JP2000055135A - Heavy load transmission body of transmission - Google Patents

Heavy load transmission body of transmission

Info

Publication number
JP2000055135A
JP2000055135A JP10257448A JP25744898A JP2000055135A JP 2000055135 A JP2000055135 A JP 2000055135A JP 10257448 A JP10257448 A JP 10257448A JP 25744898 A JP25744898 A JP 25744898A JP 2000055135 A JP2000055135 A JP 2000055135A
Authority
JP
Japan
Prior art keywords
transmission
elastic
block
pressure receiving
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10257448A
Other languages
Japanese (ja)
Other versions
JP2000055135A5 (en
JP4338238B2 (en
Inventor
Kenkichi Onoki
謙吉 小野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO JIDO KIKO KK
Original Assignee
TOKYO JIDO KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO JIDO KIKO KK filed Critical TOKYO JIDO KIKO KK
Priority to JP25744898A priority Critical patent/JP4338238B2/en
Publication of JP2000055135A publication Critical patent/JP2000055135A/en
Publication of JP2000055135A5 publication Critical patent/JP2000055135A5/ja
Application granted granted Critical
Publication of JP4338238B2 publication Critical patent/JP4338238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide elastic flexibility and durability by forming respective blocks arranged/supported in large numbers in an endless strap by arranging the elastic projecting part such as attaining a wedge effect by cooperating with adjacent blocks in a heavy load transmitting endless transmission body excellent in lateral pressure resistance from a pulley wheel. SOLUTION: A endless heavy load transmission body for a transmission is constituted by arranging an endless holder 11 and a large number of blocks 12 in an annular ring shape. In the respective blocks 12 an engaging projection 16 is arranged on the front side in the rectilinearly advancing direction S with the pressure receiving parts 13, 14 as the center, and the elastic projecting part 20 is also similarly arranged on the rear surface side. The elastic projecting part 20 projects so that the inclined part crosses at almost right angle, and the tip abutting part is molded in a trapezoidal shape. When the pressure receiving parts 13, 14 start to move by starting to receive pulley sandwiching pressure of a transmission wheel 1, the tip abutting part starts to advance while deforming the inclined part by stress, so that the part of a bending point of the blocks 12 can abut to the adjacent rear block 12 under strong pressure together with a wedge effect of the inclined part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動力伝動用のベル
ト伝達体であって、例えばプーリ車からの耐側圧性に優
れた高負荷伝動用の無端伝達体に関する。特に、工作機
械などの産業機械、車両、モータ等に設置される無段変
速機で定馬力の動力伝達に最適な伝達体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a belt transmission for power transmission, and more particularly to an endless transmission for high load transmission having excellent lateral pressure resistance from a pulley wheel. In particular, the present invention relates to a continuously variable transmission that is installed in an industrial machine such as a machine tool, a vehicle, a motor, or the like, and is most suitable for transmitting constant horsepower power.

【0002】[0002]

【従来の技術】無端伝達体として、無端ストラップに多
数のリンクまたはブロックを配列支持する構造の先行技
術は、既に数多く考案されている。日本特許出願の特開
昭2−275145号(本田技研工業)は無端ストラッ
プに形状記憶合金を用いて多数の金属ブロックの組付方
法を改良した思想である。また日本特許出願の特開昭6
−109077号(リケン)は隣接する各ブロック間の
動きを抑制してスチールのストラップとブロックとの干
渉を抑制したものである。更に、日本特許出願の特開昭
4−219548号(仏国カウチユ社)は、無端コアの
合成ゴム・ベルトに多数のU字型リンクを組込んだ無端
伝達体が開示されている。
2. Description of the Related Art As an endless transmission, many prior arts having a structure in which a number of links or blocks are arranged and supported on an endless strap have already been devised. Japanese Patent Application Laid-Open No. 2-275145 (Honda Giken Kogyo Co., Ltd.) is a concept in which a method for assembling a large number of metal blocks is improved by using a shape memory alloy for an endless strap. In addition, Japanese Patent Application
No. -100977 (Riken) suppresses the interference between a steel strap and a block by suppressing the movement between adjacent blocks. Furthermore, Japanese Patent Application Laid-Open No. 4-219548 (Kauchiyu, France) discloses an endless transmission body in which a number of U-shaped links are incorporated in a synthetic rubber belt having an endless core.

【0003】これ等のベルト伝達体は、その幅(X)方
向にプーリ挾持圧を受ける位置として左右端のそれぞれ
に受圧部が施されている点で共通するが、この受圧部で
受ける幅(X)方向のプーリ挾持圧に対する圧力吸収方
法がいずれも不完全かつ不充分である。特に無段変速機
に適用する場合には外部からプーリ車を経てベルト伝達
体に印加され、プーリ挾持圧は、負荷動力の大きさ、変
速信号の有無および速度など各種の外的要因でその大き
さおよび速度が大きく変動する。このため或る時には挾
持圧は緩やかに印加されるが、他の或る時には、瞬時に
しかも極度に大きな力で印加される。この場合に、如何
なる大きさおよび如何なる速度のプーリ挾持圧が印加さ
れても、ベルト伝達体がこれを瞬時に吸収しかつプーリ
車の摩擦面およびベルト伝達体の双方に損傷を与えるこ
とがなく、安定な動力伝達状態に復帰させる必要があ
る。
[0003] These belt transmission members are common in that pressure receiving portions are provided at left and right ends as positions for receiving pulley clamping pressure in the width (X) direction. All of the methods of absorbing the pulley clamping pressure in the X) direction are incomplete and insufficient. In particular, when applied to a continuously variable transmission, the pressure is applied to the belt transmission body from outside via a pulley wheel, and the pulley clamping pressure is increased by various external factors such as the magnitude of the load power, the presence or absence of a shift signal, and the speed. And speed vary greatly. Thus, in some cases, the clamping pressure is applied slowly, while in others, it is applied instantaneously and with an extremely large force. In this case, even if a pulley clamping pressure of any magnitude and at any speed is applied, the belt transmission body absorbs this instantly and does not damage both the friction surface of the pulley wheel and the belt transmission body. It is necessary to return to a stable power transmission state.

【0004】従来技術のうち初めの二つの先行技術で
は、ブロック自体が金属等の剛体であってプーリ挾持圧
が印加される幅(X)方向の荷重に対して全く弾性が存
在しない。従ってその荷重に対する弾性吸収能力も全く
存在しない。カウチユ社の開示思想は、U字型リンクの
開放端部分が僅かに幅(X)方向に可撓性を有し、多少
の弾性吸収力の存在が認められる。しかし無端コアに合
成ゴム・ベルトが使われているため、充分な大きさのプ
ーリ挾持圧に耐えられない。しかもその印加時に各リン
クの位置決め状態が不安定になり、各リンクの配列状態
の抑制力が働かないため、瞬時に過大圧力に対して伝達
動作が不安定である。
In the first two prior arts of the prior art, the block itself is a rigid body made of metal or the like and has no elasticity at all in the width (X) direction load to which the pulley clamping pressure is applied. Therefore, there is no elastic absorption capacity for the load. According to the idea disclosed by Couchille, the open end of the U-shaped link is slightly flexible in the width (X) direction, and the presence of some elastic absorption is recognized. However, since a synthetic rubber belt is used for the endless core, it cannot withstand a sufficiently large pulley clamping pressure. In addition, the positioning state of each link becomes unstable at the time of application, and the force of suppressing the arrangement state of each link does not work, so that the transmission operation is instantaneously unstable with respect to excessive pressure.

【0005】[0005]

【発明が解決しようとする課題】本発明の変速機の高負
荷伝達体は、如何なる大きさでかつ如何なる速度のプー
リ挾持圧がプーリ車を介してベルト伝達体に印加される
場合であっても、ベルト伝達体自体が、その幅(X)方
向に充分な弾性力による荷重吸収能力を保証するため、
単に各ブロック自体が個別に充分な弾性吸収能力を持つ
構造にするだけでなく、幅(X)方向の荷重を長手
(Y)方向の荷重に変換する機能を持たせることによっ
て、長手(Y)方向に隣接する他の複数のブロックに順
次その荷重の分散吸収機能を達成させることである。
SUMMARY OF THE INVENTION The high-load transmission of the transmission of the present invention is not limited to the case where pulley clamping pressure of any magnitude and at any speed is applied to the belt transmission via a pulley wheel. In order to guarantee the load absorbing capacity of the belt transmission body itself in the width (X) direction by a sufficient elastic force,
Each block itself has a function of converting a load in the width (X) direction into a load in the longitudinal (Y) direction by providing a function of converting the load in the width (X) direction into a load in the longitudinal (Y) direction. The other purpose is to cause the other blocks adjacent in the direction to sequentially achieve the function of dispersing and absorbing the load.

【0006】即ち、本発明の第一の目的は、各ブロック
が、プーリ挾持圧の非印加時には隣接ブロックと面接触
しながら動力伝達するが、プーリ挾持圧の印加時には幅
(X)方向の荷重を長手(Y)方向の荷重に変換させる
ため隣接ブロックと共働してクサビ効果を達成するよう
な弾性突出部を保持する高負荷伝達体を提供する。
That is, a first object of the present invention is to transmit power while each block is in surface contact with an adjacent block when no pulley clamping pressure is applied, but load in the width (X) direction when pulley clamping pressure is applied. To provide a high-load transmission body that retains an elastic protrusion that cooperates with an adjacent block to achieve a wedge effect in order to convert into a load in the longitudinal (Y) direction.

