JP2000054848A - Exhaust pressure control device - Google Patents

Exhaust pressure control device

Info

Publication number
JP2000054848A
JP2000054848A JP10236327A JP23632798A JP2000054848A JP 2000054848 A JP2000054848 A JP 2000054848A JP 10236327 A JP10236327 A JP 10236327A JP 23632798 A JP23632798 A JP 23632798A JP 2000054848 A JP2000054848 A JP 2000054848A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
primary
port
exhaust port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10236327A
Other languages
Japanese (ja)
Inventor
Moritoshi Ono
盛敏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKOO WORLD KK
Original Assignee
SHINKOO WORLD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKOO WORLD KK filed Critical SHINKOO WORLD KK
Priority to JP10236327A priority Critical patent/JP2000054848A/en
Publication of JP2000054848A publication Critical patent/JP2000054848A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To most suitably control the intake and exhaust to improve the combustion efficiency by providing an exhaust junction part for joining secondary exhaust gas to the high-speed primary exhaust gas discharged from a primary exhaust port from the circumferential direction, and a final exhaust rectifying part for discharging these exhaust gases to the outside at a proper flow velocity. SOLUTION: An expansion chamber 2 is extended on the downstream side of an exhaust gas inlet part 1 connected to the exhaust pipe of an internal combustion engine, and a primary exhaust port 3 is opened to the center part of the downstream end. The secondary exhaust system inlet 4 of a secondary exhaust passage 5 is opened to the upstream edge of the throttle wall surface 31 of the primary exhaust port 3 with a fixed angle space, and a secondary exhaust system outlet 6 is opened to the vicinity of the downstream end outside of the primary exhaust port 3 on the downstream end of the secondary exhaust system passage 6 with a fixed angle space. A primary exhaust and secondary exhaust junction part 7 for joining the exhaust gas passed through the primary exhaust port 3 with the secondary exhaust gas passed through the secondary exhaust system outlet 6 is arranged on the downstream side in the outlet end of the primary exhaust port 3. Further a final rectifying exhaust port 8 for finally releasing the exhaust gas to the atmosphere is arranged on the downstream side of the junction part 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関に於ける
排気ガスの排出状態を制御することにより、運転効率の
向上並びに排出ガス中の不要物質を低減するための排気
圧力制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust pressure control apparatus for controlling an exhaust gas emission state in an internal combustion engine to improve operation efficiency and reduce unnecessary substances in the exhaust gas. is there.

【0002】[0002]

【従来の技術】現在広く使用されている内燃機関は、燃
料と酸素とを吸気行程でシリンダ内に取り込み、この吸
気を圧縮行程で所定圧力まで圧縮し、圧縮された吸気に
対してガソリン機関では電気火花による着火、またディ
ーゼル機関では高温度による自己着火を生じさせ、燃料
を爆発行程で瞬時に燃焼させ、その際のエネルギーを機
械的動力として取り出し、排気行程で燃焼排ガスを排出
するものである。したがって内燃機関の効率向上を図る
には、燃料の吸気、圧縮、爆発、排気の状態を最適条件
下で実行させる必要がある。
2. Description of the Related Art An internal combustion engine which is widely used at present takes fuel and oxygen into a cylinder during an intake stroke, compresses the intake air to a predetermined pressure in a compression stroke, and applies the compressed intake air to a gasoline engine. Ignition by electric sparks, and self-ignition by high temperature in diesel engines, causing the fuel to burn instantaneously in the explosion stroke, extracting the energy at that time as mechanical power, and discharging the combustion exhaust gas in the exhaust stroke. . Therefore, in order to improve the efficiency of the internal combustion engine, it is necessary to execute the states of fuel intake, compression, explosion, and exhaust under optimal conditions.

【0003】このような燃料の燃焼状態を最適化するた
めに、機関燃焼部の構造や制御法等の面で種々の改良が
重ねられており、その具体例は枚挙にいとまがない。例
えば、マイコンを内蔵させて燃料の供給制御を行うもの
や、一歩進んで従来シリンダ外に設けられていた気化器
(キャブレタ)や燃料気化装置等を廃し、シリンダ内に
直接噴射するガソリンエンジンなども開発され、効率向
上に効果を上げている。重油や軽油を燃料とするディー
ゼル機関でも、燃料噴射方式や燃焼室形状の改良等によ
り効率改善の努力が続けられている。
[0003] In order to optimize the combustion state of such fuel, various improvements have been made in terms of the structure of the engine combustion section, the control method, and the like, and there are many specific examples. For example, there are those that control the supply of fuel by incorporating a microcomputer, and those that go a step further by eliminating gasifiers (carburetors) and fuel vaporizers that were conventionally provided outside cylinders, and gasoline engines that directly inject into cylinders It has been developed and has been effective in improving efficiency. Efforts to improve the efficiency of diesel engines using heavy oil or light oil as fuels have been made by improving the fuel injection system and the shape of the combustion chamber.

【0004】内燃機関の効率向上にとって燃料及び空気
の取り込み、したがって吸気が重要であることは当然で
あるが、同様に重要なのが排気ガスの処理である。燃焼
効率を如何に向上させたとしても100%になることは
有り得ないため排気ガスには、かなりの未燃焼物質が含
まれており、また、炭素酸化物(COx)、窒素酸化物
(NOx)、硫黄酸化物(SOx)等の各種不要物質が
含まれており、大気汚染、光化学スモッグ、更には地球
温暖化等の原因とも云われている。
It is natural that the intake of fuel and air, and thus the intake, is important for improving the efficiency of an internal combustion engine, but equally important is the treatment of exhaust gas. No matter how the combustion efficiency is improved, it cannot be 100% because exhaust gas contains considerable unburned substances, and carbon oxides (COx) and nitrogen oxides (NOx) And various kinds of unnecessary substances such as sulfur oxides (SOx), which are said to be causes of air pollution, photochemical smog, and global warming.

【0005】このような排気ガス中の未燃焼物質は燃料
が保有しているエネルギーであり、完全燃焼に近づくほ
ど低減されるが、理想状態には至っていないためかなり
のエネルギーを大気中に放出していることになる。また
通常の排気ガスは高温かつ高圧であり、かなりの流速を
保有するものでもある。このような未燃焼物質は本来的
に燃料が保有するエネルギーの一部であることは当然で
あるが、排出ガスの高温度、高圧力、流速及び音等はそ
れぞれ燃料のエネルギーが形を変えたものである。した
がって未燃成分の有効利用をはじめこれら各排出エネル
ギーを活用しそれぞれの廃棄量を低減することにより、
地球環境にも好結果をもたらし、かつ内燃機関の熱効率
を向上させることも可能となるものである。
[0005] The unburned substances in the exhaust gas are the energy held by the fuel, and are reduced as the combustion approaches the complete combustion. However, since the state has not reached the ideal state, considerable energy is released into the atmosphere. Will be. Ordinary exhaust gas is also high in temperature and pressure and has a considerable flow velocity. Naturally, such unburned substances are naturally a part of the energy held by the fuel, but the high temperature, high pressure, flow velocity, sound, etc. of the exhaust gas have each changed the energy of the fuel. Things. Therefore, by reducing the amount of waste by utilizing each of these energy sources, including the effective use of unburned components,
This will provide good results for the global environment and also improve the thermal efficiency of the internal combustion engine.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
事情に着目し、内燃機関に於ける排気ガスの排出状態を
を最適処理することにより、吸排気を最適にコントロー
ルし、これを通じて燃焼効率向上を図ることができ、か
つ大気汚染や地球温暖化の防止にも効果を発揮すること
ができる排気圧力制御装置を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention focuses on such circumstances, and optimally controls the state of exhaust gas exhaustion in an internal combustion engine, thereby optimally controlling intake and exhaust, and through this, combustion. It is an object of the present invention to provide an exhaust pressure control device that can improve efficiency and can also exert an effect on prevention of air pollution and global warming.

【0007】[0007]

【課題を解決するための手段】本発明は、内燃機関の排
気系に接続される排気ガス導入部と、少なくとも上記排
気ガス導入部のガス流の下流側にあって内径が下流側に
向けて次第に拡大するように構成された拡散壁面及びそ
の更に下流側で下流側に向けて先細りとなるように内径
を次第に縮小する絞り壁面のそれぞれに囲まれた排気ガ
ス膨張室と、上記排気ガス膨張室の下流側で上記絞り壁
面の先細り中央部に開口した一次排気口と、前記絞り壁
面の中央に開口する一次排気口の外側に形成された二次
排気系流路であって、前記絞り壁面の上流縁部で前記排
気ガス膨張室に開口してその排気ガスを徐々に下流側中
央方向に移動させつつ通流させる二次排気系流路と、前
記一次排気口を通過した排気ガスと前記二次排気系流路
を通過した二次排気ガスとを二次排気系出口を介して再
び合流させる一次排気・二次排気合流部であって、前記
一次排気口から吐出される高速の一次排気ガスにその外
周方向から合流する二次排気ガスを吸引しつつ合流させ
る一次排気・二次排気合流部と、これらの排気ガスを適
宜流速をもって外部に排出するための最終排気整流部
と、で構成した排気圧力制御装置である。
According to the present invention, there is provided an exhaust gas introduction portion connected to an exhaust system of an internal combustion engine, and at least a downstream side of a gas flow of the exhaust gas introduction portion and having an inner diameter directed toward the downstream side. An exhaust gas expansion chamber surrounded by a diffusion wall configured to gradually expand and a throttle wall whose inner diameter is gradually reduced so as to taper further downstream toward the downstream side; A primary exhaust port opened at the tapered central portion of the throttle wall on the downstream side, and a secondary exhaust system flow path formed outside the primary exhaust port opened at the center of the throttle wall, A secondary exhaust system flow path that opens to the exhaust gas expansion chamber at the upstream edge and allows the exhaust gas to flow while gradually moving the exhaust gas toward the center on the downstream side; and an exhaust gas passage that passes through the primary exhaust port. Secondary exhaust that has passed through the secondary exhaust system flow path A primary exhaust / secondary exhaust junction where the gas and the secondary exhaust gas are merged again via a secondary exhaust system outlet, wherein the secondary exhaust gas merges with the high-speed primary exhaust gas discharged from the primary exhaust port from the outer peripheral direction thereof This is an exhaust pressure control device including a primary exhaust / secondary exhaust merging section that joins while sucking air, and a final exhaust rectifying section that discharges these exhaust gases to the outside at an appropriate flow rate.

【0008】なお、前記排気ガス膨張室の容量、これを
構成する拡散壁面の拡散角や一次排気口、二次排気系流
路につながる絞り壁面の絞り角、また排気ガス膨張室か
ら二次排気系流路につながる連通口の個数、寸法、取り
付け位置等は、適用する内燃機関の種類、容量、内燃機
関の用途及び運転態様等によって適宜変更されるべきで
ある。
[0008] The capacity of the exhaust gas expansion chamber, the diffusion angle of the diffusion wall constituting the exhaust gas expansion chamber, the throttle angle of the primary exhaust port, the throttle wall connected to the secondary exhaust system flow path, and the secondary exhaust gas from the exhaust gas expansion chamber. The number, size, mounting position, and the like of the communication ports connected to the system flow path should be appropriately changed depending on the type and capacity of the internal combustion engine to be applied, the use and operation mode of the internal combustion engine, and the like.

【0009】例えば、前記排気ガス膨張室の容量は、適
用対象の内燃機関の特性を高速運転に適するように設定
しようとする場合は、それを小さくすべきであり、低速
運転に適するように設定しようとする場合は、大きくす
べきである。即ち、前記排気ガス膨張室の容量を小さく
すると、排気ガスの導入による圧力の上昇(背圧の発
生)が早まり、またそれに引き続く一次排気口及び二次
排気系流路を通じての排気ガスの排出が高速で行われる
ようになり、他方、前記排気ガス膨張室の容量を大きく
すると、その逆になるからである。なお個々具体的な容
量は、以上の前提のもとに、適用対象の内燃機関ごとに
実験的に定めるべきである。
For example, if the capacity of the exhaust gas expansion chamber is to be set so that the characteristics of the internal combustion engine to which it is applied are suitable for high-speed operation, it should be reduced, and the capacity of the exhaust gas expansion chamber should be set so as to be suitable for low-speed operation. If you try, it should be bigger. That is, when the capacity of the exhaust gas expansion chamber is reduced, the pressure rise (back pressure generation) due to the introduction of the exhaust gas is accelerated, and the subsequent discharge of the exhaust gas through the primary exhaust port and the secondary exhaust system flow path is reduced. This is because the operation is performed at a high speed, and when the capacity of the exhaust gas expansion chamber is increased, the opposite occurs. The specific capacity should be determined experimentally for each internal combustion engine to be applied based on the above assumptions.

【0010】本発明の排気圧力制御装置によれば、内燃
機関の排気弁から排出された排気ガスが導入されると、
該排気ガスは、当初、内燃機関の排気管の延長部と同等
の内径の排気ガス導入部を進行する。この場合の排気ガ
スの流れは、内燃機関の排気行程に於いて、開放された
排気弁から短時間で排出されるため、パルス状の進行波
動となり、管中心で最高速となり、そして管壁に近いほ
ど遅くなる急峻な弾頭状進行波を形成する。
According to the exhaust pressure control device of the present invention, when the exhaust gas discharged from the exhaust valve of the internal combustion engine is introduced,
The exhaust gas initially travels through an exhaust gas inlet having an internal diameter equivalent to the extension of the exhaust pipe of the internal combustion engine. In this case, the flow of the exhaust gas in the exhaust stroke of the internal combustion engine is discharged from the opened exhaust valve in a short time, so that the flow becomes a pulsed traveling wave, the highest speed is at the center of the pipe, and the flow of the exhaust gas is generated at the pipe wall. A steep warhead-like traveling wave that becomes slower as it gets closer is formed.

【0011】上記弾頭波状の進行波動となって進行する
排気ガスは、排気ガス膨張室に入ると、その管壁が拡散
壁面となって末広がりに拡散するように傾斜しているた
め、容積が増大する方向への進行となり、膨張拡散し、
減圧されてその管壁に近い部分と中心部分との速度差は
減少し、したがってその弾頭状進行波の波頭傾斜は緩く
なる。それ故、このとき、シリンダから排出される排気
ガスは極めて高速で排気ガス膨張室に流れ込むこととな
る。
The exhaust gas which travels as a warhead-like traveling wave enters the exhaust gas expansion chamber, and its pipe wall is inclined so that it becomes a diffusion wall and diffuses divergently. In the direction of expansion, expanding and diffusing,
When the pressure is reduced, the velocity difference between the portion close to the tube wall and the central portion is reduced, and therefore, the wave front inclination of the warhead-like traveling wave is reduced. Therefore, at this time, the exhaust gas discharged from the cylinder flows into the exhaust gas expansion chamber at an extremely high speed.

【0012】前記のようにして弾頭状進行波の波頭傾斜
が緩くなった排気ガスは、いずれ排気ガス膨張室の後半
部に進行し、内径を次第に縮小する絞り角度で絞り込ま
れた絞り壁面に衝突し、その最下流側中央部の一次排気
口に向かって抵抗を受けながら進行する。なお排気ガス
はこのように絞り壁面に衝突した際に再度圧力が高めら
れ、この圧力上昇は排気系上流側に押し戻される瞬間的
背圧となる。
The exhaust gas whose warhead-like traveling wave has a gentle wave front inclination as described above travels to the latter half of the exhaust gas expansion chamber, and collides with a throttle wall narrowed down by a throttle angle that gradually reduces the inner diameter. Then, it proceeds while receiving resistance toward the primary exhaust port at the central portion on the most downstream side. When the exhaust gas collides with the throttle wall in this way, the pressure is increased again, and this pressure rise becomes an instantaneous back pressure that is pushed back to the exhaust system upstream side.

【0013】しかして排気系に於けるこのような圧力の
変化が、内燃機関の排気行程から吸気行程に移行する間
の重畳時間を制御する。排気ガスは、既述のように、ま
ず、排気ガス膨張室に進行すると、その容積の増大にと
もなって圧力が低下し、それ故、シリンダ内の排気は、
前記排気ガス膨張室内の圧力が上昇するまでの間、この
排気ガス膨張室に向かって極めて高速で排出されること
となる。そのため、排気弁と吸気弁の双方が開いている
こととなる重畳時間の前半に於ては、内燃機関のシリン
ダ内を高速の排気によって陰圧にし、これによってこの
間に効率的な吸気を行わせ得ることとなるものである。
更に、その後、排気ガスは、既述のように、排気ガス膨
張室の後半部に進行して絞り壁面に衝突し、再度圧力が
高められることとなり、この圧力上昇が排気系上流側に
押し戻されて瞬間的背圧となり、これによって前記重畳
時間の後半に於ては吸気された生ガスの排気弁を通じて
の排出を抑制すべく作用する。
Thus, such pressure changes in the exhaust system control the superposition time during the transition from the exhaust stroke to the intake stroke of the internal combustion engine. As described above, when the exhaust gas first proceeds to the exhaust gas expansion chamber, the pressure decreases as the volume of the exhaust gas increases. Therefore, the exhaust gas in the cylinder is
Until the pressure in the exhaust gas expansion chamber increases, the exhaust gas is discharged at an extremely high speed toward the exhaust gas expansion chamber. Therefore, in the first half of the superimposition time when both the exhaust valve and the intake valve are open, the internal pressure of the cylinder of the internal combustion engine is reduced by high-speed exhaust, thereby allowing efficient intake to be performed during this time. Is what you get.
Further, thereafter, as described above, the exhaust gas proceeds to the latter half of the exhaust gas expansion chamber and collides with the throttle wall surface, and the pressure is increased again, and this pressure increase is pushed back to the exhaust system upstream side. In the latter half of the superimposition time, this acts to suppress the exhaust of the inhaled raw gas through the exhaust valve.

【0014】排気ガス膨張室に進入した排気ガスの一部
は、いずれその後半部に進行し、既述のように、絞り壁
面で絞られて高い圧力となって一次排気口に進入し、こ
れを通じて該高圧力によって増速されて排気される。前
記のように、背圧ともなる高圧力は、大気圧との差を一
層増大させるため、一次排気口からの排出速度を更に高
める作用をももたらす。
Part of the exhaust gas that has entered the exhaust gas expansion chamber will eventually travel to the latter half thereof and, as described above, will be throttled by the throttle wall and will have a high pressure and will enter the primary exhaust port. The pressure is increased by the high pressure to exhaust the gas. As described above, the high pressure, which is also the back pressure, further increases the difference from the atmospheric pressure, and thus has the effect of further increasing the discharge speed from the primary exhaust port.

【0015】他方、前記絞り壁面の上流縁である外縁部
には、一次排気口の外側に、これを包囲するように構成
された二次排気系流路への連通口が定角度間隔で所要個
数開口されており、いったん膨張した後収縮するような
抵抗を受けて加圧された排気ガスの他の一部がこれらの
連通口を通して二次排気系流路側に流出する。
On the other hand, at the outer edge, which is the upstream edge of the throttle wall, outside the primary exhaust port, a communication port to a secondary exhaust system flow path surrounding the primary exhaust port is required at regular angular intervals. Another part of the exhaust gas, which is opened several times and is pressurized by resistance such that it expands and contracts once, flows out to the secondary exhaust system channel through these communication ports.

【0016】以上の一次排気口及び二次排気系流路の各
々を通じて排出される双方の排気は、前記一次排気口の
吐出口と二次排気系流路の出口とが連通する一次排気・
二次排気合流部で合流することとなる。
The two exhaust gases discharged through each of the primary exhaust port and the secondary exhaust system flow path are the primary exhaust gas and the primary exhaust port where the discharge port of the primary exhaust port communicates with the outlet of the secondary exhaust system flow path.
They will be joined at the secondary exhaust junction.

【0017】一次排気口及び二次排気系流路を通じて流
出する各排気ガスは、いずれも大気圧との差圧によって
排出されるが、この場合、前記のように、中央の一次排
気口を通じて流出する排気ガスは排気ガス膨張室の圧力
上昇にともなって増速され極めて高速となっており、そ
の流速によるベンチュリー効果により二次排気系流路を
通じて排出される排気ガスも更に流速を増し、高速で排
気されることとなる。こうして前記排気ガス膨張室内で
圧力を増した排気ガスもその後直ちに排出され、該排気
ガス膨張室内も含めてこの排気圧力制御装置の内部は高
速で減圧されることとなるものである。
Each exhaust gas flowing through the primary exhaust port and the secondary exhaust system flow path is exhausted by a differential pressure from the atmospheric pressure. In this case, as described above, the exhaust gas flows through the central primary exhaust port. Exhaust gas is accelerated with the pressure rise of the exhaust gas expansion chamber and becomes extremely high speed, and the exhaust gas discharged through the secondary exhaust system flow path further increases the flow speed due to the Venturi effect due to its flow speed, It will be exhausted. The exhaust gas whose pressure has been increased in the exhaust gas expansion chamber in this way is immediately discharged thereafter, and the inside of the exhaust pressure control device including the exhaust gas expansion chamber is depressurized at high speed.

【0018】最終整流排気口では一次排気口と二次排気
系流路の各出口を出たそれぞれの排気ガスが合流して外
部(大気中)に排出される。
At the final rectification exhaust port, the exhaust gases that have exited from the primary exhaust port and the respective outlets of the secondary exhaust system flow path are merged and discharged to the outside (atmosphere).

【0019】本発明の排気圧力制御装置は、以上のよう
な構成を有し、かつ機能する。なおこの装置の各部の寸
法、角度、容量等は、前記したように、適用しようとす
る内燃機関に対応させて実験的に定めることにより、排
気圧力や圧力変化のタイミング等を制御することができ
る。排気圧力を任意に制御することにより、吸気弁と排
気弁とが同時に開く重畳時間のシリンダ内の圧力を適切
に制御し、排気を効率的に行わせるとともに、吸気をも
効率的に行わせ、また背圧によって吸入された生ガスの
無用の排出を抑制することができるとともに、排気弁を
閉じた後には、背圧の原因となった圧力を直ちに解放し
て、次のサイクルでの排気に悪影響を与えないようにす
ることができるものである。こうして排気弁を通じて内
燃機関のシリンダ内部に適切な影響を与え、その燃焼状
態を効率よく変化させることができるものである。
The exhaust pressure control device of the present invention has the above-described configuration and functions. As described above, the dimensions, angles, capacities, and the like of each part of the device can be experimentally determined in accordance with the internal combustion engine to be applied, thereby controlling the exhaust pressure, the timing of the pressure change, and the like. . By arbitrarily controlling the exhaust pressure, the pressure in the cylinder during the superimposed time when the intake valve and the exhaust valve are simultaneously opened is appropriately controlled, and the exhaust is efficiently performed, and the intake is also efficiently performed, In addition, it is possible to suppress unnecessary discharge of inhaled raw gas by the back pressure, and after closing the exhaust valve, immediately release the pressure that caused the back pressure, so that it can be used for exhaust in the next cycle. It can prevent any adverse effects. Thus, an appropriate effect is exerted on the inside of the cylinder of the internal combustion engine through the exhaust valve, and the combustion state can be changed efficiently.

【0020】しかして本発明の排気圧力制御装置によれ
ば、対象となる内燃機関の吸気弁と排気弁との作動の間
に於ける吸排気状態を改善し、充分な吸気と掃気とをス
ムーズに行うことができるものであり、それ故、燃焼効
率を高めて高い運動エネルギーを得ることができ、反射
的に未燃成分を低減し、かつ排気ガス中の各種有害物質
を低減することができるものでもある。
According to the exhaust pressure control apparatus of the present invention, the state of intake and exhaust between the operation of the intake valve and the exhaust valve of the target internal combustion engine is improved, and sufficient intake and scavenging are performed smoothly. Therefore, it is possible to obtain high kinetic energy by increasing the combustion efficiency, reduce unburned components in a reflective manner, and reduce various harmful substances in exhaust gas. It is also a thing.

【0021】[0021]

【発明の実施の形態】以下、実施例を表わす添付図を参
照しつつ発明の実施の形態を詳述するが、この実施例に
より本発明の範囲が限定されるものではない。図1は、
本発明の排気圧力制御装置の一実施例を示す概略断面
図、図2は図1のX−X矢視概略拡大断面図、図3は図
1のY−Y矢視概略拡大断面図である。図1中、排気ガ
スの流れは図の左側から右側に向かうものとする。した
がって以下の説明中図の左側を上流、右側を下流と表現
することがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings showing embodiments, but the scope of the present invention is not limited by these embodiments. FIG.
1 is a schematic cross-sectional view showing an embodiment of the exhaust pressure control device of the present invention, FIG. 2 is a schematic enlarged cross-sectional view taken along line XX of FIG. 1, and FIG. 3 is a schematic enlarged cross-sectional view taken along line YY of FIG. . In FIG. 1, the flow of the exhaust gas is from left to right in the figure. Therefore, in the following description, the left side of the drawing may be expressed as upstream, and the right side may be expressed as downstream.

【0022】この排気圧力制御装置は、図1に示すよう
に、内燃機関の排気管の延長部に接続される排気ガス導
入部1と、排気ガス導入部1の下流側に延在し、内径が
下流に向かって所定角度で拡張するように形成された拡
散壁面21、その下流端から更に下流側に同径状態で延
びる最大径部22、及び更にその下流端から下流側に向
かって先細りとなる絞り壁面31によって囲まれた膨張
室2と、その膨張室2の下流端の中央部に開口する一次
排気口3と、前記絞り壁面31の上流縁(外縁部)に定
角度間隔で開口する二次排気系入口4を備えた二次排気
系流路5であって、絞り壁面31の周囲を取り囲む二次
排気系流路5と、該二次排気系流路5の下流端で、前記
一次排気口3の下流端外側付近に定角度間隔で開口する
二次排気系出口6と、前記一次排気口3の出口端の下流
側で、これを通過した排気ガスと二次排気系出口6を通
過した二次排気とを合流させる一次排気・二次排気合流
部7と、更にその下流側で最終的に排気ガスを大気中に
放出するための最終整流排気口8とを備えるものであ
る。
As shown in FIG. 1, the exhaust pressure control device has an exhaust gas introduction section 1 connected to an extension of an exhaust pipe of an internal combustion engine, and extends downstream of the exhaust gas introduction section 1 and has an inner diameter. Is formed so as to expand at a predetermined angle toward the downstream, a maximum diameter portion 22 extending from the downstream end to the downstream side with the same diameter, and further tapered from the downstream end to the downstream side. An expansion chamber 2 surrounded by a diaphragm wall 31, a primary exhaust port 3 opening at the center of the downstream end of the expansion chamber 2, and an opening at an upstream edge (outer edge) of the diaphragm wall 31 at regular angular intervals. A secondary exhaust system flow path 5 having a secondary exhaust system inlet 4, the secondary exhaust system flow path 5 surrounding the throttle wall 31, and a downstream end of the secondary exhaust system flow path 5, Secondary exhaust system outlet 6 opening at regular angle intervals near the outside of the downstream end of primary exhaust port 3 Downstream of the outlet end of the primary exhaust port 3, a primary exhaust / secondary exhaust merging section 7 for merging exhaust gas passing therethrough and secondary exhaust passing the secondary exhaust system outlet 6, And a final rectification exhaust port 8 for finally discharging exhaust gas to the atmosphere on the downstream side.

【0023】以下、図1を参照しながら、以上の排気圧
力制御装置の各部について順次詳細に説明する。前記排
気ガス導入部1は、適用される内燃機関の排気系に直接
接続されるもので、この内径Eは内燃機関の排気量によ
って決定される。この内径Eは、通常適用対象の内燃機
関の排出部の径と一致させれば良い。なおこの排気ガス
導入部1には、この発明の本質には関わらないが、これ
を構成する筒体に多数の穴を平均に穿設し、かつその外
周を吸音材で包囲し、消音を行うこととする。これに代
えて、この外側に防音壁を設けて密閉された状態にし、
同様に消音を行う構成とすることもできる。更に、触媒
その他との組み合わせによる排ガス浄化機構等を適宜組
み合わせておくこともできる。
Hereinafter, each part of the above exhaust pressure control device will be sequentially described in detail with reference to FIG. The exhaust gas introduction unit 1 is directly connected to an exhaust system of an internal combustion engine to which the exhaust gas introduction unit 1 is applied, and the inner diameter E is determined by the displacement of the internal combustion engine. The inner diameter E may be made to match the diameter of the discharge portion of the internal combustion engine to which the present invention is normally applied. Although not essential to the present invention, the exhaust gas introducing section 1 is provided with a number of holes formed in a cylindrical body constituting the exhaust gas introducing section 1 and the outer periphery thereof is surrounded by a sound absorbing material to muffle the sound. It shall be. Instead, a soundproof wall is provided on the outside to make it sealed,
Similarly, a configuration in which sound is muted may be adopted. Further, an exhaust gas purifying mechanism by a combination with a catalyst or the like may be appropriately combined.

【0024】前記膨張室2は、拡散角Fを持って末広が
りに拡大する拡散壁面21を有し、かつ最大径部22の
長さAによって決まる拡張容積部を構成する。前記拡散
壁面21の拡散角Fの値や最大径部22の長さAの値
は、排気ガス導入部1を通過してきた排気ガスをいかな
る割合で膨張させるかを決定する重要な要素である。拡
散壁面21の拡散角Fが大きく急峻な傾斜を有し、かつ
最大径部22の長さAが長い場合は、急激な膨張が生ず
る。この場合の排気ガスの波動の状態は、排気ガス導入
管1内では、図1中の波形aのように急峻な包絡線を有
する波頭波形を示すのに対して、膨張室2に於ては波形
bのようになだらかな波形となる。この拡散角Fは、2
5度〜125度、好ましくは30度〜120度の範囲で
状況に合わせて選択することができる。
The expansion chamber 2 has a diffusion wall surface 21 which expands with a diffusion angle F and diverges, and constitutes an expansion volume determined by the length A of the maximum diameter portion 22. The value of the diffusion angle F of the diffusion wall surface 21 and the value of the length A of the maximum diameter portion 22 are important factors that determine at what rate the exhaust gas that has passed through the exhaust gas introduction section 1 is expanded. When the diffusion angle F of the diffusion wall surface 21 is large and has a steep inclination, and the length A of the maximum diameter portion 22 is long, rapid expansion occurs. In this case, the state of the wave of the exhaust gas shows a wavefront waveform having a steep envelope as shown in waveform a in FIG. It has a gentle waveform like waveform b. This diffusion angle F is 2
It can be selected from 5 to 125 degrees, preferably from 30 to 120 degrees, according to the situation.

【0025】しかして、一部は既に述べたように、適用
対象の内燃機関を高速特性にする場合には、拡散壁面2
1の拡散角Fを大きくし、かつ最大径部22の長さAを
短くして膨張室2の容量を小さくする。こうして排気初
期の排出速度を高め、かつ背圧発生までの時間を短縮
し、更に発生した背圧の解放を短時間で行うようにする
ものである。適用対象の内燃機関を低速特性にする場合
には以上の逆にすれば良いのは云うまでもない。なおそ
れぞれの具体的な値は、以上を前提としつつ実験的に定
めるものである。
However, as described above in part, when the target internal combustion engine is to have high-speed characteristics, the diffusion wall 2
1, the diffusion angle F is increased, and the length A of the maximum diameter portion 22 is shortened to reduce the capacity of the expansion chamber 2. Thus, the discharge speed at the initial stage of the discharge is increased, the time until the back pressure is generated is shortened, and the generated back pressure is released in a short time. It is needless to say that the above procedure may be reversed when the target internal combustion engine has a low speed characteristic. The specific values are experimentally determined while assuming the above.

【0026】前記膨張室2の最大径部22の下流側に
は、既述のように、絞り角Hをもって先細りになる絞り
壁面31を経た後、最も細い径に絞り込まれた一次排気
口3が形成されている。前記絞り角Hは、膨張室2に於
いていったん膨張して減圧された排気ガスの進行波動に
対して再び圧力を高める働きがあり、波動が排気ガス導
入部1を介して図示していない内燃機関側に背圧として
影響を与える。
On the downstream side of the maximum diameter portion 22 of the expansion chamber 2, as described above, the primary exhaust port 3 narrowed down to the narrowest diameter after passing through the throttle wall 31 tapering with the throttle angle H. Is formed. The throttle angle H has a function of increasing the pressure again with respect to the traveling wave of the exhaust gas once expanded and decompressed in the expansion chamber 2, and the wave is transmitted through the exhaust gas introduction portion 1 to the internal combustion engine (not shown). It affects the engine side as back pressure.

【0027】ここに、排気の膨張室2に於ける拡散・膨
張・減圧から、先細りに絞り込まれた絞り壁面31への
衝突、更には一次排気口3に至る部位に於ける圧縮作用
を受けて生ずる背圧パルスの発生までの現象は、前記し
たように、内燃機関のシリンダの排気速度に影響を与え
るものであり、本発明に於ける装置の効果に重大な意義
を有する。前記絞り壁面31の具体的な絞り角Hの範囲
は、拡散角Fと同様に、25度〜125度、好ましくは
30度〜120度の範囲で状況に合わせて選択すること
ができる。なお絞り角Hは、これが大きい程背圧は速く
強く発生するものである。
Here, from the diffusion, expansion and decompression of the exhaust gas in the expansion chamber 2, the exhaust gas collides with the narrowed throttle wall 31, and further receives the compression action at the portion reaching the primary exhaust port 3. The phenomenon up to the occurrence of the generated back pressure pulse, as described above, affects the exhaust speed of the cylinder of the internal combustion engine, and has a significant significance in the effect of the device of the present invention. The specific range of the stop angle H of the stop wall surface 31 can be selected in a range of 25 to 125 degrees, preferably 30 to 120 degrees, according to the situation, like the diffusion angle F. The larger the throttle angle H, the faster and stronger the back pressure is generated.

【0028】前記一次排気口3の寸法、形状は、連続し
てパルス状に進行してくる排気ガスの単位パルスの容積
によって決定される。またこの単位パルスの容積は、単
位シリンダの排気量及び気筒数によって決定される。一
次排気口3の内径Jは、排気ガス導入部1の内径Eより
も小さく選定されるものである。また一次排気口3の長
さBは、二次排気のタイミングを制御するために重要で
あり、状況に応じて選定されるべきであるが、少なくと
も内径Jと同等以上に選定されるものである。
The size and shape of the primary exhaust port 3 are determined by the volume of a unit pulse of exhaust gas which continuously proceeds in a pulsed manner. The volume of the unit pulse is determined by the displacement of the unit cylinder and the number of cylinders. The inner diameter J of the primary exhaust port 3 is selected to be smaller than the inner diameter E of the exhaust gas introduction unit 1. The length B of the primary exhaust port 3 is important for controlling the timing of the secondary exhaust, and should be selected according to the situation, but is selected to be at least equal to or larger than the inner diameter J. .

【0029】前記一次排気口3の長さBは、具体的に
は、適用対象の内燃機関を高速特性にする場合には短く
構成し、低速特性にする場合には、長く構成するもので
ある。詳細なこの値は実験的に定めることができる。
Specifically, the length B of the primary exhaust port 3 is configured to be short when the target internal combustion engine has a high speed characteristic, and is long when the internal combustion engine has a low speed characteristic. . The detailed value can be determined experimentally.

【0030】前記二次排気系流路5は、図1に示すよう
に、下流側に向けて所定絞り角Hで絞り込まれる絞り壁
面31の外側と、これを同心的に包囲する二次排気流路
壁面51との間の空間によって形成される。この二次排
気系流路5に対する排気の流入は、絞り壁面31の上流
端、即ち、外縁部に定角度間隔で開口された所要数の貫
通口である二次排気系入口4を介して行われる。この二
次排気系入口4の開口形態は、種々の構成が採用可能で
あるが、例えば、図2に示すように、所定角度、例え
ば、45度の定角度間隔で8個を配する構成とすること
ができる。これらの二次排気系入口4の総開口面積は、
一次排気口3の開口面積×対象となる内燃機関のシリン
ダ(気筒)数によって求めた値以下として決定される。
なお多気筒であってもシリンダ毎に排気管を設ける場合
は、単気筒と同じになるのは云うまでもない。なおここ
で開口面積とは、排気ガスの流れ方向に沿って見た開口
部投影面積である(以下開口面積はいずれも同じ意味で
ある)。
As shown in FIG. 1, the secondary exhaust system flow path 5 is provided outside a throttle wall 31 narrowed toward the downstream side by a predetermined throttle angle H and a secondary exhaust flow concentrically surrounding the throttle wall 31. It is formed by the space between the road wall 51. The exhaust gas flows into the secondary exhaust system flow path 5 via the upstream end of the throttle wall 31, that is, the secondary exhaust system inlet 4, which is a required number of through-holes opened at regular angular intervals in the outer edge. Will be Various configurations can be adopted for the opening form of the secondary exhaust system inlet 4. For example, as shown in FIG. 2, eight openings are arranged at a predetermined angle, for example, at a fixed angle interval of 45 degrees. can do. The total opening area of these secondary exhaust system inlets 4 is
It is determined to be equal to or less than the value obtained by multiplying the opening area of the primary exhaust port 3 by the number of cylinders (cylinders) of the target internal combustion engine.
Needless to say, when an exhaust pipe is provided for each cylinder even in the case of a multi-cylinder, it is the same as a single cylinder. Here, the opening area is the projected area of the opening as viewed along the flow direction of the exhaust gas (hereinafter, the opening areas have the same meaning).

【0031】また、二次排気系流路5からの二次排気の
流出は、その下流側に形成された二次排気系出口6を介
して行われる。二次排気系出口6の開口形態は、種々の
構成が採用可能であるが、例えば、図3に示すように、
所定角度、例えば、90度の角度間隔で4個を配置する
構成とすることができる。これらの開口面積は、二次排
気系入口4のそれと同等又はそれ以上とすべきである。
なお、これらの二次排気系入口4及び二次排気系出口6
の個数、配置、寸法等は、ここに例示した以外の構成を
採用することも可能である。
The outflow of the secondary exhaust gas from the secondary exhaust system flow path 5 is performed via a secondary exhaust system outlet 6 formed on the downstream side. Various configurations can be adopted for the opening form of the secondary exhaust system outlet 6, for example, as shown in FIG.
A configuration in which four are arranged at a predetermined angle, for example, at an angle interval of 90 degrees can be adopted. These opening areas should be equal to or larger than those of the secondary exhaust system inlet 4.
In addition, these secondary exhaust system inlet 4 and secondary exhaust system outlet 6
The number, arrangement, dimensions, and the like of, can be adopted to configurations other than those exemplified here.

【0032】前記一次排気・二次排気合流部7は、一次
排気口3を介して放出される中心部の一次排気流の外周
に二次排気系出口6を出た二次排気流が包囲するような
形で合流する。この場合、一次排気及び二次排気のいず
れの排気ガスも装置内圧力と大気圧の差圧により排出さ
れるが、二次排気は更に一次排気の流速によるベンチュ
リー効果によって加速され、膨張室からの排気ガスが一
次排気とは遅れ時差をもって外部に放出される。
The primary exhaust / secondary exhaust merging section 7 surrounds the secondary exhaust stream exiting the secondary exhaust system outlet 6 around the central primary exhaust stream discharged through the primary exhaust port 3. Merge in such a way. In this case, both the primary exhaust gas and the secondary exhaust gas are exhausted by the differential pressure between the internal pressure of the apparatus and the atmospheric pressure, but the secondary exhaust gas is further accelerated by the Venturi effect due to the flow rate of the primary exhaust gas, and the secondary exhaust gas is discharged from the expansion chamber. The exhaust gas is discharged to the outside with a time lag from the primary exhaust gas.

【0033】この場合の一次排気の放出角Lは排気速度
によって決定される。放出角Lは排気速度が高ければ小
さくなり、低ければ大きくなるものである。また二次排
気の合流角Iは、二次排気を効率よく排出するために重
要である。一次排気の放出角Lに対応させて同程度から
平行程度までに選定される。なお、この一次・二次排気
合流部7の外周部には消音壁その他の構造を設け、併せ
て消音効果を期待することもできる。
In this case, the emission angle L of the primary exhaust is determined by the exhaust speed. The discharge angle L decreases as the exhaust speed increases, and increases as the exhaust speed decreases. The junction angle I of the secondary exhaust is important for efficiently discharging the secondary exhaust. It is selected from the same degree to the parallel degree corresponding to the emission angle L of the primary exhaust. It is to be noted that a sound deadening wall or other structure may be provided on the outer peripheral portion of the primary / secondary exhaust merging portion 7 and also a sound deadening effect may be expected.

【0034】前記最終整流排気口8の出口部の内径K
は、二次排気系出口6と一次排気口3との総開口面積
(総投影面積)に等しい断面積となる径とする。一次排
気の放出角Lと等しい最終整流排気口8の排気角Lは、
2.5度〜40度、好ましくは3度〜30度の範囲で、
排気速度に合わせて適宜決定するべきである。この実施
例の排気圧力制御装置を内燃機関に接続して運転する
と、全回転域で概ね15〜20%の出力向上が認められ
る。
The inner diameter K of the outlet of the final rectifying exhaust port 8
Is a diameter having a cross-sectional area equal to the total opening area (total projection area) of the secondary exhaust system outlet 6 and the primary exhaust port 3. The exhaust angle L of the final rectification exhaust port 8 equal to the emission angle L of the primary exhaust is
In the range of 2.5 to 40 degrees, preferably 3 to 30 degrees,
It should be determined appropriately according to the pumping speed. When the exhaust pressure control device of this embodiment is connected to an internal combustion engine and operated, an output improvement of approximately 15 to 20% is recognized over the entire rotation range.

【0035】[0035]

【発明の効果】本発明の排気圧力制御装置によれば、内
燃機関の排気ガスが保有するエネルギーを活用すること
により、排気状態にめりはりをつけることができ、低速
運転時におけるトルクを高め、更に高速運転時には背圧
を迅速に開放することにより吸排気効率を高め、結果的
に完全燃焼に近づけることができる。したがって、未燃
焼成分の含有量を減じ、同時に有害酸化物の排出を低減
することができる。
According to the exhaust pressure control apparatus of the present invention, by utilizing the energy possessed by the exhaust gas of the internal combustion engine, the exhaust state can be turned and the torque at the time of low speed operation can be increased. In addition, during high-speed operation, the back pressure is quickly released to increase the intake and exhaust efficiency, and as a result, it is possible to approach complete combustion. Therefore, it is possible to reduce the content of unburned components and at the same time reduce the emission of harmful oxides.

【0036】その基本的機能は、内燃機関に於いて吸気
行程と排気行程との両者がごく短時間オーバーラップす
る間に、排気ガス膨張室で膨張して減圧され、その後、
再び生ずる増圧現象に基づく背圧によって内燃機関の吸
排気動作に良好な影響を及ぼす。
Its basic function is to expand and reduce the pressure in the exhaust gas expansion chamber while both the intake stroke and the exhaust stroke overlap for a very short time in the internal combustion engine.
The back pressure based on the pressure increase phenomenon that occurs again has a favorable effect on the intake and exhaust operations of the internal combustion engine.

【0037】内燃機関の排気行程に於いて排気弁が完全
に開いた瞬間には、高速排気ガスは排気ガス導入部1内
を、図1の波形aのような形状で通過し、排気ガス膨張
室に至る。その時点では排気ガスは膨張・減圧されるた
め、シリンダ内の掃気を助け、かつ引き続いて吸気弁も
開くこととなると、併せて吸気をも助けるように作用す
る。その後ごく僅か遅れて排気は排気ガス膨張室から先
細りの絞り壁面に衝突し、かつ一次排気口に向かう該絞
り壁面の圧縮作用が発生して背圧パルスを発生させ、こ
の背圧が重畳して開いている排気弁を通じて新規吸気が
無用に排気されることを阻止するように機能する。その
後は又一次排気口及び二次排気系流路の作用により、高
速排気が行われて、排気ガス膨張室の減圧が行われ、次
の排気パルスの放出を待つこととなる。
At the moment when the exhaust valve is completely opened in the exhaust stroke of the internal combustion engine, the high-speed exhaust gas passes through the exhaust gas introduction section 1 in the shape of waveform a in FIG. To the room. At that time, the exhaust gas is expanded and decompressed, so that it assists in scavenging in the cylinder and, when the intake valve is subsequently opened, also assists in intake. Very slightly thereafter, the exhaust collides with the tapered throttle wall from the exhaust gas expansion chamber, and a compression action of the throttle wall toward the primary exhaust port occurs to generate a back pressure pulse, and this back pressure is superimposed. It functions to prevent new intake air from being unnecessarily exhausted through the open exhaust valve. Thereafter, high-speed exhaust is performed by the action of the primary exhaust port and the secondary exhaust system flow path, the exhaust gas expansion chamber is depressurized, and the emission of the next exhaust pulse is awaited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気圧力制御装置の一実施例の概略断
面図。
FIG. 1 is a schematic sectional view of one embodiment of an exhaust pressure control device of the present invention.

【図2】図1のX−X矢視概略拡大断面図。FIG. 2 is a schematic enlarged sectional view taken along the line XX of FIG.

【図3】図1のY−Y矢視概略拡大断面図。FIG. 3 is a schematic enlarged sectional view taken on line YY of FIG. 1;

【符号の説明】[Explanation of symbols]

1 排気ガス導入部 2 膨張室 21 拡散壁面 22 最大径部 3 一次排気口 31 絞り壁面 4 二次排気系入口 5 二次排気系流路 51 二次排気流路壁面 6 二次排気系出口 7 一次排気・二次排気合流部 8 最終整流排気口 A 最大径部の長さ B 一次排気口の長さ C 一次・二次排気合流部長さ D 最終整流口長さ E 排気ガス導入部の内径 F 拡散壁面の拡散角 G 膨張室の最大径 H 絞り壁面の絞り角 I 二次排気の合流角 J 一次排気口の内径 K 最終整流口の内径 L 一次排気の放出角(最終整流排気角) DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction part 2 Expansion chamber 21 Diffusion wall surface 22 Largest diameter part 3 Primary exhaust port 31 Restricted wall surface 4 Secondary exhaust system inlet 5 Secondary exhaust system channel 51 Secondary exhaust channel wall 6 Secondary exhaust system outlet 7 Primary Exhaust / secondary exhaust junction 8 Final rectification exhaust port A Length of maximum diameter section  B Primary exhaust port length C Primary / secondary exhaust merging section length D Final straightening port length E Inner diameter of exhaust gas introduction section F Diffusion angle of diffusion wall G Maximum diameter of expansion chamber H Throttle angle of throttle wall I Secondary Exhaust confluence angle J Inner diameter of primary exhaust port K Inner diameter of final rectifier port L Primary exhaust emission angle (final rectified exhaust angle)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系に接続される排気ガス
導入部と、 少なくとも上記排気ガス導入部のガス流の下流側にあっ
て内径が下流側に向けて次第に拡大するように構成され
た拡散壁面及びその更に下流側で下流側に向けて先細り
となるように内径を次第に縮小する絞り壁面のそれぞれ
に囲まれた排気ガス膨張室と、 上記排気ガス膨張室の下流側で上記絞り壁面の先細り中
央部に開口した一次排気口と、 前記絞り壁面の中央に開口する一次排気口の外側に形成
された二次排気系流路であって、前記絞り壁面の上流縁
部で前記排気ガス膨張室に開口してその排気ガスを徐々
に下流側中央方向に移動させつつ通流させる二次排気系
流路と、 前記一次排気口を通過した排気ガスと前記二次排気系流
路を通過した二次排気ガスとを二次排気系出口を介して
再び合流させる一次排気・二次排気合流部であって、前
記一次排気口から吐出される高速の一次排気ガスにその
外周方向から合流する二次排気ガスを吸引しつつ合流さ
せる一次排気・二次排気合流部と、 これらの排気ガスを適宜流速をもって外部に排出するた
めの最終排気整流部と、 で構成した排気圧力制御装置。
An exhaust gas introduction section connected to an exhaust system of an internal combustion engine, and at least a downstream side of a gas flow of the exhaust gas introduction section and an inner diameter gradually increases toward a downstream side. An exhaust gas expansion chamber surrounded by each of the diffusion wall and a throttle wall whose inner diameter is gradually reduced so as to be tapered toward the downstream at a further downstream side, and the throttle wall at a downstream side of the exhaust gas expansion chamber. A primary exhaust port opening at a tapered central portion, and a secondary exhaust system flow path formed outside the primary exhaust port opening at the center of the throttle wall, wherein the exhaust gas expansion occurs at an upstream edge of the throttle wall. A secondary exhaust system flow path that opens to the chamber and allows the exhaust gas to flow while gradually moving the exhaust gas toward the downstream central direction; an exhaust gas that has passed through the primary exhaust port and has passed through the secondary exhaust system flow path Secondary exhaust gas exits the secondary exhaust system A primary exhaust / secondary exhaust merging section through which the secondary exhaust gas which merges with the high-speed primary exhaust gas discharged from the primary exhaust port from the outer peripheral direction is sucked and merged. An exhaust pressure control device comprising: a secondary exhaust merging section; and a final exhaust rectifying section for discharging these exhaust gases to the outside at an appropriate flow rate.
【請求項2】 前記排気ガス導入部に消音機構が組み合
わされた請求項1の排気圧力制御装置。
2. The exhaust pressure control device according to claim 1, wherein a silencing mechanism is combined with the exhaust gas introduction section.
【請求項3】 前記一次・二次排気合流部に消音機構が
組み合わされた請求項1の排気圧力制御装置。
3. The exhaust pressure control device according to claim 1, wherein a silencing mechanism is combined with the primary / secondary exhaust junction.
JP10236327A 1998-08-07 1998-08-07 Exhaust pressure control device Pending JP2000054848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236327A JP2000054848A (en) 1998-08-07 1998-08-07 Exhaust pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236327A JP2000054848A (en) 1998-08-07 1998-08-07 Exhaust pressure control device

Publications (1)

Publication Number Publication Date
JP2000054848A true JP2000054848A (en) 2000-02-22

Family

ID=16999172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236327A Pending JP2000054848A (en) 1998-08-07 1998-08-07 Exhaust pressure control device

Country Status (1)

Country Link
JP (1) JP2000054848A (en)

Similar Documents

Publication Publication Date Title
KR100628666B1 (en) Secondary treatment device for the exhaust gases of an internal combustion engine
JP4558746B2 (en) Turbocharger supercharged internal combustion engine
US3066755A (en) Muffler with spiral partition
JP2008502845A (en) Gas flow improvement device for combustion engine
KR20000055434A (en) Muffler for internal combustion engine
US6789385B2 (en) System for supplying secondary air in the exhaust system of an internal combustion engine
KR100853583B1 (en) Counterflow control circulation exhaust device of engine
JPH0778368B2 (en) Exhaust system for two-cycle engine
JP2005036807A (en) Supercharge type four-stroke internal combustion engine equipped with variable capacity type exhaust apparatus of exhaust gas and operating method of the engine
KR20130020600A (en) Method and device for operating an internal combustion engine
JP2598060B2 (en) Method for controlling the working cycle of an internal combustion engine and its implementation
US20080022980A1 (en) Reciprocating internal combustion engine and a method of eliminating particles from burnt gas for such a reciprocating engine
JP2000054848A (en) Exhaust pressure control device
JP2013160169A (en) Intake and exhaust apparatus of multi-cylinder engine
US20130230434A1 (en) Four Cycle Internal Combustion Engine Exhaust
EA034101B1 (en) Method for increasing fuel combustion efficiency and device for carrying out said method
JPS5843563B2 (en) Internal combustion engine exhaust purification device
JP2000179324A (en) Exhauster
RU87753U1 (en) MEANS FOR EXHAUST INTERNAL COMBUSTION ENGINE SYSTEM OPTIMIZING ITS OPERATION
JPH02248612A (en) Exhaust device for internal combustion negine
JP2013160168A (en) Exhausting device of multiple cylinder engine
JP2001164941A (en) Exhaust device
RU35131U1 (en) Device for exhaust and exhaust gas recirculation of a heat engine
KR19990048492A (en) Humidity regulator of car intake
KR20240037021A (en) Fuel efficiency improvement, soot purifier and driving performance improve device of internal combustion engine