JP2000055611A - Light wave interference measuring device - Google Patents

Light wave interference measuring device

Info

Publication number
JP2000055611A
JP2000055611A JP10239540A JP23954098A JP2000055611A JP 2000055611 A JP2000055611 A JP 2000055611A JP 10239540 A JP10239540 A JP 10239540A JP 23954098 A JP23954098 A JP 23954098A JP 2000055611 A JP2000055611 A JP 2000055611A
Authority
JP
Japan
Prior art keywords
light
measurement
window
interferometer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239540A
Other languages
Japanese (ja)
Inventor
Hirochika Shinjo
啓慎 新城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10239540A priority Critical patent/JP2000055611A/en
Publication of JP2000055611A publication Critical patent/JP2000055611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent lowering of measuring precision to conduct precise measurement even when a space between a light transmitting window for measuring light arranged to oppose to a measuring object and the measuring object is fluctuated by vibration or the like. SOLUTION: In this measuring device, a moving mirror 120 is irradiated with measuring light from an inside of a vacuum container 201 through a window member 145 to measure a displacement amount ΔD1 of the mirror 120. A reflection mirror 162 provided in the vicinity of the window material 145 is irradiated with measuring light for measuring a correcting amount to measure a space fluctuation ΔD2 between the window material 145 and the mirror 120. An arithmetic unit 501 corrects the ΔD1 based on the ΔD2 to provide a true displacement amount ΔD of the moving mirror 120.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の長さ、変位
等を高精度に測定するための光波干渉測定装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical interference measuring apparatus for measuring the length, displacement, etc. of an object with high accuracy.

【0002】[0002]

【従来の技術】光波干渉測定装置では、気体の屈折率変
動の影響を避けるために、測定光の通過する大部分の光
路を真空に保持しているものである。
2. Description of the Related Art In an optical interference measuring apparatus, most of the optical paths through which measurement light passes are kept in a vacuum in order to avoid the influence of fluctuation of the refractive index of gas.

【0003】光波干渉測定装置の一種であるヘテロダイ
ン式干渉測長機は、移動鏡を往復する測定光路と基準光
路とを通った光を干渉させてビート信号を得、移動鏡の
移動量に応じた信号を得るものである。このような従来
の装置では、測定光路を蛇腹で覆い、移動鏡に対向した
蛇腹の開口端を窓材で覆っている。そして、蛇腹と窓材
で形成される空間内を真空にしている。窓材を出射した
測定光は、移動鏡で反射した後、再び窓材に入射する。
この際、移動鏡の移動に合わせて蛇腹を伸縮し、窓材と
移動鏡との間隔を一定に保っている。
A heterodyne interferometer, which is a type of optical interference measuring apparatus, obtains a beat signal by causing light passing through a measurement optical path and a reference optical path reciprocating in a movable mirror to obtain a beat signal, and the beat signal is determined according to the amount of movement of the movable mirror. To obtain a signal. In such a conventional apparatus, the measuring optical path is covered with a bellows, and the open end of the bellows facing the movable mirror is covered with a window material. Then, the space formed by the bellows and the window material is evacuated. The measurement light emitted from the window material is reflected by the movable mirror, and then enters the window material again.
At this time, the bellows expands and contracts in accordance with the movement of the movable mirror, and the distance between the window material and the movable mirror is kept constant.

【0004】[0004]

【発明が解決しようとする課題】このような従来装置に
おいて、振動等によって、窓材と移動鏡との間隔が変動
する場合がある。そのため、光路長が変化し、測定誤差
が発生する結果、測定精度が低下するという問題点があ
った。
In such a conventional apparatus, the distance between the window member and the movable mirror may fluctuate due to vibration or the like. For this reason, there is a problem in that the optical path length changes and a measurement error occurs, resulting in a decrease in measurement accuracy.

【0005】以上説明した事情は、ヘテロダイン式干渉
測長機以外の他の種々の光波干渉測定装置についても同
様である。
The situation described above is the same for various lightwave interference measuring devices other than the heterodyne interferometer.

【0006】本発明は、このような事情に鑑みてなされ
たもので、測定対象に対向して配設した測定光の透過窓
と測定対象との間の間隔が振動等により変動しても、測
定精度の低下を防止することができ、精密な測定を行う
ことができる光波干渉測定装置を提供することを目的と
する。
The present invention has been made in view of such circumstances, and even if the distance between the transmission window of the measurement light disposed opposite to the measurement object and the measurement object fluctuates due to vibration or the like. It is an object of the present invention to provide a light wave interference measurement device capable of preventing a decrease in measurement accuracy and performing a precise measurement.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の態様による光波干渉測定装置は、窓
を有する容器と、該容器内に少なくとも一部が収容され
た干渉計であって、前記容器内から前記窓を介して測定
光を照射して、前記容器外において前記窓から間隔をあ
けて位置する測定対象の所定の測定を行う干渉計とを備
えた光波干渉測定装置において、前記窓と前記測定対象
との間の間隔の変動量又は前記窓の変位量を測定する補
正用測定手段と、前記補正用測定手段により測定された
前記変動量又は前記変位量に基づいて、前記干渉計によ
る測定結果を補正する補正手段とを備えたものである。
なお、測定対象の前記所定の測定としては、長さ、変位
等を挙げることができる。
According to a first aspect of the present invention, there is provided an optical interference measuring apparatus comprising: a container having a window; and an interferometer at least partially housed in the container. And an interferometer for irradiating measurement light from inside the container through the window and performing a predetermined measurement of a measurement object positioned at an interval from the window outside the container. In, based on the fluctuation amount or the displacement amount measured by the correction measuring means for measuring the fluctuation amount of the interval between the window and the measurement target or the displacement amount of the window, and measured by the correction measuring means And a correcting means for correcting the measurement result by the interferometer.
In addition, as the predetermined measurement of the measurement object, a length, a displacement, and the like can be given.

【0008】この第1の態様によれば、補正用測定手段
によって窓と前記測定対象との間の間隔の変動量又は前
記窓の変位量が測定され、測定された変位量又は変動量
に基づいて、干渉計による測定結果が補正される。した
がって、測定光が通過する容器の窓と測定対象との間の
間隔が振動等により変動しても、測定精度の低下を防止
することができ、測定対象の精密な測定を行うことがで
きる。
According to the first aspect, the amount of change in the distance between the window and the object to be measured or the amount of displacement of the window is measured by the measuring means for correction, and based on the measured amount of displacement or the amount of change. Thus, the measurement result by the interferometer is corrected. Therefore, even if the distance between the window of the container through which the measurement light passes and the object to be measured fluctuates due to vibration or the like, it is possible to prevent a decrease in measurement accuracy and to perform precise measurement of the object to be measured.

【0009】本発明の第2の態様による光波干渉測定装
置は、前記第1の態様による光波干渉測定装置におい
て、前記補正用測定手段が補正用干渉計を含むものであ
る。
A light wave interference measuring apparatus according to a second aspect of the present invention is the light wave interference measuring apparatus according to the first aspect, wherein the correction measuring means includes a correction interferometer.