【0007】また本発明の第二の目的は、各ブロック
が、プーリ挾持圧の非印加時にも、また印加時にも長手
(Y)方向に突出成形した弾性突出部のクサビ効果によ
って動力伝動中に過大荷重を受圧しながら安定支持状態
を保証する高負荷伝達体を提供することである。特にプ
ーリ挾持圧の印加時には、各ブロックが隣接ブロックと
の間でクサビ効果を働かせながら、二つの受圧部A1,
A2と弾性突出部の先端当接部Cとの間で実質的な三点
支持構造を維持するので、安定状態のまま更に大きなプ
ーリ挾持圧にも充分に耐性をもつ高負荷伝達体を提供す
る。
A second object of the present invention is that each block is driven during power transmission by the wedge effect of the elastic protruding portion formed to protrude in the longitudinal (Y) direction both when the pulley clamping pressure is not applied and when the block is applied. An object of the present invention is to provide a high-load transmission body that ensures a stable supporting state while receiving an excessive load. In particular, when a pulley clamping pressure is applied, each block exerts a wedge effect between adjacent blocks, and the two pressure receiving portions A1,
Since a substantial three-point support structure is maintained between A2 and the tip contact portion C of the elastic protrusion, a high load transmission body which is sufficiently stable against a larger pulley clamping pressure in a stable state is provided. .

【0008】更に本発明の第三の目的は、各ブロックの
弾性突出部が単に長手(Y)方向のクサビ効果による弾
性吸収性だけでなく、合成樹脂製のベルトがもつ弾性屈
曲性と同等の特性を持たせるため、プーリ回転中心C0
を中心とした正逆転の屈曲角度方向の屈曲性に対しても
充分な弾性吸収性を保証する高負荷伝達体の思想を提供
するものである。
A third object of the present invention is that the elastic projection of each block has not only the elastic absorption due to the wedge effect in the longitudinal (Y) direction, but also the elastic flexibility of a synthetic resin belt. Pulley rotation center C0
The present invention provides a concept of a high-load transmission body that guarantees sufficient elastic absorption even with respect to the bending in the direction of the bending angle of forward and reverse rotation centered on.

【0009】[0009]

【課題を解決するための手段】本発明の高負荷伝達体
は、プーリ挾持圧を受ける二つの受圧部(A,A
をもつブロック(12)の多数個を無端保持体に支持さ
せた変速機の高負荷伝達体において、上記ブロック(1
2)は、該プーリ挾持圧の大きさに応じて幅(X)方向
に伸縮自在に配置された上記受圧部(A,A)と、
この二つの上記受圧部(A,A)の間に位置し両者
間を結ぶ幅(X)方向の軸(X軸)から垂直の長手
(Y)方向の所定距離Lの位置に先端当接点(C)を設
け、二つの上記受圧部(A,A)から先端当接点に
向け突出成形されて上記受圧部(A,A)間に幅
(X)方向の弾性力をもって充分に撓むことを保証する
弾性突出部(20)とを有すると共に、さらに上記ブロ
ック(12)は、幅(X)方向の上記受圧部(A,A
)の伸縮変位量を上記弾性突出部(20)の先端当接
点Cの伸縮変位量に変換することに、幅(X)方向のプ
ーリ挾持圧を長手(Y)方向の隣接する他の複数のブロ
ックに順次分散させたものである。
According to the present invention, there is provided a high-load transmission body comprising two pressure receiving portions (A 1 , A 2 ) for receiving a pulley clamping pressure.
In a high-load transmission of a transmission in which a large number of blocks (12) having
2) the pressure receiving portions (A 1 , A 2 ) which are arranged to be extendable and contractible in the width (X) direction in accordance with the magnitude of the pulley clamping pressure;
The front end contact is located at a predetermined distance L in the longitudinal (Y) direction perpendicular to the axis (X axis) in the width (X) direction between the two pressure receiving parts (A 1 , A 2 ) and connecting them. A contact (C) is provided, and is formed so as to protrude from the two pressure receiving portions (A 1 , A 2 ) toward the front end contact point and has an elastic force in the width (X) direction between the pressure receiving portions (A 1 , A 2 ). The block (12) further includes an elastic protrusion (20) that ensures sufficient bending, and the block (12) further includes the pressure receiving parts (A 1 , A) in the width (X) direction.
2 ) By converting the amount of expansion and contraction displacement into the amount of expansion and contraction displacement of the contact C at the tip end of the elastic protruding portion (20), the clamping pressure in the width (X) direction is reduced by a plurality of adjacent pulleys in the longitudinal (Y) direction. Are sequentially dispersed in blocks.

【0010】[0010]

【発明の実施の形態】変速機では、ベルト伝達体は、定
速比運転時にはプーリ車とベルト伝達体との摩擦接触面
の全体に分布してプーリ挾持圧を受けているが、変速動
作の開始時にはベルト伝達体の接触半径rが一端から変
動し始めるため、その時の最短接触半径rminの接触
点にプーリ挾持圧の全圧がそこに集中する。この現象は
プーリ車に変速指令が供給される度ごとに招来する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a transmission, a belt transmission receives a pulley clamping pressure distributed over the entire frictional contact surface between a pulley wheel and a belt transmission during a constant speed ratio operation. At the start, since the contact radius r of the belt transmission member starts to fluctuate from one end, the total pressure of the pulley clamping pressure concentrates on the contact point having the shortest contact radius rmin at that time. This phenomenon occurs every time a shift command is supplied to the pulley vehicle.

【0011】この時に伝達体が、プーリ挾持圧を完全に
吸収するだけの充分な弾性力による荷重吸収機能を持つ
ためには、単一ないし数個のブロックだけでは充分な荷
重吸収能力に欠けるため、弾性突出部が幅(X)方向の
伸縮変位を長手(Y)方向の伸縮変位に変換して、それ
等のブロックに隣接する近隣ブロックに順次集中荷重を
長手(Y)方向にも分散させたものである。従って、こ
の事は、変速比を急速に短時間で変化させる時にプーリ
車および伝達体に集中荷重が一箇所に集中することが無
く、瞬時に多数ブロックに分散することになるので、変
形、外傷、その他の伝達不良を招くことなく、高速応答
性、制御性の変速比の移行が可能になる。
At this time, in order for the transmission body to have a load absorbing function by an elastic force sufficient to completely absorb the pulley clamping pressure, only one or several blocks lack sufficient load absorbing ability. The elastic protrusion converts the expansion and contraction displacement in the width (X) direction into an expansion and contraction displacement in the longitudinal (Y) direction, and successively distributes the concentrated load to the neighboring blocks adjacent to those blocks also in the longitudinal (Y) direction. It is a thing. Therefore, when the speed ratio is rapidly changed in a short time, the concentrated load does not concentrate on one place on the pulley wheel and the transmission body, but is instantaneously dispersed in many blocks, so that the deformation and the damage are prevented. In addition, it is possible to shift the speed ratio of high-speed response and controllability without causing other transmission failures.

【0012】本明細書では、主に油層内で使う湿式変速
機用として記述したが、空気中で使う乾式の場合にも適
用できる。従って本実施例では無端ストラップおよびブ
ロックも主に金属剛体を前提としているが、これに限ら
れず、ブロックを金属製と樹脂製とで交互配列しても良
く、或いは金属材の表面に樹脂コーティング又は積層に
成形しても良く、更には全てを樹脂材のみで加工しても
良い。
In the present specification, the description has been made mainly for a wet type transmission used in an oil reservoir, but the present invention is also applicable to a dry type transmission used in the air. Therefore, in the present embodiment, the endless strap and the block are also premised mainly on a metal rigid body, but the present invention is not limited to this, and the blocks may be alternately arranged by metal and resin, or the surface of the metal material may be coated with resin or It may be formed into a laminate, or all may be processed only with a resin material.

【0013】また更に本明細書に示した各ブロックに施
している弾性突出部の突出成形の方向は、いずれもベル
ト伝達体の進行方向(回転方向)の後方に向って突出成
形した例を開示したが、逆に進行方向の前方に向って突
出させても良い。また、クサビ状突出部の突出形状に関
しても、本実施例では、V形、台形ないし三角形或いは
丸棒状のものを示したが、クサビ効果により幅(X)方
向荷重が長手(Y)方向荷重に変換し、隣接ブロックの
内外壁が弾性力を保持しながら互に食込み侵入してかつ
押圧するならば、錐状、U形や舌状等の如何なる形状で
も良い。
Further, the examples in which the elastic protrusions formed on the respective blocks shown in this specification are formed so as to protrude rearward in the traveling direction (rotation direction) of the belt transmission body are disclosed. However, conversely, it may be projected forward in the traveling direction. Also, in this embodiment, the V-shaped, trapezoidal or triangular or round bar-shaped protrusions are shown in the present embodiment with respect to the protruding shape of the wedge-shaped protruding portions. Any shape such as a conical shape, a U shape, or a tongue shape may be used as long as the inner and outer walls of the adjacent blocks penetrate and penetrate each other while maintaining elastic force.

【0014】[0014]

【第1実施例】図1は本発明の第1実施例の変速機用の
無端高負荷伝達体の一部分の装着状態を示す部分側面図
である。同図中では伝達体の左側にプーリ挾持圧が非印
加時の直進押込状態Pを、また右側が伝達車1からプー
リ挾持圧が印加され回転中心C0を中心に半径R0の角
度(θ)方向に折曲した加圧摩擦状態Qをそれぞれ示
し、両者は連なったまま単一の無端伝達体10を形成す
る。なお作図の便宜上、無端伝達体10の全体は省略
し、一部分のみを描写する。
FIG. 1 is a partial side view showing a mounted state of a part of an endless high load transmission for a transmission according to a first embodiment of the present invention. In the figure, the left side of the transmission body shows a straight-forward pushing state P when no pulley clamping pressure is applied, and the right side shows an angle (θ) direction of a radius R0 about the rotation center C0 when the pulley clamping pressure is applied from the transmission wheel 1. Each of FIGS. 3A and 3B shows a pressurized friction state Q, and the two form a single endless transmission body 10 while being connected. For convenience of drawing, the entirety of the endless transmission body 10 is omitted, and only a part is illustrated.

【0015】伝達体10は、帯状をした無端保持体11
と、この保持体11に懸垂状態に吊下げられた多数のブ
ロック12とを無端の円環状に配列して構成される。伝
達体10は、伝達車1の矢印Sで示す回転方向に回動す
ると仮定する。各ブロック12は、伝達車1により伝達
体10の幅(X)方向すなわち回転軸芯方向にプーリ挾
持圧を受ける受圧部13,14を中心として、直進方向
Sの前面側に各ブロックの連結状態を維持する係合突起
16と、後面側にも同じく各ブロック相互間の連結状態
をより確実なものとすると同時に幅(X)方向の弾性力
を維持する弾性突出部20と、で構成される。この時各
ブロック12は無端保持体11で包囲された状態で、ラ
ジアル(Z)方向の遠心力に抗しながら伝動に寄与す
る。
The transmission body 10 is a belt-shaped endless holding body 11.
And a number of blocks 12 suspended from the holder 11 in a suspended state are arranged in an endless annular shape. It is assumed that the transmission body 10 rotates in the rotation direction of the transmission wheel 1 indicated by the arrow S. Each block 12 is connected to the front side in the straight traveling direction S around the pressure receiving portions 13 and 14 which receive the pulley clamping pressure in the width (X) direction of the transmission body 10 by the transmission wheel 1, that is, in the rotation axis direction. And an elastic projection 20 on the rear side, which also secures the connection between the blocks and maintains the elastic force in the width (X) direction. . At this time, each block 12 contributes to transmission while being surrounded by the endless holding body 11 while resisting the centrifugal force in the radial (Z) direction.

【0016】伝達体10がプーリ車1の軌道Mで等速比
伝達中は、摩擦点A,B,C,D,Eの半径RA,R
B,RC,RD,REは全てR0でプーリ車1から伝達
体10に印加されるプーリ挾持圧は接触面の全周で略均
等に分散加圧されている。しかし変速指令或いは変速機
の外部より外乱が侵入したときには、この挾持圧の均等
分散状態は次の等速状態に至るもでの一瞬間の間だけ乱
れる。伝達体10が、速比ε0の等速軌道Mから次の速
比ε1の変速軌道M′に変更する変速指令が外部から供
給された瞬間の伝動状態を分析してみる。この時伝達体
10は引張側の接触点Aから順にBないしEに向って移
動し始める。従って移行時の一瞬間の間の接触径rは同
図の様にrA<rB<rC…rEの関係に到る。
While the transmission body 10 is transmitting the constant speed ratio on the track M of the pulley wheel 1, the radii RA, R of the friction points A, B, C, D, E
B, RC, RD, and RE are all R0, and the pulley clamping pressure applied to the transmission body 10 from the pulley wheel 1 is distributed and pressed substantially uniformly over the entire circumference of the contact surface. However, when a speed change command or a disturbance enters from outside the transmission, the state of uniform dispersion of the clamping pressure is disturbed only for a moment until reaching the next constant speed state. Let us analyze the transmission state at the moment when the transmission body 10 is supplied from the outside with a shift command for changing from the constant velocity trajectory M with the speed ratio ε0 to the next speed trajectory M ′ with the speed ratio ε1. At this time, the transmission body 10 starts to move from the contact point A on the tension side toward B to E in order. Therefore, the contact diameter r at one moment at the time of the transition reaches the relationship of rA <rB <rC... RE as shown in FIG.

【0017】この事は一瞬間だけ接触点A′の1点に伝
動に必要なプーリ挾持圧の全荷重が集中することを意味
する。本発明はこの集中荷重を受けても、各ブロック1
2は、幅(X)方向に充分な弾性屈曲性を付与すること
によって、この瞬時に印加される極度に大きな集中荷重
を、これまた瞬時にA′点のブロック12のみが引き受
けることなく、順次他の隣接ブロック12で構成される
B′点、C′点、D′点、E′点に荷重分散させる構造
の剛体製伝達体10を実現したものである。望ましく
は、A′点を始点として終点Eまでの角度θ0が約45
度乃至170度程度まで分散すべきである。
This means that the entire load of the pulley clamping pressure required for transmission concentrates at one point of the contact point A 'for one moment. The present invention allows each block 1
No. 2 provides sufficient elastic flexibility in the width (X) direction, so that an extremely large concentrated load applied instantaneously can be successively applied without being taken by only the block 12 at the point A 'instantly. This realizes a rigid transmission body 10 having a structure in which the load is distributed to points B ′, C ′, D ′, and E ′, which are constituted by other adjacent blocks 12. Preferably, the angle θ0 from the point A ′ to the end point E is about 45 °.
The temperature should be dispersed to about 170 degrees.

【0018】図2は図1に示す第1実施例の高負荷伝達
体10に用いたブロック単体の構成を示し、図2Aは左
側係止具付ブロック12Lの背面図、図2Bは同ブロッ
ク12Lの上面図さらに図2Cは同ブロック12Lの側
面図をそれぞれ示す。更に図2Dは無端保持体11に保
持された右側係止具付ブロック12Rの背面図を示す。
図2Aにおいて、左側係止具付ブロック12Lは、左側
受圧部13の上方に無端保持体11からの脱落を阻止す
る係止具17Lを施されかつその近傍には受圧部13の
長手(Y)方向に厚味1mの貫通孔15が施される。ま
た図2Bに示す通り、右側受圧部14は同じ高さの位置
に長手(Y)方向の厚味1mと略同等の長さ1mの係合
突起16が施される。一方、図2Dに示す通り、ブロッ
ク12Lとは逆に、係止具17Rおよび貫通孔15が受
圧部14に、また係合突起16が受圧部13にそれぞれ
施された右側係止具付ブロック12Rも、予じめ用意さ
れる。なお、図2Dでは、二つの車1a,1bからなる
プーリ車1と無端保持体11を同時に示してある。
FIG. 2 shows the structure of a single block used in the high-load transmission body 10 of the first embodiment shown in FIG. 1, FIG. 2A is a rear view of a block 12L with a left locking member, and FIG. FIG. 2C is a side view of the block 12L. Further, FIG. 2D shows a rear view of the block 12R with the right locking member held by the endless holding body 11.
In FIG. 2A, the left locking block 12L is provided with a locking member 17L for preventing the falling from the endless holder 11 above the left pressure receiving portion 13 and in the vicinity thereof, the length (Y) of the pressure receiving portion 13 is shown. A through hole 15 having a thickness of 1 m is provided in the direction. Further, as shown in FIG. 2B, the right pressure receiving portion 14 is provided with an engagement protrusion 16 having a length of 1 m substantially equal to a thickness of 1 m in the longitudinal (Y) direction at a position at the same height. On the other hand, as shown in FIG. 2D, opposite to the block 12L, the right-side locking block 12R in which the locking member 17R and the through-hole 15 are provided in the pressure receiving portion 14 and the engagement protrusion 16 is provided in the pressure receiving portion 13, respectively. Is also prepared in advance. In FIG. 2D, the pulley wheel 1 including the two wheels 1a and 1b and the endless holding body 11 are shown at the same time.

【0019】本実施例では、各ブロック12L,12R
は、いずれも二つの受圧部13,14の間に弾性突出部
20が配置され、かつ全体が単一の金属弾性材をもって
一体加工され単一のブロック12を形成する。また、こ
の例では、弾性突出部20は、図2Bのように弾性材の
平板傾斜部20a,20aがほぼ直角θ=90度に交互
するように、伝達体10の長手(Y)方向に突出し、先
端当接部20bを台形に成形される。しかも、図2Eに
示す通り、受圧部13,14の長手(Y)方向の厚味1
mは、傾斜部20aの厚味1nとの間で傾斜角θ2の大
きさに応じて1n=1m×sinθ2で決る厚味に選定
される。これによって図1で示した直進押込時には、隣
接するブロック12の相互間で受圧部13,14の正面
および背面の各平面部が互に密接当接するだけでなく、
弾性突出部20の傾斜部20a,20bの各平面部もこ
の時、同時に各ブロック間で密接当接状態を確保してい
る。
In this embodiment, each block 12L, 12R
In each case, an elastic protrusion 20 is arranged between the two pressure receiving portions 13 and 14, and the whole is integrally processed with a single metal elastic material to form a single block 12. Further, in this example, the elastic protruding portion 20 protrudes in the longitudinal (Y) direction of the transmission body 10 so that the flat plate inclined portions 20a, 20a of the elastic material alternate at a substantially right angle θ = 90 degrees as shown in FIG. 2B. The tip contact portion 20b is formed in a trapezoidal shape. Moreover, as shown in FIG. 2E, the thickness 1 of the pressure receiving portions 13 and 14 in the longitudinal (Y) direction is increased.
m is selected to be a thickness determined by 1n = 1m × sin θ2 according to the magnitude of the inclination angle θ2 with respect to the thickness 1n of the inclined portion 20a. Thus, at the time of the straight push-in operation shown in FIG. 1, not only the front and rear flat portions of the pressure receiving portions 13 and 14 come into close contact with each other but also between the adjacent blocks 12.
At this time, the flat portions of the inclined portions 20a and 20b of the elastic protruding portion 20 also at the same time ensure close contact between the blocks.

【0020】図2Cの様に、受圧部13,14および弾
性突出部20の傾斜部20a並びに台形部20bの正面
側は、すべて平面状態だが、背面側は、図2Aに示した
U−U線より上方側を平面部13a,14a,20f,
20iに対して下方側は折曲部13b,14b,20
g,20hが施されている。これによって、図1で示し
た伝達体10が接触半径R0の加圧摩擦位置に入ったと
き、各ブロック12が伝達車1の回転中心C0に対して
変速比εに応じて決るラジアル(Z)方向に略等角度θ
1 で配列できるように構成してある。折曲部は、直線
状の傾斜平面としても、また円弧状の腕曲平面にしても
よく、前者は速比εが変化しても同じ折曲点Fで当接す
るが、後者では当接点の位置が速比に応じて変化する。
本実施例では折曲部13b,14bを直線状に、折曲部
20a,20bを腕曲状にしてある。この加圧摩擦状態
Qでは、各ブロック12の弾性突出部20が傾斜状態の
まま無端ストラップ11によって安定状態に位置決めさ
れ、速比εに応じて当接させるための腕曲切欠部20f
が弾性突出部20の上端に施される。
As shown in FIG. 2C, the front sides of the pressure receiving portions 13, 14 and the inclined portions 20a and the trapezoidal portions 20b of the elastic protrusions 20 are all flat, while the rear side is a U-U line shown in FIG. 2A. The upper side is a plane portion 13a, 14a, 20f,
20i, the bent portions 13b, 14b, 20
g, 20h. Accordingly, when the transmission body 10 shown in FIG. 1 enters the pressure friction position with the contact radius R0, each block 12 is determined with respect to the rotation center C0 of the transmission wheel 1 by the radial (Z) determined according to the speed ratio ε. Approximately equal angle θ in the direction
It is configured so that it can be arranged with 1. The bent portion may be a straight inclined plane or an arcuate arm curved plane. The former contacts at the same bending point F even if the speed ratio ε changes, whereas the latter contacts the contact point. The position changes according to the speed ratio.
In this embodiment, the bent portions 13b and 14b are formed in a straight line, and the bent portions 20a and 20b are formed in an arm shape. In this pressurized friction state Q, the elastic projections 20 of the respective blocks 12 are positioned in a stable state by the endless strap 11 while being inclined, and the bent arm cutouts 20f for abutting according to the speed ratio ε.
Is applied to the upper end of the elastic projection 20.

【0021】図3は、上述した二種類の左側係止具付ブ
ロック12Lと右側係止具付ブロック12Rとを無端ス
トラップ保持体11に組立てる様子を示すブロック組立
図である。二つの受圧部13,14にそれぞれ貫通穴1
5および係合突起16とが交互に施されているため、隣
接ブロックの間では互に係合突起16が貫通穴15に挿
入された状態で組立てられる。同時に係止具17L,1
7Rも同様に各受圧部13,14より交互に突出され、
両者の間には挿入空間19が残される。この挿入空間1
9を介して保持隙間18はストラップ11の組付空間と
して使用される。この時、無端保持体11の全周にブロ
ック12L,12Rが配列され、各ブロック12が保持
体11上を押圧移動できるように、ブロック12Lと1
2との間に僅かな隙間が残される程度に設置される。
FIG. 3 is a block assembly diagram showing a state in which the above-described two types of blocks 12L with a left locking member and blocks 12R with a right locking member are assembled to an endless strap holder 11. Each of the two pressure receiving portions 13 and 14 has a through hole 1
5 and the engagement projections 16 are alternately provided, so that the adjacent blocks are assembled with the engagement projections 16 inserted into the through holes 15. 17L at the same time, 1
7R is similarly protruded alternately from the pressure receiving portions 13 and 14,
An insertion space 19 is left between the two. This insertion space 1
The holding gap 18 is used as an installation space for the strap 11 through the opening 9. At this time, the blocks 12L and 12R are arranged all around the endless holding body 11, and the blocks 12L and 1R are moved so that each block 12 can be pressed and moved on the holding body 11.
2 is installed to such an extent that a slight gap is left.

【0022】図4Aおよび4Bは、本実施例の高負荷伝
達体の図2Bの上面図によりその動作を説明するための
ブロックの動作説明図であり、同図4Aはプーリ挾持圧
の弾性吸収力の変換原理図であり、同図4Bは同挾持圧
を受ける前後の弾性突出部20の変形状態を示す動作説
明図で、同図4Cは隣接ブロック相互間の当接状態と三
点支持構造の動作説明図である。説明の便合上、図4A
に示す様に、二つの受圧部13,14を結ぶ、伝達体1
0の幅Wの方向をX軸と、また伝達体10の長手方向を
Y軸と、さらに図1に示すラジアル方向をZ軸と、仮定
する。
FIGS. 4A and 4B are operation explanatory diagrams of a block for explaining the operation of the high load transmitting body of this embodiment with reference to the top view of FIG. 2B. FIG. 4A shows the elastic absorption force of the pulley clamping pressure. FIG. 4B is an operation explanatory view showing a deformed state of the elastic projection portion 20 before and after receiving the clamping pressure, and FIG. 4C is a diagram showing a contact state between adjacent blocks and a three-point support structure. It is operation | movement explanatory drawing. For convenience of explanation, FIG. 4A
As shown in the figure, the transmitting body 1 connecting the two pressure receiving portions 13 and 14
It is assumed that the direction of the width W of 0 is the X axis, the longitudinal direction of the transmission body 10 is the Y axis, and the radial direction shown in FIG. 1 is the Z axis.

【0023】無段変速機では、二つの円錐車1a,1b
の相対距離を変化させ、摩擦圧力を変えて所定の伝達動
力を確保するため、伝達体10には大きさおよび速さが
自在に変動するプーリ挾持圧が加えられる。これに応じ
て各ブロック12には、摩擦面a1,a2にプーリ挾持
圧が矢印A1,A2の両面から印加され、台形クサビ状
又は錐状に成形された弾性突出部20の端部a′1,
a′2より板バネ傾斜部B,B′を介して先端当接部C
の仮想連結点a0に向って加圧される。本実施例のブロ
ック12は、或る程度の移動性を確保するため先端当接
部Cは台形部20bを施してあるが、実質的な原理動作
は同図に示す通り、三つの端部a0,a1,a3によっ
てXY平面上で安定支持状態に維持可であることを示
す。しかもZ軸方向には無端ストラップ11で位置決め
されているため、実体的にはX,YおよびZ軸のいずれ
の方向に対しても、個々のブロック12は伝動中ほぼ完
全な安定位置状態が確保される。
In the continuously variable transmission, two conical wheels 1a, 1b
In order to secure a predetermined transmission power by changing the relative distance of the transmission member 10 and changing the friction pressure, a pulley clamping pressure whose size and speed fluctuate freely is applied to the transmission body 10. In response to this, a pulley clamping pressure is applied to the friction surfaces a1 and a2 from both sides of the arrows A1 and A2 on each block 12, and the end a'1 of the elastic protrusion 20 formed in a trapezoidal wedge or cone shape. ,
a′2 through the leaf spring inclined portions B and B ′
Is pressurized toward the virtual connection point a0. In the block 12 of this embodiment, the tip contact portion C is provided with a trapezoidal portion 20b in order to secure a certain degree of mobility. However, as shown in FIG. , A1 and a3 indicate that a stable support state can be maintained on the XY plane. In addition, since the endless strap 11 is positioned in the Z-axis direction, the individual blocks 12 can maintain a substantially perfect stable position during transmission in any of the X-, Y-, and Z-axis directions. Is done.

【0024】特に本発明の最大の特徴は、二つ存在す
る。第1の特徴は、伝達車1から加わるプーリ挾持圧
が、小さな荷重でかつ緩やかに印加される場合でも、ま
た逆に著しく過大な荷重でかつ瞬時に印加される場合で
あっても、これを速やかに吸収するだけの充分な弾性吸
収力を伝達体10自体が内在しているため、最高速比ε
maxから最小速比εminに至るまでの変速時間を著
しく短期制御できることである。第2の特徴は、仮に少
数のブロック12のみに極度に大きな瞬間荷重が加わっ
ても、この荷重を隣接の他の複数のブロック郡に瞬時に
分散されることによって、伝達車1及び伝達体10への
機械的損傷を皆無にできることである。
In particular, there are two main features of the present invention. The first feature is that even if the pulley clamping pressure applied from the transmission wheel 1 is applied with a small load and gently, or conversely when the load is extremely large and applied instantaneously, Since the transmission body 10 itself has a sufficient elastic absorption force enough to absorb quickly, the highest speed ratio ε
That is, the shift time from the maximum speed to the minimum speed ratio εmin can be controlled extremely shortly. The second feature is that even if an extremely large instantaneous load is applied to only a small number of blocks 12, this load is instantaneously distributed to a plurality of other blocks adjacent to each other. That there is no mechanical damage to the

【0025】次に図4Bによって、本発明によるこれ等
の特徴の根拠を説明する。同図において右図(i)は、
図4Aの受圧点a1,a2からプーリ挾持圧を受けてな
い状態を示し、左図(ii)はプーリ挾持圧を受けて、
受圧部a1,a2がb1,b2に幅(X)方向に距離β
だけ弾性収縮した状態をそれぞれ示す。
Referring now to FIG. 4B, the basis for these features according to the present invention will be described. In the figure, the right figure (i)
FIG. 4A shows a state in which no pulley clamping pressure is received from the pressure receiving points a1 and a2, and FIG.
The pressure receiving portions a1 and a2 are separated by b1 and b2 by a distance β in the width (X) direction.
Only the elastically contracted state is shown.

【0026】図4B−(i)では、この時弾性突出部2
0の板バネ傾斜部20a,20bの角度θは図2Bに示
す通り略90゜のままの状態である。しかし一担、伝達
車1のプーリ挾持圧を受け始めると、受圧部13,14
は移動し始め、図4B−(ii)に示すように傾斜部2
0a,20bの双方が応力変形しながら、先端当接点も
a0からb0に前進し始め、その移動距離αは10(=
l02−l01)になる。本実施例の先端は実際には台
形部20cを形成しているため、本ブロック12の折曲
点a01,a02の部分が隣接後方の後ブロック12に
対し、錐状の傾斜部20a,20bのクサビ効果ととも
に強固な圧力で当接する結果、本ブロック12はその受
圧部13,14の受圧点b1,b2と先端当接部b0
1,b02の実質的な先端当接部b0との三点支持効果
によって強固に支持されることになる。
FIG. 4B- (i) shows that the elastic projection 2
The angle θ of the 0 leaf spring inclined portions 20a and 20b remains substantially 90 ° as shown in FIG. 2B. However, once the transmission wheel 1 starts receiving the pulley clamping pressure, the pressure receiving portions 13 and 14
Starts moving, and as shown in FIG. 4B- (ii), the slope 2
While both 0a and 20b undergo stress deformation, the tip contact point also starts to advance from a0 to b0, and its movement distance α is 10 (=
102-101). Since the tip end of the present embodiment actually forms a trapezoidal portion 20c, the bent points a01 and a02 of the block 12 are different from the rear block 12 adjacent to the conical inclined portions 20a and 20b. As a result of the contact with a strong pressure together with the wedge effect, the block 12 has the pressure receiving points b1 and b2 of the pressure receiving portions 13 and 14 and the tip contact portion b0.
1 and b02 are firmly supported by the three-point support effect of the substantial tip contact portion b0.

【0027】更に、図4Cは、この弾性突出部20の作
用が、特殊な圧力分散ないし変換機能を同時に達成して
いることを図示している。即ち、本ブロック12−1の
弾性突出部20の受圧部13,14を経て加わったX軸
方向のプーリ挾持圧は、クサビ状傾斜部20a,20b
の変形によって前後に隣接する他のブロック12−0,
12−1への圧力を変化させるので、ブロック12−2
は折曲点F2を中心に傾き始めて当接点Eを介してY軸
方向の圧力に変換されていることになる。本実施例の伝
達体10が全て金属剛体で製造された場合であっても、
合成ゴムなどの樹脂材で製造した可撓性伝達体とほぼ同
等の圧力分散機能を提供していることを意味する。この
ことは、幅(X)方向のプーリ挾持圧の大きさが小さく
緩やかである場合は、変換後の長手(Y)方向の少数の
ブロック12だけでその圧力を吸収する。しかし急瞬で
かつ過大圧の場合にも、幅(X)方向の収縮が大きい分
だけ瞬時に長手(Y)方向の多数のブロック12に分散
されるので、一部のブロクやプーリ摩擦面が損傷するこ
とはない。結果的に最低から最高速比に至る変速時間を
短縮しても安定伝動が可能となる。
Further, FIG. 4C illustrates that the action of the elastic projection 20 simultaneously achieves a special pressure distribution or conversion function. In other words, the pulley clamping pressure in the X-axis direction applied through the pressure receiving portions 13 and 14 of the elastic projecting portion 20 of the block 12-1 is reduced by the wedge-shaped inclined portions 20a and 20b.
Of the other blocks 12-0,
Since the pressure to 12-1 is changed, block 12-2
Means that the pressure starts to incline around the bending point F2 and is converted into the pressure in the Y-axis direction via the contact point E. Even when the transmission body 10 of the present embodiment is manufactured entirely from a rigid metal body,
This means that it provides a pressure dispersing function substantially equivalent to that of a flexible transmission member made of a resin material such as synthetic rubber. This means that when the magnitude of the pulley clamping pressure in the width (X) direction is small and gentle, only a small number of blocks 12 in the longitudinal (Y) direction after the conversion absorb the pressure. However, even in the case of an instantaneous and excessive pressure, a large amount of contraction in the width (X) direction is instantaneously dispersed to a large number of blocks 12 in the longitudinal (Y) direction. No damage. As a result, stable transmission is possible even if the shift time from the lowest to the highest speed ratio is reduced.

【0028】なお、本実施例の傾斜部20aの傾斜角度
θおよびθ2は必要に応じて変更可能であり、また台形
部20bの形状も実質的に三点支持機能を果たす限り任
意に変更可能である。上述した本発明の第2の特徴であ
る急峻衝撃荷重による荷重分散に関する技術思想は、本
件出願人の日本特許出願:特願平8−355,505号
に記述しているのでここでは詳述を省く。
In this embodiment, the inclination angles θ and θ2 of the inclined portion 20a can be changed as required, and the shape of the trapezoidal portion 20b can be arbitrarily changed as long as the trapezoidal portion 20b substantially fulfills the three-point support function. is there. The technical concept relating to the load distribution by the steep impact load, which is the second feature of the present invention, is described in Japanese Patent Application No. 8-355,505 filed by the present applicant. Omit.

【0029】[0029]

【第2実施例】図5は本発明の第2実施例の変速機の無
端高負荷伝達体を示す。図5Aは同伝達体のブロック1
2を示す正面断面図、図5Bは保持体11とブロック1
2を示す側面断面図、図5Cは図5Bの上面図、さらに
図5Dはブロック12に施した保持体11の挿入用の切
開部を示す部分構成図である。本例でも、上述した第1
実施例の「幅(X)方向のプーリ挾持圧を長手(Y)方
向の弾性力に変換する」基本思想を利用している。しか
し更に幾つかの新たな技術思想を開示しているので、そ
の新たな技術思想のみを、第1実施例と比較して項目ご
とに説明する。
FIG. 5 shows an endless high load transmission of a transmission according to a second embodiment of the present invention. FIG. 5A shows block 1 of the transmitter.
FIG. 5B is a front sectional view showing the holding member 11 and the block 1.
5C is a top view of FIG. 5B, and FIG. 5D is a partial configuration diagram showing a cutout for insertion of the holding body 11 formed on the block 12. As shown in FIG. Also in this example, the first
The basic concept of "converting the pulley clamping pressure in the width (X) direction into an elastic force in the longitudinal (Y) direction" of the embodiment is used. However, since some new technical ideas are disclosed, only the new technical ideas will be described for each item in comparison with the first embodiment.

【0030】(1)第一に無端保持体は、帯状スラップ
ではなく、単線の繊維・鋼線等を円環状にたばねた無端
ワイヤロープ11で構成した思想である。断面形状は円
形でブロック12に施した貫通孔18を通じて各ブロッ
ク12が個別に保持体11上を摺動可能に支持される。
(2)第二にブロック12に施した弾性突出部20の形
状は、単なる弾性の平板材による折曲成形体ではなく、
包囲部20j,20kを施すことにより三次元の立体構
造としてほぼ半楕円形状に突出している構成の思想であ
る。即ち、図5A,5Cの様にX−X線の断面形状は、
第1実施例の図2Bと略同等のV字またはU字状のクサ
ビ形状を保持し、受圧部A1,A2 と当接部Cとの三
点支持構造およびクサビ効果による挾持圧分散機構は同
一構成である。しかし本例では更にZ軸方向にも仮想の
先端当接点Dを想定し、二つの弾性傾斜部20a,20
aはZ軸の下方(伝達体内周側)に向って傾斜角度θ3
のV字またはU字状のクサビ形状を有する。これによっ
て図1に示すように各ブロックは、長手(Y)方向だけ
でなく、プーリ回転軸芯C0を中心とした屈曲角度(θ
0)方向の屈曲性についても第二のクサビ効果による所
定の弾性吸収力を付与したものである。即ち伝達体10
の曲率半径Rが小さくなるのに応じて内部弾性力を増大
させ、結果的には変速機の外部からプーリ車を介して印
加される突発的な外乱衝撃力による伝達体10の変則的
な動きを長手(Y)方向だけでなく、ラジアル(Z)方
向にも複数の隣接ブロックにて抑制させることを目的と
したものである。
(1) First, the idea is that the endless holding body is not a belt-shaped slap but an endless wire rope 11 made of a single-filament fiber or steel wire or the like formed into a ring shape. Each block 12 is individually slidably supported on the holder 11 through a through hole 18 formed in the block 12 and having a circular cross section.
(2) Secondly, the shape of the elastic protruding portion 20 formed on the block 12 is not simply a bent formed body made of an elastic flat plate,
This is an idea of a configuration in which the surrounding portions 20j and 20k protrude in a substantially semi-elliptical shape as a three-dimensional three-dimensional structure. That is, as shown in FIGS. 5A and 5C, the cross-sectional shape of the line XX is
The V-shaped or U-shaped wedge shape substantially equivalent to that of FIG. 2B of the first embodiment is retained, and the three-point support structure of the pressure receiving portions A1, A2 and the contact portion C and the clamping pressure distribution mechanism by the wedge effect are the same. Configuration. However, in this example, a virtual tip contact point D is further assumed in the Z-axis direction, and the two elastic inclined portions 20a and 20
a is the inclination angle θ3 toward the lower side of the Z axis (the inner side of the transmission body).
V-shaped or U-shaped wedge shape. As a result, as shown in FIG. 1, each block is bent not only in the longitudinal (Y) direction but also in the bending angle (θ) about the pulley rotation axis C0.
As for the flexibility in the 0) direction, a predetermined elastic absorption force is given by the second wedge effect. That is, the transmission body 10
Increases the internal elastic force as the radius of curvature R of the transmission becomes smaller, and consequently the irregular movement of the transmission body 10 due to a sudden disturbance impact force applied from outside the transmission via a pulley wheel. Is suppressed not only in the longitudinal (Y) direction but also in the radial (Z) direction by a plurality of adjacent blocks.

【0031】(3)弾性突出部20はその先端貫通孔1
8にワイヤロープ11を挿入するため、立体包囲構造の
一部に切開部21が施される。図5Cに示す通りブロッ
ク12は、Y−Y線を境に右側切開部21Rを施した第
一ブロック12R′と、左側切開部21Lを施した第二
ブロック12L′とが予じめ個別に用意される。貫通孔
15と係合突起16の付設と同様に、保持体11には第
一および第二ブロック12R′,12L′が交互に配列
され、これによって貫通孔18からのブロックの脱落を
阻止している。図5Dは、切開部21の状態を示し、各
接合片22,23には、それぞれ凸部22a,23aと
凹部22b,23bとを互に連結し、互の係止部22c
および23cによって図中の矢印VおよびW方向の加圧
に対しても連結状態を維持する。しかし無端保持体11
の組込時は切開部21を点線で示す接合片23′に開放
して、空間19より挿入する。 (4)更に、切開部21による弾性突出部20の弾性力
の強度が低下するのを補償するため、V字型に突出した
弾性材26を二つの受圧部13,14の上方部に介在さ
せ二枚の弾性板材2a,25bを受圧部にスポット溶接
27で保持させ弾性力を強化させたものである。
(3) The elastic protruding portion 20 has the tip through hole 1
In order to insert the wire rope 11 into 8, a cutout 21 is made in a part of the three-dimensional surrounding structure. As shown in FIG. 5C, the block 12 includes a first block 12R 'having a right incision 21R and a second block 12L' having a left incision 21L separately prepared in advance at the line YY. Is done. Similarly to the attachment of the through holes 15 and the engagement projections 16, first and second blocks 12R 'and 12L' are alternately arranged on the holder 11, thereby preventing the blocks from dropping out of the through holes 18. I have. FIG. 5D shows the state of the incision 21. Each of the joining pieces 22 and 23 has the projections 22a and 23a and the recesses 22b and 23b connected to each other, and the locking portions 22c of each other.
And 23c, the connected state is maintained even when pressure is applied in the directions of arrows V and W in the figure. However, the endless holder 11
At the time of assembling, the incision 21 is opened to the joining piece 23 ′ shown by the dotted line and inserted from the space 19. (4) Further, in order to compensate for the reduction in the strength of the elastic force of the elastic projecting portion 20 due to the incision 21, the V-shaped projecting elastic member 26 is interposed above the two pressure receiving portions 13 and 14. The two elastic plate members 2a and 25b are held on the pressure receiving portion by spot welding 27 to enhance the elastic force.

【0032】(5)また図5A,5Bに示すように先端
当接点Dとは対称の位置にもう1つ別の仮想の先端当接
点D′を新たに設定し、点線24で示す新たな弾性傾斜
部20a′,20a′を角度θ4のV字型にし第三のク
サビ状突出部を成形してもよい。これによって無端伝達
体10が回転中心C0 を中心とした伝達体内周側の弾
性屈曲部24aだけでなく、その反対の側に屈曲する場
合の伝達体外周側の弾性逆屈曲部24bを確保するため
のものである。特に図1で述べた通り、変速指令を受け
た瞬間の最小接触点A′にプーリ荷重が集中し、次の回
動に伴ってプーリ車1が伝達体10をA′点を挟み込ん
だままA″点で移動する。更にその次の瞬間に、M″方
向に引張られるためA″点では、伝達体10は正規の屈
曲性とは逆にθ0が180°以上に逆転する。この時に
少数ブロック12のみに逆屈曲衝撃力がA″点に集中す
るのを阻止し、この先端当接点D′による弾性吸収力で
集中荷重を吸収する逆クサビ効果をもたせたのである。
この構成により伝達体10は、弾性突出部20を立体の
舌状に成形し、長手(Y)方向、正転屈曲角度(θ0)
方向、更に逆転屈曲角度(θ0′)方向の三方向に夫々
クサビ効果を働かせて、合成ゴム・ベルトと略同等の弾
性屈曲性ならびに挟持圧分散機能を保持出来る。
(5) As shown in FIGS. 5A and 5B, another imaginary tip contact point D 'is newly set at a position symmetrical to the tip contact point D, and a new elasticity indicated by a dotted line 24 is provided. The inclined portions 20a ', 20a' may be V-shaped at an angle θ4 to form a third wedge-shaped projection. This ensures not only the elastic bending portion 24a on the inner peripheral side of the transmission body around the rotation center C0 but also the elastic reverse bending portion 24b on the outer peripheral side of the transmitting body when the endless transmission body 10 is bent to the opposite side. belongs to. In particular, as described with reference to FIG. 1, the pulley load concentrates on the minimum contact point A 'at the moment when the shift command is received, and the pulley wheel 1 keeps the transmission body 10 sandwiching the point A' with the next rotation. Further, at the next moment, the transmission body 10 is pulled in the M "direction, so that at the point A", the transmission body 10 reverses the angle θ0 to 180 ° or more, contrary to the normal bending property. This prevents the reverse bending impact force from concentrating on the point A ″ only at the point 12 and provides the reverse wedge effect of absorbing the concentrated load by the elastic absorption force of the tip contact point D ′.
With this configuration, the transmission body 10 forms the elastic protruding portion 20 into a three-dimensional tongue shape, and has a longitudinal (Y) direction and a normal rotation bending angle (θ0).
By applying the wedge effect in each of the three directions, that is, the reverse bending angle (θ0 ′) direction, the elastic bending property and the clamping pressure dispersing function substantially equal to those of the synthetic rubber belt can be maintained.

【0033】[0033]

【他の実施例】上述の第1、第2実施例は、各ブロック
12が、受圧部13,14と弾性突出部20が所定の弾
性材から成る単一金属材で屈曲成形した湿式変速機用の
伝達体の例を開示したが、単一金属材に限定されず、強
化繊維を混合した樹脂材で全体を成形しても良く、また
金属弾性材にこの樹脂材をラミネートした構成にしても
良い。また、更に弾性突出部20の形状は、受圧部から
加わるプーリ挾持圧を幅(X)方向又は、半径Rの屈曲
角度(θ0)方向に充分な弾性が確保されるならば、如
何なる形状でも良い。更に、本発明の思想は、乾式変速
機用の伝達体にも適用でき、例えば受圧部13,14に
オイルレス・メタルのような含油金属を用い弾性突出部
を弾性金属で構成しても良い。以上のように、本発明
は、記述の実施態様だけに限定されず、特許請求の範囲
内に於いて如何なる形態に変更しても、本権利範囲に含
まれる。
[Other Embodiments] In the first and second embodiments described above, each block 12 is formed by bending a pressure receiving portion 13, 14 and an elastic projecting portion 20 from a single metal material made of a predetermined elastic material. Although the example of the transmission body for is disclosed, it is not limited to a single metal material, the whole may be molded with a resin material mixed with reinforcing fibers, or a configuration in which this resin material is laminated to a metal elastic material Is also good. Further, the shape of the elastic protrusion 20 may be any shape as long as sufficient elasticity is secured in the width (X) direction or the bending angle (θ0) direction of the radius R with the pulley clamping pressure applied from the pressure receiving portion. . Further, the concept of the present invention can be applied to a transmission body for a dry transmission. For example, the pressure receiving portions 13 and 14 may be made of an oil-containing metal such as an oilless metal, and the elastic protrusions may be made of an elastic metal. . As described above, the present invention is not limited to only the described embodiments, and any changes within the scope of the claims are included in the scope of the present right.

【0034】[0034]

【発明の効果】この発明の高負荷伝達体は、主には金属
材だけ、或いは金属と樹脂・繊維との複合材などの剛性
素材を用いながら、従来樹脂製伝達体のもつ弾性可撓性
および屈曲性と同様の原理にもとづき、高負荷用に適用
できる充分な弾性可撓性と充分な耐久性とを実現したも
のである。この剛性素材を用いながら充分な弾性可撓性
を保証することによって従来の樹脂製伝達体では数十馬
力〔HP〕以下の動力しか伝動能力を持ちえなかったの
に対し、数十馬力乃至数百馬力〔HP〕以上の動力を小
型にしてかつ高速の伝動を可能にした。
The high-load transmission body of the present invention mainly uses a metal material or a rigid material such as a composite material of metal and resin / fiber, while using a conventional resin-made transmission body. On the basis of the same principle as that of the flexible structure, the present invention realizes sufficient elastic flexibility and sufficient durability applicable to high load applications. By assuring sufficient elasticity and flexibility while using this rigid material, the conventional resin transmission body can only transmit power of tens of horsepower [HP] or less, whereas tens of horsepower to several tens of horsepower [HP]. Power of more than one hundred horsepower [HP] is reduced in size and high-speed transmission is enabled.

【0035】本発明の伝達体は、プーリ挾持圧を受けて
各ブロックの受圧部が幅(X)方向に受圧収縮した時
に、長手(Y)方向に突出成形した弾性材からなる弾性
突出部の先端当接点の位置が長手(Y)方向の伸縮動作
に変換している。これにより隣接ブロック相互間で長手
(Y)方向に強固に連結しながら、プーリ挾持圧のもつ
幅(X)方向荷重を瞬時に伝達体の長手(Y)方向に分
散すると同時に各ブロックの位置決めの安定化を図る作
用効果を、伝動中に常に機能させたものである。
In the transmission body of the present invention, when the pressure receiving portion of each block receives and contracts in the width (X) direction due to the pulling pressure, the elastic projection portion made of an elastic material formed to project in the longitudinal (Y) direction. The position of the tip contact point is converted into an extension / contraction operation in the longitudinal (Y) direction. Thus, while strongly connecting the adjacent blocks in the longitudinal (Y) direction, the load in the width (X) direction of the pulley clamping pressure is instantaneously dispersed in the longitudinal (Y) direction of the transmission body, and at the same time, positioning of each block is performed. The effect of stabilization is always activated during transmission.

【0036】特に高負荷伝達体の受圧分散機能は、無段
変速機に適用すると二つの大きな効果を生む。その一つ
は、最低速Vminから最高速Vmaxに至る変速時間
を短縮できる。即ち変速制御の速度を急峻に行っても伝
達体がそのプーリ挾持圧の急激な変化に応答する高速応
答能力を持つことである。もう一つは、変速機の外部の
入出力機器から内部に向って変則的又は衝撃的なプーリ
挾持圧が印加されること場合でも、ベルト伝達体自体が
各ブロックのもつ多軸方向の充分な弾性可撓性によっ
て、この衝撃を少数のブロックに集中させず、瞬時に長
手(Y)方向の多数のブロックに分散させることによる
衝撃吸収能力をもつことである。この二つの能力によっ
て剛性素材でありながらゴム・ベルトと同等の弾性吸収
機能と圧力分散機能を保持し、しかも樹脂ベルトとは比
較にならない程の高負荷動力を小型かつ高速伝動する効
果を奏する。
In particular, the pressure receiving and dispersing function of the high load transmission body produces two great effects when applied to a continuously variable transmission. One of them is that the shift time from the lowest speed Vmin to the highest speed Vmax can be reduced. That is, the transmission body has a high-speed response capability that responds to a sudden change in the pulley clamping pressure even when the speed of the shift control is sharply performed. Secondly, even when an irregular or impulsive pulley clamping pressure is applied inward from an input / output device external to the transmission, the belt transmission body itself has sufficient multiaxial directions of each block. Due to the elasticity and flexibility, the impact is not concentrated on a small number of blocks, but is instantaneously dispersed over a large number of blocks in the longitudinal (Y) direction. With these two abilities, it is possible to maintain the same elastic absorption function and pressure dispersing function as a rubber belt, while being a rigid material, and to transmit a high load power that is incomparable with a resin belt in a small size and at a high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例変速機の高負荷伝達体の一
部分を示す部分構成図である。
FIG. 1 is a partial configuration diagram illustrating a part of a high-load transmission body of a transmission according to a first embodiment of the present invention.

【図2A】同上実施例の高負荷伝達体に使われる左側係
止具付ブロックの背面図で、
FIG. 2A is a rear view of a block with a left-side stopper used in the high-load transmission body of the embodiment,

【図2B】同上実施例の高負荷伝達体に使われる同ブロ
ックの上面図で、
FIG. 2B is a top view of the same block used in the high-load transmission body of the embodiment,

【図2C】同上実施例の高負荷伝達体の同ブロックの側
面図で、
FIG. 2C is a side view of the same block of the high-load transmission body of the embodiment,

【図2D】同上実施例の高負荷伝達体に使われる右側係
止具付ブロックの背面状態図で、
FIG. 2D is a rear view of the block with the right locking member used for the high-load transmission body of the embodiment;

【図2E】同上実施例の高負荷伝達体のブロック部材の
厚さを示す部分断面図である。
FIG. 2E is a partial cross-sectional view showing the thickness of a block member of the high load transmission body of the embodiment.

【図3】同上実施例の高負荷伝達体のブロックの組立手
順を示す部分組立図である。
FIG. 3 is a partial assembly view showing a procedure of assembling the blocks of the high load transmission body of the embodiment.

【図4A】同上実施例の高負荷伝達体のブロックの受圧
変換機能を示す動作説明図で、
FIG. 4A is an operation explanatory diagram showing a pressure receiving conversion function of a block of the high load transmitter according to the embodiment;

【図4B】同上実施例の高負荷伝達体のブロックの分散
変形状態を示す動作説明図で、
FIG. 4B is an operation explanatory view showing a distributed deformation state of the blocks of the high load transmission body of the embodiment;

【図4C】同上実施例の高負荷伝達体の各プロック間の
連鎖状態の動作説明図である。
FIG. 4C is an explanatory diagram of an operation in a chain state between the blocks of the high load transmission body of the embodiment.

【図5A】本発明の第2実施例変速機の高負荷伝達体の
ブロックを示す正面断面図で、
FIG. 5A is a front sectional view showing a block of a high load transmission body of a transmission according to a second embodiment of the present invention;

【図5B】同上実施例の高負荷伝達体の同ブロックの側
面断面組立図で、
FIG. 5B is a side sectional assembly view of the same block of the high load transmission body of the embodiment.

【図5C】同上実施例の高負荷伝達体の同ブロックの上
面組立図で、さらに
FIG. 5C is a top assembly view of the same block of the high-load transmission body of the embodiment, and FIG.

【図5D】同上実施例の高負荷伝達体の同ブロックに施
した切開部の部分構成図である。
FIG. 5D is a partial configuration diagram of an incision made in the same block of the high-load transmission body of the embodiment.

【符号の説明】[Explanation of symbols]

1,1aおよび1b 伝動車またはプーリ車 2 回転軸 10 高負荷伝達体、ベルト伝達体または伝達体 11 無端保持体、ストラップまたはワイヤーロープ 12 ブロックまたはリンク 12L 左側(係止具付)ブロックまたは第二ブロック 12R 右側(係止具付)ブロックまたは第一ブロック 13,14 受圧部 13a,14a 平面部 13b,14b 傾斜部または腕曲部 13c,14c 平面部 15 貫通孔 16 係合突起 16a 凹部 17 係止具 18 保持隙間または貫通孔 19 挿入空間 20 弾性突出部 20a 傾斜部、板バネ傾斜部またはクサビ状部 20b 先端当接部または当接部 20c 内壁 20d 当接内壁 20e 腕曲部 20f,20i 平面部 20g,20h 腕曲部または傾斜部 20j,20k 包囲部 21,21R,21L 切開部 22,23 接合片 22a,23a 凸部 22b,23b 凹部 22c,23c 係止部 24a 弾性屈曲部 24b 弾性逆屈曲部 25 弾性板材 26 弾性材 27 溶接部 1, 1a and 1b Transmission wheel or pulley wheel 2 Rotary shaft 10 High load transmission, belt transmission or transmission 11 Endless holder, strap or wire rope 12 Block or link 12L Left side (with lock) block or second Block 12R Right side (with lock) block or first block 13, 14 Pressure receiving portion 13a, 14a Flat portion 13b, 14b Inclined portion or bent portion 13c, 14c Flat portion 15 Through hole 16 Engagement protrusion 16a Concave portion 17 Lock Tool 18 Holding gap or through hole 19 Insertion space 20 Elastic protrusion 20a Inclined portion, leaf spring inclined portion or wedge-shaped portion 20b Tip contact portion or contact portion 20c Inner wall 20d Contact inner wall 20e Arm bent portion 20f, 20i Flat portion 20g, 20h Arm bent portion or inclined portion 20j, 20k Surrounding portion 21, 21R, 21L Incision part 22,23 Joint piece 22a, 23a Convex part 22b, 23b Recess 22c, 23c Lock part 24a Elastic bending part 24b Elastic reverse bending part 25 Elastic plate material 26 Elastic material 27 Welding part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 プーリ挾持圧を受ける二つの受圧部をも
つブロックの多数個を無端保持体に支持させた変速機の
高負荷伝達体において、上記ブロックは、該プーリ挾持
圧の大きさに応じて幅(X)方向に伸縮自在に配置され
た上記受圧部と、この二つの上記受圧部の間に位置し両
者を結ぶ幅(X)方向の軸(X軸)から垂直の長手
(Y)方向の所定距離Lの位置に先端当接点を設け、二
つの上記受圧部から先端当接点に向け突出成形されて上
記受圧部間に幅(X)方向の弾性力をもって充分に撓む
ことを保証する弾性突出部とを有すると共に、さらに上
記ブロックは、幅(X)方向の上記受圧部の伸縮変位量
を上記弾性突出部の先端当接点の伸縮変位量に変換する
ことに、幅(X)方向のプーリ挾持圧を長手(Y)方向
の隣接する他の複数のブロックに順次分散させたことを
特徴とする変速機の高負荷伝達体。
In a high load transmission of a transmission in which a plurality of blocks having two pressure receiving portions for receiving a pulley holding pressure are supported by an endless holding member, the block is adapted to the magnitude of the pulley holding pressure. A pressure receiving portion arranged so as to be extendable and contractible in the width (X) direction, and a longitudinal (Y) axis positioned between the two pressure receiving portions and perpendicular to an axis (X axis) in the width (X) direction connecting the two pressure receiving portions. A tip contact point is provided at a position at a predetermined distance L in the direction, and is formed so as to protrude from the two pressure receiving parts toward the tip contact point, so that it is sufficiently bent with elasticity in the width (X) direction between the pressure receiving parts. And the block further converts the amount of expansion and contraction of the pressure receiving portion in the width (X) direction into the amount of expansion and contraction of the contact point at the tip end of the elastic protrusion. Pulley clamping pressure in the longitudinal direction (Y), A high-load transmission for a transmission, which is sequentially dispersed in locks.
【請求項2】 請求項第1項において、上記弾性突出部
の厚味は、上記受圧部の厚味と、上記受圧部および上記
弾性突出部の取付角度θ2の正弦値との積で定まること
を特徴とする変速機の高負荷伝達体。
2. The method according to claim 1, wherein the thickness of the elastic protrusion is determined by a product of a thickness of the pressure receiving portion and a sine value of a mounting angle θ2 of the pressure receiving portion and the elastic protrusion. A high load transmission for a transmission.
【請求項3】 請求項第2項において、上記弾性突出部
は、XY平面の断面形状が長手(Y)方向に第一のクサ
ビ状突出部を形成されしかも該外壁面および内壁面がプ
ーリ挾持圧の非印加時にそれぞれ隣接ブロックの内壁面
および外壁面との間で面接触したことを特徴とする変速
機の高負荷伝達体。
3. The elastic projection according to claim 2, wherein the elastic projection has a first wedge-shaped projection formed in a longitudinal (Y) direction in a cross-sectional shape on an XY plane, and the outer wall surface and the inner wall surface are clamped by a pulley. A high-load transmission body for a transmission, wherein surface contact is made between an inner wall surface and an outer wall surface of an adjacent block when pressure is not applied.
【請求項4】 請求項3項において、上記弾性突出部
は、プーリ挾持圧の印加時に先端当接部と、ラジアルア
(Z)方向に並設した二つの上記受圧部との間で実質的
に三点支持構造したことを特徴とする変速機の高負荷伝
達体。
4. The elastic projection according to claim 3, wherein the elastic projection is substantially located between the front end contacting portion when the pulley clamping pressure is applied and the two pressure receiving portions juxtaposed in a radial lure (Z) direction. A high-load transmission for a transmission having a three-point support structure.
【請求項5】 請求項第3および4項において、上記弾
性突出部は、二つの平板傾斜部を形成され該傾斜部の上
方側を平面部にまた下方側を腕曲部に成形したことを特
徴とする変速機の高負荷伝達体。
5. The method according to claim 3, wherein the elastic protrusion has two flat plate inclined portions, and the upper side of the inclined portion is formed into a flat portion and the lower side is formed into an arm bent portion. High load transmission for transmission.
【請求項6】 請求項第2項において、上記弾性突出部
は、更にXZ平面の断面形状も長手(Y)方向にクサビ
状突出部を形成されプーリ挾持圧を立体的な閉環状傾斜
部で吸収したことを特徴とする変速機の高負荷伝達体。
6. The elastic projection according to claim 2, wherein the elastic projection further has a wedge-shaped projection formed in a longitudinal (Y) direction in a cross-sectional shape on the XZ plane, and the pulley clamping pressure is reduced by a three-dimensional closed annular inclined portion. A high-load transmission body for a transmission characterized by being absorbed.
【請求項7】 請求項第6項において、上記弾性突出部
は、XZ平面の断面形状がラジアル(Z)方向でかつ上
記伝達体の内周側に第二のクサビ状突出部を形成され、
上記伝達体の正転屈曲角度(θ)方向屈曲弾性力を保
持したことを特徴とする変速機の高負荷伝達体。
7. The elastic projection according to claim 6, wherein the elastic projection has a second wedge-shaped projection formed in a radial (Z) direction in a cross section in an XZ plane and on an inner peripheral side of the transmission body.
A high load transmission body for a transmission, wherein the transmission body maintains a bending elastic force in a forward rotation bending angle (θ 0 ) direction.
【請求項8】 請求項第7項において、上記弾性突出部
は、XZ平面の断面形状がラジアル(Z)方向でかつ上
記伝達体の外周側の第三のクサビ状突出部を形成され、
上記伝達体の逆転屈曲角度(θ′)方向に屈曲弾性力
を保持したことを特徴とする変速機の高負荷伝達体。
8. A third wedge-shaped protrusion according to claim 7, wherein the elastic protrusion has a radial (Z) cross-section in an XZ plane and an outer peripheral side of the transmission body.
A high load transmission body for a transmission, wherein the transmission body maintains a bending elastic force in a reverse bending angle (θ 0 ′) direction.
【請求項9】 請求項第1項において、上記ブロック
は、二つの上記受圧部の一方側に係合突起をまた他方側
に貫通孔をもつ第一ブロックと、一方側に貫通孔をまた
他方側に係合突起をもつ第二ブロックとを有し、上記第
一および第二ブロックが長手(Y)方向に交互に組合せ
て常時上記係合突起が上記貫通孔に挿入されたことを特
徴とする変速機の高負荷伝達体。
9. The first block according to claim 1, wherein the block includes a first block having an engagement protrusion on one side of the two pressure receiving portions and a through hole on the other side, and a through hole on one side and the other. A second block having an engagement protrusion on the side, wherein the first and second blocks are alternately combined in the longitudinal (Y) direction and the engagement protrusion is always inserted into the through hole. Transmission high load transmission.
【請求項10】 請求項第1項において、上記ブロック
は、上記無端保持体に右側開口部から装填する右側ブロ
ックと、左側開口部から装填する左側ブロックとを有
し、上記右側および左側ブロックを長手(Y)方向に交
互に組合せて配列したことを特徴とする変速機の高負荷
伝達体。
10. The block according to claim 1, wherein the block has a right block to be loaded into the endless holder from a right opening, and a left block to be loaded from a left opening. A high load transmission body for a transmission, wherein the transmission body is arranged so as to be alternately combined in a longitudinal (Y) direction.
JP25744898A 1998-08-08 1998-08-08 High load transmission for transmission Expired - Fee Related JP4338238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25744898A JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25744898A JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Publications (3)

Publication Number Publication Date
JP2000055135A true JP2000055135A (en) 2000-02-22
JP2000055135A5 JP2000055135A5 (en) 2005-09-22
JP4338238B2 JP4338238B2 (en) 2009-10-07

Family

ID=17306495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25744898A Expired - Fee Related JP4338238B2 (en) 1998-08-08 1998-08-08 High load transmission for transmission

Country Status (1)

Country Link
JP (1) JP4338238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221564A1 (en) * 2000-12-28 2002-07-10 Van Doorne's Transmissie B.V. Transmission belt provided with transverse elements having a displaceable contact line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221564A1 (en) * 2000-12-28 2002-07-10 Van Doorne's Transmissie B.V. Transmission belt provided with transverse elements having a displaceable contact line
US6875143B2 (en) 2000-12-28 2005-04-05 Van Doorne's Transmissie B.V. Transmission belt provided with transverse elements having a displaceable contact line

Also Published As

Publication number Publication date
JP4338238B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP5026517B2 (en) Pulley assembly
US4490126A (en) Telescopic homokinetic joint
JP2009542984A (en) Pulley assembly
US4525160A (en) Endless belt member for a continuously variable transmission
KR20130006392A (en) Transmission belt pulley and belt transmission system
JPH0571806B2 (en)
US20070191166A1 (en) Power transmission chain and power transmission device
CN111102331A (en) Transmission belt
JPH0285545A (en) Link chain for stepless adjustable conical plate transmission
US4666421A (en) Drive chain belt
JP2000055135A (en) Heavy load transmission body of transmission
JP2002340103A (en) Chain belt for cvt
US5242332A (en) Transmission arrangement with a covered transmission belt
CA1303875C (en) Cambered pin cvt chain belt
MXPA97004125A (en) Flexi gear coupling
JPS59197641A (en) V-belt transmission
US5409424A (en) Chain belt with two parallel chains having means for inhibiting relative movements of the chains
US4579550A (en) Chains for continuously variable conical pulley transmissions
US20050176541A1 (en) Low-vibration hybird v-belt
JP2002039281A (en) V-belt for low loss output transmission
US5147253A (en) Variable speed transmission device
JP2000055135A5 (en)
JPH066314Y2 (en) Steel belt
JPH025150Y2 (en)
JPH0118915Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees