材と
してのCu、32はCu基金属材を示す。
FIG. 19 is an explanatory view showing the structure of a cross section of the precursor of the superconducting wire. In FIG. 19, reference numeral 22c denotes a Cu composite whose surface is plated with Sn, 23c denotes an Nb-based metal filament whose surface is plated with Ti, 31 denotes Cu as a stabilizer, and 32 denotes a Cu-based metal material.

【0116】得られた超電導線の先駆体について、予備
熱処理にひきつづき600〜800℃で50〜200時
間の熱処理を行ない、Nb基金属フィラメント部分にN
3Sn超電導体を形成させて超電導線を得た。前記超
電導線の断面形状は、図13と同様であった。
The precursor of the obtained superconducting wire was subjected to a preliminary heat treatment, followed by a heat treatment at 600 to 800 ° C. for 50 to 200 hours.
A superconducting wire was obtained by forming a b 3 Sn superconductor. The cross-sectional shape of the superconducting wire was the same as in FIG.

【0117】得られた超電導線を液体ヘリウム中でJc
およびdeffの測定を行なった。その結果、Jcに関し
てはB=12Tの磁界において900A/mm2という
値が、deffに関しては3μmという値が得られた。し
たがって、従来の内部拡散法によって得られる、Tiを
含有するNb3Sn超電導線との比較において、総合的
な評価としてJc/deff値で両者を比較すると、本発
明により従来の超電導線より7.5倍の向上が達成され
ることがわかる。
The obtained superconducting wire was subjected to Jc in liquid helium.
And d eff were measured. As a result, a value of 900 A / mm 2 was obtained for Jc in a magnetic field of B = 12 T, and a value of 3 μm was obtained for d eff . Therefore, in comparison with the Nb 3 Sn superconducting wire containing Ti obtained by the conventional internal diffusion method, when both are compared with the Jc / d eff value as a comprehensive evaluation, the present invention shows that the Jc / d eff value is 7 times higher than that of the conventional superconducting wire. It can be seen that a 0.5-fold improvement is achieved.

【0118】実施の形態10 図20は、本件第2の発明の超電導線の製造に用いられ
る、断面縮小加工前の複合単芯線の断面構成を示す説明
図である。図中、22cは両表面がSnメッキされたC
u基金属材からなるCu−Sn複合体、23aはNb基
金属棒、35はCu基金属パイプ、36はCu−Sn複
合体22cとNb基金属棒23aとのあいだに挟まれた
Ti薄板を示す。
Tenth Embodiment FIG. 20 is an explanatory diagram showing a cross-sectional configuration of a composite single core wire before a cross-section reduction process, which is used for manufacturing the superconducting wire of the second invention. In the figure, reference numeral 22c denotes C whose both surfaces are plated with Sn.
Cu-Sn composite composed of a u-based metal material, 23a is an Nb-based metal rod, 35 is a Cu-based metal pipe, 36 is a Ti thin plate sandwiched between the Cu-Sn composite 22c and the Nb-based metal rod 23a. Show.

【0119】まず、超電導線のフィラメントになる単芯
線1をつぎのように製作した。実施の形態9と同様に、
幅約200mm、厚さ0.5mmの無酸素銅板の表面に
Snメッキを約0.1mm施してCu−Sn複合体22
aを得た。該複合体22aに厚さ0.05mm、幅約3
0mmの純Ti薄板36を重ね、直径10mmの丸棒状
のNb基金属棒23aを芯金にして、約5層簀巻き状に
巻いた。ただしTi薄膜は幅が約30mmしかないの
で、丸棒状のNb基金属棒の周囲を1層しか巻けなかっ
た。
First, a single-core wire 1 serving as a filament of a superconducting wire was manufactured as follows. As in the ninth embodiment,
The surface of an oxygen-free copper plate having a width of about 200 mm and a thickness of 0.5 mm is subjected to Sn plating about 0.1 mm to form a Cu—Sn composite 22.
a was obtained. The composite 22a has a thickness of 0.05 mm and a width of about 3
A thin Ti plate 36 having a thickness of 0 mm was stacked, and a round bar-shaped Nb-based metal bar 23a having a diameter of 10 mm was used as a core metal, and was wound in a shape of about five layers. However, since the Ti thin film had a width of only about 30 mm, only one layer could be wound around the round Nb-based metal rod.