【0010】前記第1の態様では、前記補正用測定手段
は干渉計に限定されるものではないが、この第2の態様
のように補正用測定手段として干渉計を用いれば、変動
量又は変位量を精度良く測定することができ、ひいては
測定対象の測定の精度が一層向上するので、好ましい。
In the first aspect, the correction measuring means is not limited to the interferometer. However, if the interferometer is used as the correction measuring means as in the second aspect, the amount of change or displacement can be reduced. It is preferable because the amount can be measured with high accuracy, and the measurement accuracy of the measurement object is further improved.

【0011】本発明の第3の態様による光波干渉測定装
置は、前記第2の態様による光波干渉測定装置におい
て、前記干渉計の測定光路と前記補正用干渉計の測定光
路とが少なくとも前記窓の付近において同軸であるもの
である。
The light wave interference measuring apparatus according to a third aspect of the present invention is the light wave interference measuring apparatus according to the second aspect, wherein the measuring optical path of the interferometer and the measuring optical path of the correcting interferometer are at least in the window. They are coaxial in the vicinity.

【0012】前記第2の態様では、各干渉計の測定光路
を窓の付近において必ずしも同軸にしておく必要はない
が、この第3の態様のように同軸にしておけば、窓が傾
いたような場合であっても、測定対象の測定誤差の原因
となる変動量又は変位量を精度良く測定することがで
き、ひいては測定対象の測定の精度が一層向上するの
で、好ましい。
In the second aspect, the measurement optical paths of the interferometers do not necessarily have to be coaxial near the window, but if they are coaxial as in the third aspect, the window may be inclined. Even in such a case, the fluctuation amount or the displacement amount that causes the measurement error of the measurement target can be accurately measured, and the measurement accuracy of the measurement target is further improved, which is preferable.

【0013】本発明の第4の態様による光波干渉測定装
置は、前記第2又は第3の態様による光波干渉測定装置
において、前記干渉計の一部と前記補正用干渉計の一部
とが共用されたものである。
A light wave interference measuring apparatus according to a fourth aspect of the present invention is the light wave interference measuring apparatus according to the second or third aspect, wherein a part of the interferometer and a part of the correcting interferometer are shared. It was done.

【0014】前記第2及び第3の態様では、補正用測定
手段を本来の測定を行う干渉計と完全に独立して設ける
こともできるが、この第4の態様のように両者の一部を
共用した構成とすれば、構成が簡単で安価となるととも
に小型化を図ることができる。
In the second and third aspects, the measuring means for correction can be provided completely independently of the interferometer for performing the original measurement. However, as in the fourth aspect, a part of both is provided. If a common configuration is used, the configuration is simple and inexpensive, and the size can be reduced.

【0015】[0015]

【発明の実施の形態】(第1の実施の形態)図1は、本
発明による第1の実施の形態による光波干渉測定装置を
示す概略構成図である。本実施の形態による装置は、ヘ
テロダイン式干渉測長機として構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a schematic block diagram showing an optical interference measuring apparatus according to a first embodiment of the present invention. The apparatus according to the present embodiment is configured as a heterodyne interferometer.

【0016】真空容器201には、光が通過するための
窓材140,141,142,145が取り付けられて
おり、真空容器201内に干渉計が組み込まれている。
真空容器201には、測定光と平行に(図1中の左右方
向に)伸縮可能な可動部201aと、固定部200bと
を有している。移動鏡120は測定光と平行に変位する
移動体に設置されており、移動鏡120は測定光と平行
に変位する。真空容器201の可動部201aはこの移
動体と機械的に連結しており、移動体の駆動に従って可
動部201aの伸縮が行われ、窓材145と移動体12
0との間の間隔Gがほぼ一定に保たれるようになってい
る。もっとも、本発明では、必ずしも間隔Gをほぼ一定
に保つ必要はない。可動部201aの伸縮については、
移動体駆動と機械的に連結していなくとも外部動力源を
設け、移動体の移動に同期して独立して移動させること
もできる。可動部201aの移動鏡120に対向する端
面には、測定光が通過する窓材145と補正量の測定の
ための測定光を反射する反射鏡162が取り付けられて
いる。
The vacuum vessel 201 is provided with window members 140, 141, 142 and 145 through which light passes, and an interferometer is built in the vacuum vessel 201.
The vacuum vessel 201 has a movable part 201a that can expand and contract in parallel with the measurement light (in the horizontal direction in FIG. 1) and a fixed part 200b. The movable mirror 120 is installed on a movable body that is displaced in parallel with the measurement light, and the movable mirror 120 is displaced in parallel with the measurement light. The movable part 201a of the vacuum vessel 201 is mechanically connected to the moving body, and the movable part 201a expands and contracts according to the driving of the moving body, and the window member 145 and the moving body 12
The gap G between 0 and 0 is kept almost constant. However, in the present invention, it is not always necessary to keep the interval G substantially constant. Regarding the expansion and contraction of the movable part 201a,
An external power source may be provided even if it is not mechanically connected to the driving of the moving body, and the moving body may be independently moved in synchronization with the movement of the moving body. A window member 145 through which the measuring light passes and a reflecting mirror 162 that reflects the measuring light for measuring the correction amount are attached to an end surface of the movable portion 201a facing the moving mirror 120.

【0017】光源300は、周波数f0の紙面に平行な
偏光方位の光と、周波数f1の紙面に垂直な光とを同軸
で出射する。この2つの光は、真空容器201に取り付
けられた窓材140を透過し、PBS100でそれぞれ
の偏光方位に応じて分離され、周波数f0の紙面に平行
な偏光方位の光はPBS100を透過し、周波数f1の
紙面に垂直な偏光方位の光はPBS100で1/4波長
板110の方へ反射される。
The light source 300 coaxially emits light having a polarization direction parallel to the page of the frequency f0 and light perpendicular to the page of the frequency f1. These two lights pass through the window material 140 attached to the vacuum vessel 201 and are separated by the PBS 100 in accordance with the respective polarization directions. Light having a polarization direction parallel to the paper surface at the frequency f0 is transmitted through the PBS 100, and The light having the polarization direction perpendicular to the paper surface of f1 is reflected by the PBS 100 toward the quarter-wave plate 110.

【0018】PBS100を透過した周波数f0の光の
一部は、ビームスプリッタ(以下、「BS」という。)
150で波長板112へ向けて反射され、その残りはB
S150を透過する。BS150を透過した周波数f0
の紙面に平行な偏光方位の光は、PBS102及び窓材
141を透過し、検出器400に入射する。一方、PB
S100を反射した周波数f1の光は、波長板110及
び窓材145を透過し、移動鏡120でほぼ同軸に反射
され、窓材145及び波長板110を透過し、PBS1
00に戻ってくる。ここで、波長板110は1/4波長
板であるため、PBS100に戻ってきた周波数f1の
光は、波長板110を2回透過したことで偏光方位が9
0度回転し、紙面に平行な偏光方位の光になっている。
紙面に平行な偏光方位となった周波数f1の光は、PB
S100を透過し、反射鏡160でBS151へ向けて
反射され、BS151において、透過光と反射光とに分
けられる。BS151で反射された周波数f1の紙面に
平行な偏光方位の光は、1/2波長板113を透過し、
PBS102に入射する。ここで、波長板113は1/
2波長板であるため、周波数f1の光は、波長板113
で偏光方位が90度回転し、紙面に垂直な偏光方位の光
になる。紙面に垂直な偏光方位となった周波数f1の光
は、PBS102で周波数f0の光とほぼ同軸に反射さ
れ、窓材141を透過し、検出器400に入射する。
A part of the light having the frequency f0 transmitted through the PBS 100 is a beam splitter (hereinafter referred to as "BS").
At 150, the light is reflected toward the wave plate 112, and the rest is B
The light passes through S150. Frequency f0 transmitted through BS150
Are transmitted through the PBS 102 and the window material 141 and are incident on the detector 400. On the other hand, PB
The light having the frequency f1 reflected by S100 is transmitted through the wave plate 110 and the window material 145, is substantially coaxially reflected by the moving mirror 120, is transmitted through the window material 145 and the wave plate 110, and is transmitted through the PBS1.
Come back to 00. Here, since the wave plate 110 is a 波長 wave plate, the light of the frequency f1 that has returned to the PBS 100 transmits through the wave plate 110 twice and has a polarization azimuth of nine.
The light is rotated by 0 degrees, and has a polarization direction parallel to the paper surface.
The light of the frequency f1 having the polarization direction parallel to the paper is PB
The light passes through S100, is reflected by the reflecting mirror 160 toward the BS 151, and is divided into transmitted light and reflected light at the BS 151. The light of the polarization direction parallel to the sheet of the frequency f1 reflected by the BS 151 is transmitted through the half-wave plate 113,
The light enters the PBS 102. Here, the wavelength plate 113 is 1 /
Since it is a two-wavelength plate, the light of frequency f1 is
Rotates the polarization direction by 90 degrees, and becomes light having a polarization direction perpendicular to the paper surface. The light of frequency f1 having a polarization direction perpendicular to the paper is reflected by the PBS 102 almost coaxially with the light of frequency f0, passes through the window material 141, and enters the detector 400.

【0019】図示しないが検出器400には偏光子が取
り付けてあり、この偏光子の偏光方位は、周波数f0の
紙面に平行な偏光方位の光と周波数f1の紙面に垂直な
偏光方位の光のそれぞれの偏光方位に対して45度傾い
ている。このため、偏光子を透過した2つの光は干渉
し、この干渉光が検出器400で光電変換され、検出器
400から、周波数f0と周波数f1との差(f0−f
1)に等しい周波数のビートシグナルが出力される。こ
のビートシグナルは、移動鏡120の変位を測定する測
長信号として、演算装置501に入力される。また、光
源300は、周波数f0と周波数f1との差(f0−f
1)に等しい周波数のビートシグナルを出力する。この
ビートシグナルは、移動鏡120の変位を測定する参照
信号として演算装置501に入力される。
Although not shown, a polarizer is attached to the detector 400, and the polarization direction of the polarizer is defined as that of light having a polarization direction parallel to the paper of frequency f0 and light having a polarization direction perpendicular to the paper of frequency f1. It is inclined by 45 degrees with respect to each polarization direction. For this reason, the two lights transmitted through the polarizer interfere with each other, the interference light is photoelectrically converted by the detector 400, and the difference between the frequency f0 and the frequency f1 (f0−f) is detected from the detector 400.
A beat signal having a frequency equal to 1) is output. This beat signal is input to the arithmetic unit 501 as a length measurement signal for measuring the displacement of the movable mirror 120. Further, the light source 300 has a difference (f0−f) between the frequency f0 and the frequency f1.
A beat signal having a frequency equal to 1) is output. This beat signal is input to the arithmetic unit 501 as a reference signal for measuring the displacement of the movable mirror 120.

【0020】演算装置501は、光源300からの参照
信号と検出器400からの測長信号の位相を比較し、そ
の位相変化量から移動鏡120の光軸方向に沿った変位
量ΔD1を演算により求める。
The arithmetic unit 501 compares the phase of the reference signal from the light source 300 with the phase of the length measurement signal from the detector 400, and calculates the displacement ΔD1 along the optical axis of the movable mirror 120 from the phase change. Ask.

【0021】前述したBS150で反射された周波数f
0の紙面に平行な偏光方位の光は、PBS101及び1
/4波長板112を透過し、真空容器201の可動部2
01aの端面に取り付けられた反射鏡162でほぼ同軸
に反射され、波長板112を透過してPBS101に入
射する。ここで、波長板112は1/4波長板であるた
め、PBS101に戻ってきた周波数f0の光は、波長
板112を2回透過したことで偏光方位が90度回転
し、紙面に垂直な偏光方位の光になっている。紙面に垂
直な偏光方位となった周波数f0の光は、PBS101
及び反射鏡161で順次反射され、PBS103に入射
する。PBS103に入射した周波数f0の紙面に垂直
な偏光方位の光は、PBS103で反射され、窓材14
2を透過した後、検出器401に入射する。一方、BS
151を透過した周波数f1の紙面に平行な偏光方位の
光は、PBS103を周波数f0の光とほぼ同軸に透過
し、窓材142を透過し、検出器401に入射する。
The frequency f reflected by the aforementioned BS 150
The light of the polarization direction parallel to the paper surface of
The movable part 2 of the vacuum vessel 201 is transmitted through the 波長 wavelength plate 112 and
The light is substantially coaxially reflected by the reflecting mirror 162 attached to the end surface of the light receiving surface 01a, passes through the wave plate 112, and enters the PBS 101. Here, since the wavelength plate 112 is a 波長 wavelength plate, the light of the frequency f0 that has returned to the PBS 101 is transmitted through the wavelength plate 112 twice, so that the polarization direction is rotated by 90 degrees, and the polarized light perpendicular to the paper surface is polarized. It is the light of the direction. The light of the frequency f0 having the polarization direction perpendicular to the paper is PBS101
And the light is sequentially reflected by the reflecting mirror 161 and enters the PBS 103. The light having a polarization direction perpendicular to the paper surface at the frequency f0 incident on the PBS 103 is reflected by the PBS 103, and is reflected by the window material 14.
After passing through No. 2, the light enters the detector 401. Meanwhile, BS
The light having a polarization direction parallel to the sheet of the frequency f1 that has passed through 151 passes through the PBS 103 almost coaxially with the light having the frequency of f0, passes through the window 142, and enters the detector 401.

【0022】図示しないが検出器401には偏光子が取
り付けてあり、この偏光子の偏光方位は、周波数f0の
紙面に垂直な偏光方位の光と周波数f1の紙面に平行な
偏光方位の光のそれぞれの偏光方位に対して45度傾い
ている。このため、偏光子を透過した2つの光は干渉
し、この干渉光が検出器401で光電変換され、検出器
401から、周波数f0と周波数f1の差(f0−f
1)に等しい周波数のビートシグナルが出力される。こ
のビートシグナルは、移動鏡120と窓材145との間
の間隔変動を測定する測定信号として、演算装置501
に入力される。
Although not shown, a polarizer is attached to the detector 401, and the polarization direction of the polarizer is defined as a polarization direction of light having a polarization direction perpendicular to the paper of frequency f0 and a polarization direction of light having a polarization direction parallel to the paper of frequency f1. It is inclined by 45 degrees with respect to each polarization direction. Therefore, the two lights transmitted through the polarizer interfere with each other, the interference light is photoelectrically converted by the detector 401, and the difference between the frequency f0 and the frequency f1 (f0−f) is detected from the detector 401.
A beat signal having a frequency equal to 1) is output. This beat signal is used as a measurement signal for measuring a variation in the interval between the movable mirror 120 and the window member 145, and is used as a measurement signal by the arithmetic unit 501
Is input to

【0023】演算装置501は、光源300からの参照
信号と検出器401からの測定信号の位相を比較し、そ
の位相変化量から移動鏡120と窓材145との間の間
隔変動量ΔD2を求める。
The arithmetic unit 501 compares the phase of the reference signal from the light source 300 with the phase of the measurement signal from the detector 401, and obtains the amount of variation ΔD2 between the moving mirror 120 and the window member 145 from the amount of phase change. .

【0024】演算装置501は、検出器400からの測
長信号に基づいて求めた移動鏡120の変位量ΔD1
を、検出器401からの測長信号に基づいて求めた間隔
変動量ΔD2に基づいて演算により補正し、移動鏡12
0の真の変位量ΔDを求める。
The arithmetic unit 501 calculates the displacement ΔD1 of the movable mirror 120 obtained based on the length measurement signal from the detector 400.
Is corrected by an operation based on the interval variation ΔD2 obtained based on the length measurement signal from the detector 401, and the moving mirror 12
The true displacement ΔD of 0 is obtained.

【0025】ここで、移動鏡120の真の変位量ΔDを
求める補正式について、図2を参照して説明する。図2
は、移動鏡120の真の変位量ΔDを計算するためのモ
デルを示す。図2において、Oは所定の基準位置、12
0は移動鏡120の移動前の位置、120’は移動鏡1
20の移動後の位置、145は移動前の窓材145の位
置、145’は移動後の窓材145の実際の位置、14
5”は移動後の窓材145の理想的な位置、L0は基準
位置Oと位置120との間の幾何学長、Gは位置145
と位置120との間の幾何学長(移動前の窓材145と
移動鏡120との間の幾何学長)、G+ΔGは位置14
5’と位置120’との間の幾何学長(移動後の窓材1
45と移動鏡120との間の幾何学長)、ΔDは移動鏡
120の真の変位量(位置120と位置120’との間
の幾何学長)を示す。また、窓材145と移動鏡120
との間の気体の屈折率をn0、真空容器201内の屈折
率をnv=1とする。
Here, a correction formula for obtaining the true displacement ΔD of the movable mirror 120 will be described with reference to FIG. FIG.
Shows a model for calculating the true displacement ΔD of the movable mirror 120. In FIG. 2, O is a predetermined reference position, 12
0 is the position of the movable mirror 120 before the movement, 120 ′ is the movable mirror 1
20 is the position after the movement, 145 is the position of the window material 145 before the movement, 145 'is the actual position of the window material 145 after the movement, 14
5 "is the ideal position of the window material 145 after the movement, L0 is the geometric length between the reference position O and the position 120, and G is the position 145.
Length (geometric length between the window member 145 and the moving mirror 120 before movement) between G and the position 120, G + ΔG is the position 14
Geometry length between 5 'and position 120' (window material 1 after movement)
45 indicates the true displacement of the movable mirror 120 (geometric length between the position 120 and the position 120 '). Also, the window material 145 and the moving mirror 120
Is n0, and the refractive index in the vacuum vessel 201 is nv = 1.

【0026】検出器400からの測長信号に基づいて求
めた移動鏡120の変位量ΔD1は、位置Oと位置12
0’との間の光路長から、位置Oと位置120との間の
光路長を減算したものに相当するので、図2からわかる
ように、数1で表される。
The displacement amount ΔD1 of the movable mirror 120 obtained based on the length measurement signal from the detector 400 is represented by the position O and the position 12
Since this is equivalent to a value obtained by subtracting the optical path length between the position O and the position 120 from the optical path length between 0 ′, it is expressed by Expression 1 as can be seen from FIG.

【0027】[0027]

【数1】 ΔD1=[nv{L0+ΔD−(G+ΔG)}+n0(G+ΔG)] −[nv(L0−G)+n0・G] =ΔD+(n0−1)ΔGΔD1 = [nv {L0 + ΔD− (G + ΔG)} + n0 (G + ΔG)] − [nv (L0−G) + n0 · G] = ΔD + (n0−1) ΔG

【0028】本実施の形態では、検出器401からの測
長信号に基づいて求めた間隔変動量ΔD2が数1中のΔ
Gに相当するため、数1から、移動鏡120の変位量Δ
D1は数2で表される。
In the present embodiment, the interval variation ΔD2 obtained based on the length measurement signal from the detector 401 is represented by Δ
G, the displacement Δ
D1 is represented by Equation 2.

【0029】[0029]

【数2】ΔD=ΔD1−(n0−1)ΔD2ΔD = ΔD1− (n0−1) ΔD2

【0030】したがって、演算装置501は、変位量Δ
D1と間隔変動量ΔD2とから、数2に従った演算によ
り移動鏡120の真の変位量ΔDを求めることができ
る。
Therefore, the arithmetic unit 501 calculates the displacement Δ
From D1 and the interval variation ΔD2, the true displacement ΔD of the movable mirror 120 can be obtained by calculation according to Equation 2.

【0031】このように、本実施の形態によれば、測定
した変位量ΔD1を、補正用に測定した間隔変動量ΔD
2に基づいて補正し、真の変位量ΔDを求めているの
で、間隔Gが変動しても、測定精度の低下を防止するこ
とができ、移動鏡120の変位の精密な測定を行うこと
ができる。
As described above, according to the present embodiment, the measured displacement ΔD1 is replaced by the interval variation ΔD measured for correction.
2, the true displacement amount ΔD is obtained, so that even if the interval G fluctuates, a decrease in measurement accuracy can be prevented, and accurate measurement of the displacement of the movable mirror 120 can be performed. it can.

【0032】なお、気体の屈折率n0は、予め計測して
おいた既知の一定値を用いてもよいが、温度、気圧、水
蒸気の分圧などにより常に変化することから、測定精度
を一層高めるため、変位量ΔDの計測中にモニタした値
を用いることが好ましい。屈折率n0を得る方法として
は、例えば、波長コンペンセータ等を用いて光学的に求
める方法や、計測する光の波長、温度、湿度、気圧、水
蒸気の分圧などの値をそれぞれ測定してエドレンの式
(B.Edlen:Metrologia 2. p.71(1966))等の屈折率の
式から計算する方法などを挙げることができる。以上の
点は、後述する第2の実施の形態についても同様であ
る。
The refractive index n0 of the gas may be a known constant value measured in advance. However, since the refractive index n0 always changes depending on the temperature, the atmospheric pressure, the partial pressure of water vapor, etc., the measurement accuracy is further improved. Therefore, it is preferable to use a value monitored during measurement of the displacement amount ΔD. As a method of obtaining the refractive index n0, for example, a method of optically obtaining using a wavelength compensator or the like, or measuring the values of the wavelength of the light to be measured, temperature, humidity, atmospheric pressure, partial pressure of water vapor, etc. A method of calculating from a refractive index formula such as the formula (B. Edlen: Metrologia 2. p. 71 (1966)) can be mentioned. The same is true for the second embodiment described later.

【0033】なお、本実施の形態では、前述した説明か
らわかるように、窓材141を介して検出器400に入
射する2つの光に関連する部分が、容器201内から窓
材145を介して測定光を照射して、移動鏡120の変
位量ΔD1を測定する干渉計を構成している。また、窓
材142を介して検出器401に入射する2つの光に関
連する部分が、窓材145と移動鏡120との間の間隔
変動量ΔD2を測定する干渉計を構成している。そし
て、これらの2つの干渉計は光源300等を共用してい
る。
In this embodiment, as can be seen from the above description, the portion related to the two lights incident on the detector 400 via the window 141 is provided from the inside of the container 201 via the window 145. An interferometer configured to measure the displacement amount ΔD1 of the movable mirror 120 by irradiating the measurement light is configured. In addition, a portion related to the two lights incident on the detector 401 via the window member 142 constitutes an interferometer that measures a distance variation ΔD2 between the window member 145 and the movable mirror 120. These two interferometers share the light source 300 and the like.

【0034】(第2の実施の形態)図3は、本発明によ
る第2の実施の形態による光波干渉測定装置を示す概略
構成図である。本実施の形態による装置も、測定対象と
しての移動鏡120の変位を測定するヘテロダイン式干
渉測長機として構成されている。図3において、図1中
の要素と同一又は対応する要素には同一符号を付してい
る。
(Second Embodiment) FIG. 3 is a schematic configuration diagram showing an optical interference measuring apparatus according to a second embodiment of the present invention. The device according to the present embodiment is also configured as a heterodyne interferometer that measures the displacement of the movable mirror 120 as a measurement target. 3, the same or corresponding elements as those in FIG. 1 are denoted by the same reference numerals.

【0035】前述した第1の実施の形態が、補正に用い
る値として移動鏡120と窓材145との間の間隔変動
量ΔD2を測定する例であったのに対し、本実施の形態
は、補正に用いる値として窓材146の変位量ΔD3を
測定する例である。
While the first embodiment described above is an example in which the distance variation ΔD2 between the movable mirror 120 and the window member 145 is measured as a value used for correction, this embodiment is different from the first embodiment in that This is an example of measuring a displacement amount ΔD3 of the window material 146 as a value used for correction.

【0036】真空容器202には、光が通過するための
窓材140,141,142,146が取り付けられて
おり、真空容器202内に干渉計が組み込まれている。
真空容器202には、測定光と平行(図3中の左右方
向)に伸縮可能な可動部202aと、固定部202bと
を有している。移動鏡120は測定光と平行に変位する
移動体に設置されており、移動鏡120は測定光と平行
に変位する。真空容器202の可動部202aはこの移
動体と機械的に連結しており、移動体の駆動に従って可
動部202aの伸縮が行われ、窓材145と移動体12
0との間の間隔Gがほぼ一定に保たれるようになってい
る。可動部202aの伸縮については、移動体駆動と機
械的に連結していなくとも外部動力源を設け、移動体の
移動にどうきして独立して移動させることもできる。可
動部202aの移動鏡120に対向する端面には、測定
光が通過する窓材145が取り付けられている。
Window materials 140, 141, 142, and 146 through which light passes are attached to the vacuum vessel 202, and an interferometer is built in the vacuum vessel 202.
The vacuum container 202 has a movable part 202a that can expand and contract in parallel with the measurement light (in the horizontal direction in FIG. 3) and a fixed part 202b. The movable mirror 120 is installed on a movable body that is displaced in parallel with the measurement light, and the movable mirror 120 is displaced in parallel with the measurement light. The movable part 202a of the vacuum vessel 202 is mechanically connected to the moving body, and the movable part 202a expands and contracts according to the driving of the moving body, and the window member 145 and the moving body 12
The gap G between 0 and 0 is kept almost constant. Regarding the expansion and contraction of the movable part 202a, an external power source can be provided even if it is not mechanically connected to the driving of the moving body, and the moving body 202a can be moved independently of the movement of the moving body. A window member 145 through which measurement light passes is attached to an end surface of the movable unit 202a facing the movable mirror 120.

【0037】光源300は、周波数f0の紙面に平行な
偏光方位の光と、周波数f1の紙面に垂直な光を同軸で
出射する。この2つの光は真空容器202に取り付けら
れた窓材140を透過し、PBS100でそれぞれの偏
光方位に応じて分離され、周波数f0の紙面に平行な偏
光方位の光はPBS100を透過し、周波数f1の紙面
に垂直な偏光方位の光はPBS100でBS152の方
へ反射される。
The light source 300 coaxially emits light having a polarization direction parallel to the paper of frequency f0 and light perpendicular to the paper of frequency f1. These two lights pass through the window member 140 attached to the vacuum container 202 and are separated by the PBS 100 in accordance with the respective polarization directions. Light having a polarization direction parallel to the paper surface of the frequency f0 is transmitted through the PBS 100 and the frequency f1 is transmitted. Is reflected by the PBS 100 toward the BS 152.

【0038】PBS100を透過した周波数f0の光の
一部は、BS153で1/2波長板115へ向けて反射
され、その残りはBS153を透過する。BS153で
反射された周波数f0の紙面に平行な偏光方位の光は、
波長板115を透過し、PBS104に入射する。ここ
で、波長板115は1/2波長板であるため、周波数f
0の光は、波長板115で偏光方位が90度回転し、紙
面に垂直な偏光方位の光になる。紙面に垂直な偏光方位
となった周波数f0の光は、PBS104で反射され、
窓材142を透過し、検出器402に入射する。
A part of the light having the frequency f0 transmitted through the PBS 100 is reflected by the BS 153 toward the half-wave plate 115, and the rest is transmitted through the BS 153. The light of the polarization direction parallel to the paper surface of the frequency f0 reflected by the BS153 is
The light passes through the wave plate 115 and enters the PBS 104. Here, since the wave plate 115 is a half-wave plate, the frequency f
The light of 0 has its polarization direction rotated by 90 degrees by the wavelength plate 115, and becomes light with a polarization direction perpendicular to the paper surface. The light of frequency f0 having the polarization direction perpendicular to the paper is reflected by the PBS 104,
The light passes through the window material 142 and enters the detector 402.

【0039】一方、PBS100を反射した周波数f1
の紙面に垂直な偏光方位の光の一部は、BS152を透
過し、窓材146に入射する。窓材146には、光の一
部を反射し、残りを透過するような薄膜が蒸着されてい
る。すなわち、窓材146はハーフミラーを構成してい
る。窓材146を透過した周波数f1の光は、1/4波
長板114を透過し、移動鏡120でほぼ同軸に反射さ
れ、波長板114及び窓材146を透過し、BS152
に戻ってくる。ここで、波長板114は1/4波長板で
あるため、BS152に戻ってきた周波数f1の光は、
波長板114を2回透過したことで偏光方位が90度回
転し、紙面に平行な偏光方位の光になっている。紙面に
平行な偏光方位となった周波数f1の光の一部は、BS
152で反射され、その残りはBS152を透過する。
BS152で反射された紙面に平行な偏光方位の周波数
f1の光は、偏光子170に入射するが、偏光子170
は紙面に垂直な偏光方位の光のみを透過するように設置
されているため、偏光子170でカットされる。BS1
52を透過した周波数f1の紙面に平行な偏光方位の光
は、PBS100を透過し、反射鏡160反射され、P
BS104に入射される。PBS104に入射した周波
数f1の紙面に平行な偏光方位の光は、PBS104で
周波数f0の光とほぼ同軸にされ、窓材142を透過
し、検出器402に入射する。
On the other hand, the frequency f1 reflected by the PBS 100
A part of the light having the polarization direction perpendicular to the paper of FIG. 6 passes through the BS 152 and enters the window material 146. A thin film that reflects part of light and transmits the rest is deposited on the window material 146. That is, the window material 146 forms a half mirror. The light of the frequency f1 transmitted through the window material 146 is transmitted through the 波長 wavelength plate 114, is reflected almost coaxially by the movable mirror 120, is transmitted through the wavelength plate 114 and the window material 146, and is transmitted through the BS 152.
Come back to. Here, since the wave plate 114 is a 波長 wave plate, the light of the frequency f1 returning to the BS 152 is
The light is transmitted through the wave plate 114 twice, so that the polarization direction is rotated by 90 degrees, so that the light has a polarization direction parallel to the paper surface. A part of the light of the frequency f1 having the polarization direction parallel to the paper is BS
Reflected at 152, the rest passes through BS 152.
The light of the frequency f1 having the polarization direction parallel to the paper surface reflected by the BS 152 is incident on the polarizer 170.
Is cut by the polarizer 170 because it is installed so as to transmit only light having a polarization direction perpendicular to the paper surface. BS1
The light having the polarization direction parallel to the sheet of the frequency f1 that has passed through the filter 52 passes through the PBS 100, is reflected by the reflecting mirror 160, and
It is incident on the BS 104. The light having a polarization direction parallel to the sheet of the frequency f1 incident on the PBS 104 is made substantially coaxial with the light of the frequency f0 by the PBS 104, passes through the window member 142, and enters the detector 402.

【0040】図示しないが検出器402には偏光子が取
り付けてあり、この偏光子の偏光方位は、検出器402
に入射した2つの光の偏光方位に対して45度傾いてい
る。このため、偏光子を透過した2つの光は干渉し、こ
の干渉光が検出器402で光電変換され、検出器402
から、周波数f0と周波数f1の差(f0−f1)に等
しい周波数のビートシグナルが出力される。このビート
シグナルは、移動鏡120の変位を測定する測長信号と
して、演算装置502に入力される。また、光源300
は、周波数f0と周波数f1との差(f0−f1)に等
しい周波数のビートシグナルを出力する。このビートシ
グナルは、移動鏡120の変位を測定する参照信号とし
て演算装置502に入力される。
Although not shown, a polarizer is attached to the detector 402, and the polarization direction of the polarizer is determined by the detector 402.
Are tilted by 45 degrees with respect to the polarization directions of the two lights that have entered. For this reason, the two lights transmitted through the polarizer interfere with each other, and the interference light is photoelectrically converted by the detector 402, and the detector 402
As a result, a beat signal having a frequency equal to the difference (f0−f1) between the frequency f0 and the frequency f1 is output. This beat signal is input to the arithmetic unit 502 as a length measurement signal for measuring the displacement of the movable mirror 120. Also, the light source 300
Outputs a beat signal having a frequency equal to the difference (f0-f1) between the frequency f0 and the frequency f1. This beat signal is input to the arithmetic unit 502 as a reference signal for measuring the displacement of the movable mirror 120.

【0041】演算装置502は、光源300からの参照
信号と検出器402からの測長信号の位相を比較し、そ
の位相変化量から移動鏡120の光軸方向に沿った変位
量ΔD1を演算により求める。
The arithmetic unit 502 compares the phase of the reference signal from the light source 300 with the phase of the length measurement signal from the detector 402, and calculates the amount of displacement ΔD1 along the optical axis of the movable mirror 120 from the amount of phase change. Ask.

【0042】窓材146で一部が反射された周波数f1
の紙面に垂直な偏光方位の光は、BS152で反射さ
れ、偏光子170に入射するが、前述したように偏光子
170は紙面に垂直な偏光方位の光のみを透過するよう
に設置されているため、偏光子170を透過し、反射鏡
161で反射され、PBS105に入射される。PBS
105に入射した周波数f1の紙面に垂直な偏光方位の
光は、PBS105で反射され、窓材141を透過した
後、検出器403に入射する。一方、BS153を透過
した周波数f0の紙面に平行な偏光方位の光は、PBS
105を周波数f1の光とほぼ同軸に透過し、窓材14
1を透過し、検出器403に入射する。
Frequency f1 partially reflected by window material 146
Is reflected by the BS 152 and enters the polarizer 170. As described above, the polarizer 170 is installed so as to transmit only light having a polarization direction perpendicular to the paper surface. Therefore, the light passes through the polarizer 170, is reflected by the reflection mirror 161, and enters the PBS 105. PBS
The light having a polarization direction perpendicular to the paper surface of the frequency f1 incident on the light 105 is reflected by the PBS 105, passes through the window material 141, and then enters the detector 403. On the other hand, light having a polarization direction parallel to the sheet of the frequency f0 transmitted through the BS 153 is transmitted by the PBS.
105 is transmitted substantially coaxially with the light of the frequency f1, and
1 and enter the detector 403.

【0043】図示しないが検出器403には偏光子が取
り付けてあり、この偏光子の偏光方位は、検出器403
に入射した2つの光の偏光方位に対して45度傾いてい
る。このため、偏光子を透過した2つの光は干渉し、こ
の干渉光が検出器403で光電変換され、検出器403
から、周波数f0と周波数f1の差(f0−f1)に等
しい周波数のビートシグナルが出力される。このビート
シグナルは、窓材146の変位を測定する測定信号とし
て、演算装置502に入力される。
Although not shown, a polarizer is attached to the detector 403, and the polarization direction of the polarizer is determined by the detector 403.
Are tilted by 45 degrees with respect to the polarization directions of the two lights that have entered. Therefore, the two lights transmitted through the polarizer interfere with each other, and the interference light is photoelectrically converted by the detector 403, and
As a result, a beat signal having a frequency equal to the difference (f0−f1) between the frequency f0 and the frequency f1 is output. This beat signal is input to the arithmetic unit 502 as a measurement signal for measuring the displacement of the window material 146.

【0044】演算装置502は、光源300からの参照
信号と検出器403からの測定信号の位相を比較し、そ
の位相変化量から窓材146の光軸方向に沿った変位量
ΔD3を演算により求める。
The arithmetic unit 502 compares the phase of the reference signal from the light source 300 with the phase of the measurement signal from the detector 403, and calculates the amount of displacement ΔD3 along the optical axis of the window member 146 from the amount of phase change. .

【0045】そして、演算装置502は、検出器402
からの測長信号に基づいて求めた移動鏡120の変位量
ΔD1を、検出器403からの測長信号に基づいて求め
た窓材146の変位量ΔD3に基づいて演算により補正
し、移動鏡120の真の変位量ΔDを求める。
The arithmetic unit 502 includes a detector 402
The displacement amount ΔD1 of the movable mirror 120 obtained based on the length measurement signal from the detector 403 is corrected by calculation based on the displacement amount ΔD3 of the window member 146 obtained based on the length measurement signal from the detector 403, and the movable mirror 120 is corrected. Is calculated.

【0046】ここで、移動鏡120の真の変位量ΔDを
求める補正式について、再び図2を参照して説明する。
図2における各符号の意味は、第1の実施の形態に関連
して既に説明した通りである。本実施の形態では、検出
器403からの測長信号に基づいて求めた窓材146の
変位量ΔD3は、真空容器内の屈折率がnv=1である
ので、図2中の位置145と位置145’との間の幾何
学長に等しい。よって、図2からわかるように、間隔変
動量ΔGは、変位量ΔD3を用いた数3で表される。数
3を数1に代入して整理すると、数4が得られる。
Here, the correction formula for calculating the true displacement ΔD of the movable mirror 120 will be described with reference to FIG. 2 again.
The meaning of each symbol in FIG. 2 is as already described in relation to the first embodiment. In the present embodiment, the displacement amount ΔD3 of the window material 146 obtained based on the length measurement signal from the detector 403 is the position 145 in FIG. 2 since the refractive index in the vacuum vessel is nv = 1. 145 'equals the geometric length. Therefore, as can be seen from FIG. 2, the interval variation ΔG is expressed by Expression 3 using the displacement ΔD3. Substituting Equation 3 into Equation 1 and rearranging yields Equation 4.

【0047】[0047]

【数3】ΔG=ΔD−ΔD3## EQU3 ## ΔG = ΔD−ΔD3

【0048】[0048]

【数4】 ΔD=(1/n0){ΔD1+(n0−1)ΔD3}ΔD = (1 / n0) {ΔD1 + (n0-1) ΔD3}

【0049】したがって、演算装置502は、変位量Δ
D1と変位量ΔD3とから、数4に従った演算により移
動鏡120の真の変位量ΔDを求めることができる。
Therefore, the arithmetic unit 502 calculates the displacement amount Δ
From D1 and the displacement amount ΔD3, the true displacement amount ΔD of the movable mirror 120 can be obtained by calculation according to Equation 4.

【0050】このように、本実施の形態によれば、測定
した変位量ΔD1を、補正用に測定した変位量ΔD3に
基づいて補正し、真の変位量ΔDを求めているので、間
隔Gが変動しても、測定精度の低下を防止することがで
き、移動鏡120の変位の精密な測定を行うことができ
る。
As described above, according to the present embodiment, the measured displacement amount ΔD1 is corrected based on the displacement amount ΔD3 measured for correction, and the true displacement amount ΔD is obtained. Even if it fluctuates, a decrease in measurement accuracy can be prevented, and accurate measurement of the displacement of the movable mirror 120 can be performed.

【0051】なお、本実施の形態では、前述した説明か
らわかるように、窓材142を介して検出器402に入
射する2つの光に関連する部分が、容器201内から窓
材146を介して測定光を照射して、移動鏡120の変
位量ΔD1を測定する干渉計を構成している。また、窓
材141を介して検出器403に入射する2つの光に関
連する部分が、窓材146の変位量ΔD3を測定する干
渉計を構成している。そして、これらの2つの干渉計は
光源300等を共用している。また、本実施の形態で
は、これらの2つの干渉計の測定光路は、BS152と
窓材146の間において同軸となっている。このため、
窓材の変位量ΔD3の測定誤差が少なくなり、ひいては
移動鏡120の真の変位量ΔDを一層精度良く測定する
ことができる。
In this embodiment, as can be seen from the above description, the portion related to the two lights that enter the detector 402 through the window member 142 passes through the window member 146 from inside the container 201. An interferometer configured to measure the displacement amount ΔD1 of the movable mirror 120 by irradiating the measurement light is configured. In addition, a portion related to the two lights incident on the detector 403 through the window material 141 constitutes an interferometer that measures the displacement ΔD3 of the window material 146. These two interferometers share the light source 300 and the like. In the present embodiment, the measurement optical paths of these two interferometers are coaxial between BS 152 and window material 146. For this reason,
The measurement error of the displacement ΔD3 of the window material is reduced, and the true displacement ΔD of the movable mirror 120 can be measured with higher accuracy.

【0052】以上、本発明の各実施の形態について説明
したが、本発明はこれらの実施の形態に限定されるもの
ではない。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments.

【0053】例えば、前記第1の実施の形態のように、
補正に用いる値として移動鏡120と窓材145との間
の間隔変動量ΔD2を測定する場合であっても、前記第
2の実施の形態のように、反射鏡162を用いることな
く窓材145をハーフミラーとして構成するとともに1
/4波長板114を用いるなどによって、2つの干渉計
の測定光路を少なくとも窓材145の付近において同軸
にすることができる。逆に、第2の実施の形態のよう
に、補正に用いる値として窓材146の変位量ΔD3を
測定する場合であっても、反射鏡162を用いるなどに
よって、2つの干渉計の測定光路を窓材146の付近に
おいても別々にすることができる。
For example, as in the first embodiment,
Even when the distance variation ΔD2 between the moving mirror 120 and the window material 145 is measured as a value used for the correction, the window material 145 is not used without using the reflecting mirror 162 as in the second embodiment. As a half mirror and 1
The measurement optical paths of the two interferometers can be made coaxial at least in the vicinity of the window member 145, for example, by using the 波長 wavelength plate 114. Conversely, even when the displacement ΔD3 of the window material 146 is measured as a value used for correction as in the second embodiment, the measurement optical paths of the two interferometers are changed by using the reflecting mirror 162 or the like. Separation can also be made in the vicinity of the window material 146.

【0054】また、前記第1の実施の形態の場合におい
て、窓材145に対して反射鏡162と対称的な位置
(図1中の下側位置)に反射鏡を追加し、反射鏡162
に補正用の測定のための測定光を照射して間隔変動ΔD
2を測定したのと同様に、追加した反射鏡に他の測定光
を照射して間隔変動ΔD2’も測定するように構成し、
ΔD2とΔD2’との平均値を前記数2中のΔD2とし
て用いてもよい。この場合には、窓材145が傾いた場
合であっても、窓材145と変動120との間の間隔変
動の測定誤差が少なくなる。
In the case of the first embodiment, a reflecting mirror is added at a position symmetrical to the reflecting mirror 162 with respect to the window member 145 (a lower position in FIG. 1).
Irradiates the measuring light for the measurement for correction to the interval variation ΔD
Similarly to the measurement of No. 2, the additional reflecting mirror is irradiated with another measurement light to measure the interval variation ΔD2 ′,
The average value of ΔD2 and ΔD2 ′ may be used as ΔD2 in Equation 2. In this case, even when the window material 145 is inclined, the measurement error of the interval variation between the window material 145 and the variation 120 is reduced.

【0055】また、前述した各実施の形態では、移動鏡
20の変位量ΔD1、移動鏡120と窓材145との間
の間隔変動量ΔD2及び窓材146の変位量D3をヘテ
ロダイン測定しているが、ホモダイン測定することもで
きる。また、それぞれシングルパスで測定を行っている
が、ダブルパス構成にすることも可能である。
In each of the above-described embodiments, the amount of displacement ΔD1 of the movable mirror 20, the amount of variation ΔD2 between the movable mirror 120 and the window member 145, and the amount of displacement D3 of the window member 146 are measured by heterodyne. However, homodyne measurement can also be performed. Further, each measurement is performed by a single pass, but a double pass configuration is also possible.

【0056】さらに、本発明は、測長機以外の様々な光
波干渉測定装置にも適用することができる。
Further, the present invention can be applied to various light wave interference measuring devices other than the length measuring machine.

【0057】また、前述した各実施の形態は、容器内を
真空にした例であったが、例えば、容器内に不活性ガス
等を封入しておいてもよい。
In each of the embodiments described above, the container is evacuated. However, for example, an inert gas or the like may be sealed in the container.

【0058】[0058]

【発明の効果】以上説明したように、本発明によれば、
測定光が通過する容器の窓と測定対象との間の間隔が振
動等により変動しても、測定精度の低下を防止すること
ができ、精密な測定を行うことができる。
As described above, according to the present invention,
Even if the distance between the window of the container through which the measurement light passes and the object to be measured fluctuates due to vibration or the like, a decrease in measurement accuracy can be prevented, and accurate measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による光波変調装置
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a lightwave modulation device according to a first embodiment of the present invention.

【図2】移動鏡の真の変位量を計算するためのモデルを
示す図である。
FIG. 2 is a diagram showing a model for calculating a true displacement amount of a movable mirror.

【図3】本発明の第2の実施の形態による光波干渉測定
装置を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing an optical interference measuring apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100〜105 偏光ビームスプリッタ(PBS) 110〜112,114 1/4波長板 113,115 1/2波長板 120 移動鏡 130 固定鏡 140〜142,145,146 窓材 150〜153 ビームスプリッタ(BS) 160〜162 反射鏡 170 偏光子 200〜202 真空容器 300 光源 400〜403 検出器 500〜502 演算装置 100-105 Polarizing beam splitter (PBS) 110-112,114 1/4 wavelength plate 113,115 1/2 wavelength plate 120 Moving mirror 130 Fixed mirror 140-142,145,146 Window material 150-153 Beam splitter (BS) 160-162 Reflecting mirror 170 Polarizer 200-202 Vacuum container 300 Light source 400-403 Detector 500-502 Arithmetic unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窓を有する容器と、該容器内に少なくと
も一部が収容された干渉計であって、前記容器内から前
記窓を介して測定光を照射して、前記容器外において前
記窓から間隔をあけて位置する測定対象の所定の測定を
行う干渉計とを備えた光波干渉測定装置において、 前記窓と前記測定対象との間の間隔の変動量又は前記窓
の変位量を測定する補正用測定手段と、 前記補正用測定手段により測定された前記変動量又は前
記変位量に基づいて、前記干渉計による測定結果を補正
する補正手段とを備えたことを特徴とする光波干渉測定
装置。
1. A container having a window, and an interferometer at least partially housed in the container, wherein the measuring light is irradiated from inside the container through the window, and the window is provided outside the container. An interferometer for performing a predetermined measurement of a measurement object positioned at an interval from the light wave interferometer, wherein a variation amount of an interval between the window and the measurement object or a displacement amount of the window is measured. A light wave interference measurement device comprising: a correction measurement unit; and a correction unit that corrects a measurement result obtained by the interferometer based on the fluctuation amount or the displacement amount measured by the correction measurement unit. .
【請求項2】 前記補正用測定手段が補正用干渉計を含
むことを特徴とする請求項1記載の光波干渉測定装置。
2. An optical interference measuring apparatus according to claim 1, wherein said correcting measuring means includes a correcting interferometer.
【請求項3】 前記干渉計の測定光路と前記補正用干渉
計の測定光路とが少なくとも前記窓の付近において同軸
であることを特徴とする請求項2記載の光波干渉測定装
置。
3. The optical interference measurement apparatus according to claim 2, wherein a measurement optical path of the interferometer and a measurement optical path of the correction interferometer are coaxial at least near the window.
【請求項4】 前記干渉計の一部と前記補正用干渉計の
一部とが共用されたことを特徴とする請求項2又は3記
載の光波干渉測定装置。
4. An optical interference measuring apparatus according to claim 2, wherein a part of said interferometer and a part of said correcting interferometer are shared.
JP10239540A 1998-08-11 1998-08-11 Light wave interference measuring device Pending JP2000055611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239540A JP2000055611A (en) 1998-08-11 1998-08-11 Light wave interference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239540A JP2000055611A (en) 1998-08-11 1998-08-11 Light wave interference measuring device

Publications (1)

Publication Number Publication Date
JP2000055611A true JP2000055611A (en) 2000-02-25

Family

ID=17046338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239540A Pending JP2000055611A (en) 1998-08-11 1998-08-11 Light wave interference measuring device

Country Status (1)

Country Link
JP (1) JP2000055611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203231A (en) * 2010-03-03 2011-10-13 Canon Inc Light wave interference measuring device
JP2014173885A (en) * 2013-03-06 2014-09-22 Ebara Corp Installation structure of length meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203231A (en) * 2010-03-03 2011-10-13 Canon Inc Light wave interference measuring device
JP2014173885A (en) * 2013-03-06 2014-09-22 Ebara Corp Installation structure of length meter

Similar Documents

Publication Publication Date Title
US5991033A (en) Interferometer with air turbulence compensation
JP5226078B2 (en) Interferometer device and method of operating the same
US7355719B2 (en) Interferometer for measuring perpendicular translations
JPH09113212A (en) Interferometer
US5757489A (en) Interferometric apparatus for measuring a physical value
US6064472A (en) Method for speed measurement according to the laser-doppler-principle
JPH08320206A (en) Optical interference measuring apparatus and optical interference measuring method
US9518816B2 (en) Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
JP5421013B2 (en) Positioning device and positioning method
JPH03504768A (en) Interferometer system for measuring distance and shift movements, especially of moving components
JP3332365B2 (en) Apparatus and method for measuring refractive index and optical path length effects of air using multi-path interferometry
JP3849266B2 (en) Laser interference length measuring method and apparatus, stage apparatus using the same, and exposure apparatus using the same
JPH0843015A (en) Interference length measuring system
JP2000055611A (en) Light wave interference measuring device
JPH11183116A (en) Method and device for light wave interference measurement
JPH09166414A (en) Light measuring device
JP5654837B2 (en) Displacement measuring device
JP2003302358A (en) Apparatus for measuring coefficient of linear expansion
JPH09280822A (en) Light wave interference measuring device
JPH11108614A (en) Light-wave interference measuring instrument
JPH10281718A (en) Polarizing optical element, method for adjusting polarizing azimuth, and light wave interferometer using the same
JPH06123607A (en) Length measuring device
JP2000111311A (en) Photo-interference length-measuring device and exposing device using the device
JP2610349B2 (en) Differential laser interferometer
JPH08159710A (en) Light interference type position measuring apparatus