【0120】これを内径および外径がそれぞそれ18×
19mmの無酸素銅のパイプ35中に挿入したのち、伸
線加工して対辺が4.2mmの六角形状の複合単芯線を
得た。
The inner and outer diameters are 18 ×, respectively.
After being inserted into a 19 mm oxygen-free copper pipe 35, wire drawing was performed to obtain a hexagonal composite single core wire having a 4.2 mm opposite side.

【0121】前記複合単芯線1225本を実施の形態6
と同様なCu製のビレット内に充填して、真空排気と蓋
の電子ビーム溶接を行ない、冷間で静水圧押し出し加工
を行なったのち、伸線加工してからSnの拡散障壁材で
あるTaパイプ中に挿入し、安定化のためのCuパイプ
をかぶせて2次複合化を行なった。得られた2次複合材
を伸線加工し、最終径でツイスト加工を行なって、線径
0.3mmの超電導線の先駆体を得た。
The above-mentioned 1225 composite single-core wires are used in the sixth embodiment.
After filling in a Cu billet similar to that described above, vacuum evacuation and electron beam welding of the lid are performed, cold isostatic pressing is performed, then wire drawing is performed, and then Ta, which is a Sn diffusion barrier material, is used. It was inserted into a pipe, covered with a Cu pipe for stabilization, and secondary composited. The obtained secondary composite material was subjected to wire drawing and twisting with a final diameter to obtain a precursor of a superconducting wire having a wire diameter of 0.3 mm.

【0122】前記超電導線の先駆体について、予備熱処
理にひきつづき600〜800℃で50〜200時間の
熱処理を行ない、Nb基金属フィラメント部分にNb3
Sn超電導体を形成させ超電導線を得た。超電導線の断
面形状は、図13と同様であった。
[0122] The the precursor of the superconducting wire, and was heat-treated for 50 to 200 hours at subsequently 600 to 800 ° C. to preliminary heat treatment, Nb 3 to Nb-based metal filaments moiety
A superconducting wire was obtained by forming a Sn superconductor. The cross-sectional shape of the superconducting wire was the same as in FIG.

【0123】得られた超電導線のJcおよびdeffの測
定を液体ヘリウム中で行なった。その結果、Jcに関し
てはB=12Tの磁界において900A/mm2という
値が、deffに関しては3μmという値が得られた。T
i添加した従来の内部拡散法Nb3Sn超電導線との比
較において、総合的な評価としてJc/deff値で両者
を比較すると、本発明により従来の超電導線よりも7.
5倍の向上が達成されることがわかる。
The Jc and d eff of the obtained superconducting wire were measured in liquid helium. As a result, a value of 900 A / mm 2 was obtained for Jc in a magnetic field of B = 12 T, and a value of 3 μm was obtained for d eff . T
Compared with the conventional internal diffusion method Nb3Sn superconducting wire to which i is added by Jc / d eff value as a comprehensive evaluation, according to the present invention, it is 7.
It can be seen that a five-fold improvement is achieved.

【0124】実施の形態11 図21は、本件第2の発明の超電導線の製造に用いられ
る、断面縮小加工前の複合単芯線の構成を示す説明図で
ある。図中、22dは表面が純TiでメッキされたCu
−Sn複合体、23aはNb基金属棒、35はCu基金
属材パイプである。
Eleventh Embodiment FIG. 21 is an explanatory view showing the structure of a composite single core wire before section reduction processing used for manufacturing the superconducting wire of the second invention. In the figure, 22d is Cu whose surface is plated with pure Ti.
-Sn composite, 23a is an Nb-based metal rod, and 35 is a Cu-based metal pipe.

【0125】まず、実施の形態8と同様に、厚さ1mm
のCu板2枚の間に、厚さ1mmのSn板を重ねて圧延
し、一体化して厚さ1mmの薄板を製作し、その薄板を
縦×横が140mm×1000mmの大きさに切断した
のち、薄板の片側に約10μmのTiメッキを施し複合
体22dを得た。該複合体22dを、直径が10mm、
長さが1000mmの丸棒状のNb基金属材棒23aの
周りに簀巻き状に巻いたのち、内径および外径がそれぞ
れ18mmおよび19mmの無酸素銅のパイプ35中に
挿入し、伸線加工を行なって対辺が4.2mmの六角の
複合単芯線を得た。
First, similarly to the eighth embodiment, a thickness of 1 mm
A 1 mm thick Sn plate is stacked and rolled between two Cu plates, and integrated to produce a 1 mm thick thin plate, and the thin plate is cut into a size of 140 mm × 1000 mm in length and width. Then, about 10 μm of Ti plating was applied to one side of the thin plate to obtain a composite 22d. The composite 22d has a diameter of 10 mm,
After winding in a wrapped shape around a round Nb-based metal material bar 23a having a length of 1000 mm, the wire is inserted into an oxygen-free copper pipe 35 having an inner diameter and an outer diameter of 18 mm and 19 mm, respectively, and drawn. To obtain a hexagonal composite single core wire having a length of 4.2 mm.

【0126】得られた複合単芯線1225本を実施の形
態6と同様なCu製のビレット内に充填してから真空引
きし、蓋の電子ビーム溶接を行なったのち冷間で静水圧
押し出し加工を行ない、伸線加工をして複合線を得た。
該複合線をSnの拡散障壁材であるTaパイプ中に挿入
し、安定化のためのCuパイプをかぶせて2次複合を行
なったのち、最終径でツイスト加工を行なって、線径
0.3mmの超電導線の先駆体を得た。該超電導線の先
駆体の断面の構成は図17と同様であった。
The obtained 1225 single-core composite wires were filled in a Cu billet similar to that of the sixth embodiment, evacuated, subjected to electron beam welding of the lid, and then subjected to cold hydrostatic extrusion. The composite wire was obtained by wire drawing.
The composite wire is inserted into a Ta pipe, which is a Sn diffusion barrier material, covered with a Cu pipe for stabilization to perform a secondary composite, and then twisted to a final diameter of 0.3 mm. Of superconducting wire was obtained. The configuration of the cross section of the precursor of the superconducting wire was the same as in FIG.

【0127】得られた超電導線の先駆体について、予備
熱処理にひきつづき600〜800℃で50〜200時
間の熱処理を行ない、Nb基金属フィラメント部分にN
3Sn超電導体を形成させ超電導線を得た。超電導線
の断面形状は、図13と同様であった。
The precursor of the obtained superconducting wire was subjected to a preliminary heat treatment, followed by a heat treatment at 600 to 800 ° C. for 50 to 200 hours.
A superconducting wire was obtained by forming a b 3 Sn superconductor. The cross-sectional shape of the superconducting wire was the same as in FIG.

【0128】かくして得られた超電導線のJcおよびd
effの測定を液体ヘリウム中で行なった。その結果、J
cに関してはB=12Tの磁界において910A/mm
2という値が、deffに関しては3μmという値が得られ
た。したがって、従来の内部拡散法によって得られる、
Tiを含有するNb3Sn超電導線との比較において、
総合的な評価としてJc/deff値で両者を比較する
と、本発明により従来の超電導線よりも7.6倍の向上
が達成されることがわかる。
The Jc and d of the superconducting wire thus obtained were
The measurement of eff was performed in liquid helium. As a result, J
For c, 910 A / mm in a magnetic field of B = 12 T
A value of 2 and a value of 3 μm for d eff were obtained. Therefore, obtained by the conventional internal diffusion method,
In comparison with the Nb 3 Sn superconducting wire containing Ti,
Comparing the Jc / d eff values as a comprehensive evaluation shows that the present invention achieves a 7.6-fold improvement over the conventional superconducting wire.

【0129】実施の形態12超電導線に求められる要求
スペックとして、deff特性よりもJc特性の一層の改
善が求められる場合がある。この要求を達成するため、
熱処理後に多少のNb3Snフィラメント同士の結合が
発生し、deff特性の増大は起こるものの、フィラメン
ト間隔を今までの実施の形態よりも密に配置すること
で、Jc特性の向上が可能になる。
Twelfth Embodiment As a required specification for a superconducting wire, there may be a case where the Jc characteristic is required to be more improved than the d eff characteristic. To fulfill this request,
Although some bonding between Nb 3 Sn filaments occurs after the heat treatment and the d eff characteristics increase, the Jc characteristics can be improved by arranging the filaments more closely than in the previous embodiments. .

【0130】図22は、本件第2の発明の超電導線の製
造に用いられる、断面縮小加工前の複合単芯線の構成を
示す説明図である。図中、22aはCuとSnとの複合
体、23dはTaを1重量%含有するNb基金属棒、3
6はTiを3重量%含有するCu基合金パイプである。
FIG. 22 is an explanatory view showing the structure of a composite single-core wire before the cross-section reduction processing, which is used for manufacturing the superconducting wire of the second invention. In the figure, 22a is a composite of Cu and Sn, 23d is an Nb-based metal rod containing 1% by weight of Ta, 3
Reference numeral 6 denotes a Cu-based alloy pipe containing 3% by weight of Ti.

【0131】まず、実施の形態8と同様に、厚さ1mm
のCu板2枚の間に、厚さ1.5mmのSn板を重ねて
圧延し、一体化して厚さ1mmの薄板を製作した。この
薄板を縦×横が150mm×1000mmの大きさに切
断して、Taを1重量%含有する、直径が12.7m
m、長さが1000mmの丸棒状のNb基金属丸棒23
dの周りに簀巻き状に巻いたのち、Tiを3重量%含有
する内径および外径がそれぞれ19mmおよび20mm
のCuパイプ36中に挿入し、伸線加工を行なって対辺
が4.2mmの六角の複合単芯線を得た。
First, as in the eighth embodiment, a thickness of 1 mm
A 1.5 mm thick Sn plate was overlapped between two Cu plates, rolled, and integrated to produce a 1 mm thick thin plate. This thin plate is cut into a size of 150 mm × 1000 mm in length × width, containing 1% by weight of Ta, and having a diameter of 12.7 m.
m, round bar-shaped Nb-based metal round bar 23 having a length of 1000 mm
After wrapping around d, the inner and outer diameters containing 3% by weight of Ti are 19 mm and 20 mm, respectively.
In a Cu pipe 36, and wire drawing was performed to obtain a hexagonal composite single-core wire having a 4.2 mm opposite side.

【0132】このようにして製作した複合単芯線122
5本を実施の形態6と同様なCu製のビレット内に充填
して内部を真空引きし、蓋の電子ビーム溶接を行なって
複合ビレットとした。該複合ビレットを冷間で静水圧押
し出し加工を行ない、伸線加工して複合線を得た。この
複合線をSnの拡散障壁材であるTaパイプ中に挿入
し、安定化のためのCuパイプをかぶせて2次複合を行
なったのち、最終径でツイスト加工を行なって、線径
0.3mmの超電導線の先駆体を得た。超電導線の先駆
体の断面の構成は図11と同様であった。得られた超電
導線の先駆体について、600〜800℃で50〜20
0時間の熱処理を行ない、Nb基金属フィラメント部分
にNb3Sn超電導体を形成させ超電導線を得た。熱処
理後の超電導線の断面形状は、図13と同様であった。
The composite single core wire 122 thus manufactured
Five were filled in the same billet made of Cu as in the sixth embodiment, the inside was evacuated, and the lid was subjected to electron beam welding to form a composite billet. The composite billet was cold-extruded in an isostatic pressure and drawn to obtain a composite wire. This composite wire is inserted into a Ta pipe, which is a Sn diffusion barrier material, covered with a Cu pipe for stabilization, and then subjected to a secondary composite. Of superconducting wire was obtained. The configuration of the cross section of the precursor of the superconducting wire was the same as in FIG. Regarding the precursor of the obtained superconducting wire, 50 to 20 at 600 to 800 ° C.
Heat treatment was performed for 0 hour to form a Nb 3 Sn superconductor on the Nb-based metal filament portion, thereby obtaining a superconducting wire. The cross-sectional shape of the superconducting wire after the heat treatment was the same as in FIG.

【0133】得られた超電導線のJcおよびdeffの測
定を液体ヘリウム中で行なった。その結果、Jcに関し
てはB=12Tの磁界において1250A/mm2とい
う値が、n値に関しては56という値が得られた。した
がって、従来の内部拡散法によって得られたTiを含有
するNb3Sn超電導線と比較すると、本発明によりJ
cで約40%、n値で約2倍の向上が達成されることが
わかる。
The Jc and d eff of the obtained superconducting wire were measured in liquid helium. As a result, a value of 1250 A / mm 2 was obtained for Jc at a magnetic field of B = 12 T, and a value of 56 was obtained for the n value. Therefore, in comparison with the Ti-containing Nb 3 Sn superconducting wire obtained by the conventional internal diffusion method, according to the present invention, J
It can be seen that about 40% improvement is achieved with c and about twice improvement with n value.

【0134】以上、実施の形態5〜12に述べたよう
に、分散Sn拡散法により従来の内部拡散法に比べて、
総合的なJc/deff値において、超電導特性が約5〜
7倍に向上したが、その中でも実施の形態8以降に述べ
たCuとSnとの複合体を丸棒状のNbフィラメントに
簀巻き状に巻いた構成の超電導線では、Jc、deff
超電導性の特性を示す指標の一つであるn値などの向上
がいちじるしく、また線材の加工性もとくに優れてい
た。その理由はCuとSnの複合体を簀巻き状に巻くた
め、Snの分散が向上し、そのためフィラメントに生成
されるNb3Snの組成ずれが抑えられ、特性向上につ
ながったものと考えられる。
As described in the fifth to twelfth embodiments, the distributed Sn diffusion method is more effective than the conventional internal diffusion method.
In the overall Jc / d eff value, the superconducting property is about 5
Among them, the superconducting wire having a configuration in which the composite of Cu and Sn described in Embodiment 8 and the following is wound around a round bar-shaped Nb filament in the shape of a wrapped wire has Jc, d eff ,
The improvement of n-value, which is one of the indices indicating the superconductivity, was remarkable, and the workability of the wire was particularly excellent. It is considered that the reason is that, since the composite of Cu and Sn is wound in a wrapping shape, the dispersion of Sn is improved, and the composition deviation of Nb3Sn generated in the filament is suppressed, leading to an improvement in the characteristics.

【0135】なお、実施の形態5〜12では、超電導線
として、Cuで代表される安定化材とTaで代表される
拡散障壁材を有する超電導線について述べたが、実施の
形態5〜12の超電導線は安定化材として高純度Al、
拡散障壁材としてNbやVが採用された場合においても
有効である。また前記拡散障壁材や安定化材の使用を省
略することもできる。
In Embodiments 5 to 12, superconducting wires having a stabilizing material represented by Cu and a diffusion barrier material represented by Ta have been described as superconducting wires. Superconducting wire is high-purity Al as a stabilizer,
It is also effective when Nb or V is used as the diffusion barrier material. Further, the use of the diffusion barrier material and the stabilizing material can be omitted.

【0136】さらに、実施の形態5〜12では、複合線
を単体で二次複合化した例を述べたが、大電流容量化す
るためには、得られた複合線を多数本Cuチューブ中に
充填して二次複合化し、断面減少加工すればよい。
Further, in the fifth to twelfth embodiments, the example in which the composite wire is formed into a single secondary composite has been described. What is necessary is just to fill and make a secondary composite, and to process a cross section reduction.

【0137】なお、はじめにも記載したとおり、本明細
書に記載したNbをVにSnをGaに置き換えても全く
同様の結果が得られる。
As described earlier, the same result can be obtained by replacing Nb and V with Sn and Ga as described in this specification.

【0138】[0138]

【発明の効果】本発明の化合物系超電導線の製造方法に
おいては、SnまたはGaとCuとの複合材を個々のN
bまたはV基金属フィラメントの周囲に配置する分散配
置にすることでフィラメント間隔を内部拡散法よりも約
30%広げることができ、そのため、熱処理後の超電導
線においてNb3Snフィラメントが相互に接触し結合
する確率が格段に減り、有効フィラメント径の値を大幅
に減少させることができる。その結果、パルス電流の通
電時に発生するヒステリシス損失が大幅に減少し、超電
導コイルの安定性が向上する効果がある。また、Snの
拡散距離が短くてすむため、個々のフィラメントに生成
されるNb3Snの組成が均一になり、Jcおよびn値
が向上する効果がある。さらに、Sn拡散の予備熱処理
時間が短くてすむため、コストの低減が優れるという効
果も併せもつ。
According to the method for producing a compound superconducting wire of the present invention, the composite material of Sn or Ga and Cu
By dispersing the filaments around the b- or V-based metal filaments, the filament spacing can be increased by about 30% compared to the internal diffusion method, so that the Nb 3 Sn filaments in the superconducting wire after heat treatment come into contact with each other. The probability of bonding is significantly reduced, and the value of the effective filament diameter can be greatly reduced. As a result, there is an effect that the hysteresis loss generated when the pulse current is applied is greatly reduced, and the stability of the superconducting coil is improved. Further, since the diffusion distance of Sn can be short, the composition of Nb 3 Sn generated in each filament becomes uniform, and there is an effect that Jc and n value are improved. Further, since the time required for the preliminary heat treatment for Sn diffusion can be reduced, there is also an effect that cost reduction is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本件第1の発明の超電導線の一実施の形態の
押出し加工前の複合体の断面構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a cross-sectional configuration of a composite before extrusion processing of an embodiment of a superconducting wire of the first invention.

【図2】 本件第1の発明の超電導線の一実施の形態の
断面構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a cross-sectional configuration of an embodiment of the superconducting wire of the first invention.

【図3】 本件第1の発明の超電導線の一実施の形態の
押出し加工前の複合体の断面構成を示す説明図である。
FIG. 3 is an explanatory diagram showing a cross-sectional configuration of a composite before extrusion processing of one embodiment of the superconducting wire of the first invention.

【図4】 本件第1の発明の超電導線の一実施の形態の
断面構成を示す説明図である。
FIG. 4 is an explanatory diagram showing a cross-sectional configuration of an embodiment of the superconducting wire of the first invention.

【図5】 本件第1の発明の超電導線の一実施の形態の
押出し加工前の複合体の斜視図である。
FIG. 5 is a perspective view of the composite before extrusion of the embodiment of the superconducting wire of the first invention.

【図6】 本件第1の発明の超電導線の一実施の形態の
断面構成を示す説明図である。
FIG. 6 is an explanatory diagram showing a cross-sectional configuration of an embodiment of the superconducting wire of the first invention.

【図7】 本件第1の発明の超電導線の一実施の形態の
押出し加工前の複合体の断面構成を示す説明図である。
FIG. 7 is an explanatory diagram showing a cross-sectional configuration of a composite before extrusion processing of the embodiment of the superconducting wire of the first invention.

【図8】 本件第1の発明の超電導線の一実施の形態の
断面構成を示す説明図である。
FIG. 8 is an explanatory diagram showing a cross-sectional configuration of an embodiment of the superconducting wire of the first invention.

【図9】 本件第2の発明の超電導線の先駆体の一実施
の形態の断面を示す説明図である。
FIG. 9 is an explanatory view showing a cross section of an embodiment of the superconducting wire precursor of the second invention.

【図10】 本件第2の発明の化合物系超電導線の一実
施の形態の断面を示す説明図である。
FIG. 10 is an explanatory view showing a cross section of one embodiment of the compound superconducting wire of the second invention.

【図11】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の一実施の形態を示す説明図で
ある。
FIG. 11 is an explanatory view showing one embodiment of a composite single core wire used for manufacturing a precursor of a superconducting wire of the second invention.

【図12】 本件第2の発明の超電導線の先駆体の他の
実施の形態の断面を示す説明図である。
FIG. 12 is an explanatory view showing a cross section of another embodiment of the precursor of the superconducting wire of the second invention.

【図13】 本件第2の発明の化合物系超電導線の他の
実施の形態の断面を示す説明図である。
FIG. 13 is an explanatory view showing a cross section of another embodiment of the compound superconducting wire of the second invention.

【図14】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態の断面を示す
説明図である。
FIG. 14 is an explanatory view showing a cross section of another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire of the second invention.

【図15】 本件第2の発明の超電導線の先駆体の他の
実施の形態の断面を示す説明図である。
FIG. 15 is an explanatory view showing a cross section of another embodiment of the precursor of the superconducting wire of the second invention.

【図16】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態を示す説明図
である。
FIG. 16 is an explanatory view showing another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire of the second invention.

【図17】 本件第2の発明の超電導線の先駆体の他の
実施の形態の断面を示す説明図である。
FIG. 17 is an explanatory view showing a cross section of another embodiment of the precursor of the superconducting wire of the second invention.

【図18】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態を示す説明図
である。
FIG. 18 is an explanatory view showing another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire of the second invention.

【図19】 本件第2の発明の超電導線の先駆体の他の
一実施の形態の断面を示す説明図である。
FIG. 19 is an explanatory view showing a cross section of another embodiment of the precursor of the superconducting wire of the second invention.

【図20】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態の断面を示す
説明図である。
FIG. 20 is an explanatory view showing a cross section of another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire of the second invention.

【図21】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態を示す説明図
である。
FIG. 21 is an explanatory view showing another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire according to the second invention.

【図22】 本件第2の発明の超電導線の先駆体の製造
に用いられる複合単芯線の他の実施の形態を示す説明図
である。
FIG. 22 is an explanatory view showing another embodiment of the composite single core wire used for manufacturing the precursor of the superconducting wire of the second invention.

【図23】 従来の超電導線の先駆体の断面を示す断面
説明図である。
FIG. 23 is an explanatory sectional view showing a section of a precursor of a conventional superconducting wire.

【図24】 従来の超電導線の断面を示す説明図であ
る。
FIG. 24 is an explanatory view showing a cross section of a conventional superconducting wire.

【符号の説明】[Explanation of symbols]

1 複合体、9 超電導線、10 Nb3Snフィラメ
ント、11 低Sn濃度ブロンズ、13a Cuが肉薄
の単芯線、13b Cuが肉厚の単芯線、21 超電導
線の先駆体、22 Cu基金属材とSn基金属材との複
合体、23 Nb基金属フィラメント。
1 Composite, 9 superconducting wire, 10 Nb 3 Sn filament, 11 low Sn concentration bronze, 13a Cu is thin single core wire, 13b Cu is thick single core wire, 21 superconducting wire precursor, 22 Cu base metal material and Composite with Sn-based metal material, 23 Nb-based metal filament.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691C (72)発明者 樋熊 弘子 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 永井 貴之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 内川 英興 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 691 C22F 1/00 691C (72) Inventor Hiroko Hikuma 2-3-2 Marunouchi, Chiyoda-ku, Tokyo No. Mitsubishi Electric Co., Ltd. (72) Inventor Takayuki Nagai 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. (72) Hideko Uchikawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (A1)Cu基金属材と、該Cu基金属
材と合金層を形成する第1の基金属材Xとの積層板を先
ず圧延し、減厚して一体化し、これを第2の基金属材Z
の棒に巻回して得た複合単芯線をCu製円筒容器内に複
数充填して複合棒をつくる工程と、(B)前記複合棒を
伸線加工して超電導線の先駆体とする工程と、(C)前
記超電導線の先駆体を熱処理する工程とを備えた超電導
線の製造方法。
(A1) A laminate of a Cu-based metal material and a first base metal material X forming an alloy layer with the Cu-based metal material is first rolled, reduced in thickness and integrated, and Second base metal material Z
(C) a step of filling a plurality of composite single-core wires obtained by winding the rod into a cylindrical container made of Cu to form a composite rod; and (B) drawing the composite rod to form a precursor of a superconducting wire. And (C) a step of heat-treating the precursor of the superconducting wire.
【請求項2】 (A2)Cu基金属材と該Cu基金属と
合金層を形成する第1の基金属材Xとの積層板を先ず圧
延し、減厚して一体化した複合体をCu製円筒容器内に
充填し、該複合体に複数の穿孔を設け、各孔に第2の基
金属材Zを充填して複合棒をつくる工程と、(B)前記
複合棒を伸線加工して超電導線の先駆体とする工程と、
(C)前記超電導線の先駆体を熱処理する工程とを備え
た超電導線の製造方法。
2. (A2) A laminate of a Cu-base metal material and a first base metal material X forming an alloy layer with the Cu-base metal is first rolled, reduced in thickness and integrated to form a composite. Filling a cylindrical container, providing a plurality of perforations in the composite, filling each hole with a second base metal material Z to form a composite rod, and (B) drawing the composite rod. A superconducting wire precursor,
(C) a step of heat-treating the precursor of the superconducting wire.
【請求項3】 (A3)円柱状Cu基金属材の中心に第
1の穿孔を設け、該第1の穿孔の周囲に複数の第2の穿
孔を設け、前記第2の穿孔にCu基金属と合金を形成す
る第1の基金属材Xを充填し、前記第1の穿孔に第2の
基金属材Zを充填して複合単芯線を形成し、該複合単芯
線をCu製円筒容器内に複数充填して複合棒を形成する
工程と、(B)前記複合棒を伸線加工して超電導線の先
駆体とする工程と、(C)前記超電導線の先駆体を熱処
理する工程とを備えた超電導線の製造方法。
(A3) A first perforation is provided at the center of the columnar Cu-based metal material, a plurality of second perforations are provided around the first perforation, and the second perforation is provided with a Cu-based metal. A first base metal material X forming an alloy with the first base material is filled, a second base metal material Z is filled in the first perforation to form a composite single core wire, and the composite single core wire is placed in a Cu cylindrical container. A step of forming a composite rod by filling a plurality of the superconducting rods; (B) a step of drawing the composite rod to form a precursor of a superconducting wire; and (C) a step of heat-treating the precursor of the superconducting wire. Of manufacturing a superconducting wire provided.
【請求項4】 前記第2の基金属材ZがTi、Ta、H
f、Mo、ZrおよびVよりなる群から選ばれた少なく
とも1種を含有してなる請求項1、2または3記載の超
電導線の製造方法。
4. The method according to claim 1, wherein the second base metal material Z is Ti, Ta, H
4. The method for producing a superconducting wire according to claim 1, comprising at least one selected from the group consisting of f, Mo, Zr and V.
【請求項5】 前記第1の基金属材XがTi、In、G
e、SiおよびMnよりなる群から選ばれた少なくとも
1種を含有してなる請求項1、2または3記載の超電導
線の製造方法。
5. The method according to claim 1, wherein the first base metal material X is Ti, In, G
4. The method for producing a superconducting wire according to claim 1, comprising at least one selected from the group consisting of e, Si and Mn.
【請求項6】 前記Cu基金属材がTi、In、Ge、
SiおよびMnからなる群から選ばれた少なくとも1種
を含有してなる請求項1、2または3記載の超電導線の
製造方法。
6. The method according to claim 1, wherein the Cu-based metal material is Ti, In, Ge,
The method for producing a superconducting wire according to claim 1, 2 or 3, comprising at least one selected from the group consisting of Si and Mn.
JP15860099A 1993-04-02 1999-06-04 Method of manufacturing compound superconducting wire Expired - Fee Related JP3273764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15860099A JP3273764B2 (en) 1993-04-02 1999-06-04 Method of manufacturing compound superconducting wire

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7683793 1993-04-02
JP7684193 1993-04-02
JP5-76837 1993-04-02
JP5-76841 1993-04-02
JP15860099A JP3273764B2 (en) 1993-04-02 1999-06-04 Method of manufacturing compound superconducting wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5194781A Division JP3012436B2 (en) 1993-04-02 1993-08-05 Compound based superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000057865A true JP2000057865A (en) 2000-02-25
JP3273764B2 JP3273764B2 (en) 2002-04-15

Family

ID=27302268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15860099A Expired - Fee Related JP3273764B2 (en) 1993-04-02 1999-06-04 Method of manufacturing compound superconducting wire

Country Status (1)

Country Link
JP (1) JP3273764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566326A (en) * 2022-03-29 2022-05-31 中国科学院电工研究所 Method for obtaining composite sheathed iron-based superconducting wire strip by extrusion molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566326A (en) * 2022-03-29 2022-05-31 中国科学院电工研究所 Method for obtaining composite sheathed iron-based superconducting wire strip by extrusion molding

Also Published As

Publication number Publication date
JP3273764B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
US4329539A (en) Superconducting compound stranded cable
JP3012436B2 (en) Compound based superconducting wire and its manufacturing method
US4161062A (en) Method for producing hollow superconducting cables
US6251529B1 (en) Nb-Sn compound superconducting wire precursor, method for producing the same and method for producing Nb-Sn compound superconducting wire
US5167061A (en) Method of production for multifilament niobium-tin superconductors
US5554448A (en) Wire for Nb3 X superconducting wire
JP2019186167A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP3273764B2 (en) Method of manufacturing compound superconducting wire
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP4237341B2 (en) Nb3Sn compound superconducting wire and manufacturing method thereof
JP3505894B2 (en) Compound superconducting wire
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
EP0718898B1 (en) Compound superconducting wire
JP2655918B2 (en) A. Method for manufacturing stabilized superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH04277409A (en) Compound superconducting wire and manufacture thereof
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JPH07176222A (en) Nb3x superconductive wire material
JPH04132108A (en) Nb3al superconductor
JPH07302520A (en) Manufacture of nb3sn superconductive wire
EP3750173A1 (en) Methods for manufacturing a superconductor
JPH0422016A (en) Manufacture of compound superconductor
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees