JP2000054175A - Solid polymer membrane-type water electrolyzer - Google Patents

Solid polymer membrane-type water electrolyzer

Info

Publication number
JP2000054175A
JP2000054175A JP10217367A JP21736798A JP2000054175A JP 2000054175 A JP2000054175 A JP 2000054175A JP 10217367 A JP10217367 A JP 10217367A JP 21736798 A JP21736798 A JP 21736798A JP 2000054175 A JP2000054175 A JP 2000054175A
Authority
JP
Japan
Prior art keywords
solid polymer
water
oxygen
line
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10217367A
Other languages
Japanese (ja)
Inventor
Takashi Ueno
隆司 上野
Hiroyuki Takeda
博幸 武田
Nobuo Nakamori
信夫 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10217367A priority Critical patent/JP2000054175A/en
Publication of JP2000054175A publication Critical patent/JP2000054175A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the control of a differential pressure acting on a solid polymer electrolytic membrane in a water electrolytic cell using the membrane and to prevent the damage of the membrane. SOLUTION: This solid polymer membrane-type water electrolyzer is provided with a water electrolytic cell 1 divided by a solid polymer electrolytic membrane 3 into an anode chamber 1b and a cathode chamber 1a, a circulating line on the cathode-chamber side connected to the cathode chamber 1a and provided with a hydrogen-water separator 11 and a twin-shaft pump 41, a circulating line on the anode-chamber side connected to the anode chamber 1b and provided with an oxygen-water separator 25 and the twin-shaft pump 41 and an autonomous differential pressure control means 60 connected to both circulating lines and keeping the differential pressure between both constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を隔膜として用いて純水を電気分解する水電解装置に
関する。
The present invention relates to a water electrolysis apparatus for electrolyzing pure water using a solid polymer electrolyte membrane as a diaphragm.

【0002】[0002]

【従来の技術】軽水炉においては、原子炉冷却材として
純水を使用している。而して、冷却材循環系の冷却材中
には、分解酸素が溶存酸素の形で存在しており、これが
冷却材循環系を構成する配管、各種機器等の構成部材に
応力腐食割れを発生させる要因の一つになり得ると考え
られている。この溶存酸素による応力腐食割れを防止す
るため所要の対策が採られている。即ち、図2に示すよ
うな固体高分子型水分解装置を冷却材循環系に接続し、
冷却材中の溶存酸素を低減するようにしている。
2. Description of the Related Art In a light water reactor, pure water is used as a reactor coolant. Decomposed oxygen is present in the form of dissolved oxygen in the coolant of the coolant circulation system, and this causes stress corrosion cracking in the components of the coolant circulation system such as piping and various equipment. It is thought that it can be one of the factors that cause it. Necessary measures are taken to prevent the stress corrosion cracking due to the dissolved oxygen. That is, a solid polymer type water splitting device as shown in FIG. 2 is connected to a coolant circulation system,
The dissolved oxygen in the coolant is reduced.

【0003】図2を参照して従来の固体高分子膜型水分
解装置を説明すると、水電解槽1は固体高分子電解質膜
3により陰極室1aと陽極室1bとに内部が区画されてい
る。ポンプ5によって入口ライン7を通して水電解槽1
に流入する純水は、電気分解され、これにより水素は陰
極室1aに発生する。一方酸素は陽極室1bに発生する。
陰極室1aからの水素/水二相流は出口ライン9を通っ
てセパレータ11に入り、気体の水素と水とに分けられ
る。セパレータ11において分離された水は、戻りライ
ン13を通ってポンプ5の吸込み側へ至り、ポンプ5に
より再び入口ライン7を通して水電解槽1に供給され
る。一方、分離された水素(気体)は、出口ライン1
5、圧力制御弁17を順次通過して水素ライン19に流
出し、適宜な回収装置に向かう。尚、出口ライン15に
は、圧力逃し弁21が設けられ、過大な圧力上昇を防止
している。
Referring to FIG. 2, a conventional solid polymer membrane type water splitting apparatus will be described. The interior of a water electrolysis tank 1 is divided into a cathode chamber 1a and an anode chamber 1b by a solid polymer electrolyte membrane 3. . Water electrolytic cell 1 through inlet line 7 by pump 5
Of pure water flowing into the cathode chamber 1a is electrolyzed, whereby hydrogen is generated in the cathode chamber 1a. On the other hand, oxygen is generated in the anode chamber 1b.
The hydrogen / water two-phase flow from the cathode chamber 1a enters the separator 11 through the outlet line 9 and is separated into gaseous hydrogen and water. The water separated in the separator 11 reaches the suction side of the pump 5 through the return line 13, and is again supplied to the water electrolysis tank 1 through the inlet line 7 by the pump 5. On the other hand, the separated hydrogen (gas) is supplied to the outlet line 1
5. The water passes through the pressure control valve 17 sequentially and flows out to the hydrogen line 19, and goes to an appropriate recovery device. The outlet line 15 is provided with a pressure relief valve 21 to prevent an excessive pressure rise.

【0004】他方、陽極室1bからの酸素/水二相流は
出口ライン23を通ってセパレータ25に入り、気体の
酸素と水とに分けられる。セパレータ25において分離
された水は、戻りライン27を通ってポンプ5の吸込み
側へ至り、ポンプ5により再び入口ライン7を通して水
電解槽1に供給される。一方、分離された酸素(気体)
は、出口ライン29、圧力制御弁31を順次通過して酸
素ライン33に流出し、適宜な回収装置に向かう。尚、
出口ライン29にも、圧力逃し弁35が設けられ、過大
な圧力上昇を防止している。更に、出口ライン15,2
9間の差圧を測定する差圧変換器37が設けられ、その
差圧信号を用いて圧力制御弁31を操作し、水電解槽1
内の陰極室1aと陽極室1bとを微少差圧に保持してい
る。
On the other hand, the oxygen / water two-phase flow from the anode chamber 1b enters the separator 25 through the outlet line 23 and is separated into gaseous oxygen and water. The water separated in the separator 25 reaches the suction side of the pump 5 through the return line 27, and is again supplied to the water electrolysis tank 1 through the inlet line 7 by the pump 5. On the other hand, separated oxygen (gas)
Flows through the outlet line 29 and the pressure control valve 31 in order, flows out to the oxygen line 33, and goes to an appropriate recovery device. still,
The outlet line 29 is also provided with a pressure relief valve 35 to prevent an excessive pressure rise. In addition, exit lines 15, 2
9 is provided, and the pressure control valve 31 is operated using the differential pressure signal, and the water electrolysis tank 1 is measured.
The inside of the cathode chamber 1a and the inside of the anode chamber 1b are maintained at a slight differential pressure.

【0005】[0005]

【発明が解決しようとする課題】以上のような従来の固
体高分子膜型水電解装置においては、固体高分子電解質
膜3に作用する圧力差を酸素ライン側の圧力制御弁の操
作により所定値に保持しているのであるが、酸素ガス及
び水素ガスの発生量が1対2で等しくないことから、起
動して高圧にするのが容易ではなかった。又、操作不良
や差圧変換器、圧力制御弁等の異常により、差圧が過大
になると固体高分子電解質膜への作用力が大きくなっ
て、品質の維持が困難になるという問題もあった。従っ
て、本発明は圧力差の制御が容易で故障が起こりにくい
固体高分子膜型水電解装置を提供することを課題とす
る。
In the conventional solid polymer membrane type water electrolyzer described above, the pressure difference acting on the solid polymer electrolyte membrane 3 is controlled to a predetermined value by operating the pressure control valve on the oxygen line side. However, since the amounts of generated oxygen gas and hydrogen gas were not equal to one to two, it was not easy to start up to a high pressure. In addition, there is also a problem that when the differential pressure becomes excessive due to an operation failure or abnormality of the differential pressure transducer, the pressure control valve, etc., the acting force on the solid polymer electrolyte membrane becomes large, and it becomes difficult to maintain the quality. . Accordingly, an object of the present invention is to provide a polymer electrolyte membrane-type water electrolysis apparatus in which a pressure difference can be easily controlled and a failure hardly occurs.

【0006】[0006]

【課題を解決するための手段】如上の課題を解決するた
め、本発明によれば、固体高分子膜型水電解装置は、固
体高分子電解質膜によって陽極室と陰極室に区画された
水電解槽と、前記陰極室に連絡し水素/水セパレータと
第1の循環ポンプとを備えた陰極室側循環路と、前記陽
極室に連絡し酸素/水セパレータと第2の循環ポンプと
を備えた陽極室側循環路と、前記両循環路に接続され両
者の差圧を一定に保持する自律差圧制御手段とを備えて
いる。尚、好適には、第1及び第2の循環ポンプは一基
の両軸ポンプとして構成される。
According to the present invention, in order to solve the above-mentioned problems, a solid polymer membrane type water electrolysis apparatus is provided with a water electrolysis apparatus divided into an anode chamber and a cathode chamber by a solid polymer electrolyte membrane. A cell, a cathode chamber side circulation path communicating with the cathode chamber and having a hydrogen / water separator and a first circulation pump, and an oxygen / water separator and a second circulation pump communicating with the anode chamber. It has an anode chamber side circulation path and autonomous differential pressure control means connected to the two circulation paths and maintaining a constant pressure difference therebetween. Preferably, the first and second circulation pumps are configured as one double-shaft pump.

【0007】[0007]

【発明の実施の形態】以下添付の図面を参照して本発明
の実施形態を説明する。尚、前述の従来の技術に関する
図面を含め、全図に亙り同一部分には同一の符号を付す
こととする。図1を参照するに、水電解槽1は固体高分
子電解質膜3により陰極室1aと陽極室1bとに内部が区
画されている。両軸ポンプ41から延びた入口ライン4
3,45が水電解槽1に連絡している。陰極室1aから
延びた出口ライン9はセパレータ11に連絡している。
セパレータ11から延びた水戻りライン47は、両軸ポ
ンプ41の吸込み側に連絡すると共にセパレータ11か
らの水素出口ライン49は圧力制御弁17を介して水素
ライン19に連絡し、これは図示しない適宜な回収装置
に連絡している。尚、水素出口ライン49には圧力逃し
弁21が設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the same portions are denoted by the same reference numerals throughout the drawings, including the drawings related to the above-mentioned conventional technology. Referring to FIG. 1, the interior of a water electrolysis tank 1 is partitioned into a cathode chamber 1 a and an anode chamber 1 b by a solid polymer electrolyte membrane 3. Inlet line 4 extending from double shaft pump 41
3, 45 are in communication with the water electrolysis tank 1. An outlet line 9 extending from the cathode chamber 1a communicates with the separator 11.
A water return line 47 extending from the separator 11 communicates with the suction side of the double-shaft pump 41, and a hydrogen outlet line 49 from the separator 11 communicates with the hydrogen line 19 via the pressure control valve 17, which is not shown. Is in contact with a suitable collection device. The hydrogen outlet line 49 is provided with a pressure relief valve 21.

【0008】一方、陽極室1bから延びた出口ライン2
3はセパレータ25に連絡している。セパレータ25か
ら延びた水戻りライン51は、両軸ポンプ41の他方の
吸込み側に連絡すると共にセパレータ25からの酸素出
口ライン49は圧力制御弁17を介し酸素ライン53に
連絡し、これは図示しない適宜な回収装置に連絡してい
る。尚、酸素出口ライン53にも圧力逃し弁35が設け
られている。
On the other hand, an outlet line 2 extending from the anode chamber 1b
3 communicates with the separator 25. A water return line 51 extending from the separator 25 communicates with the other suction side of the double shaft pump 41, and an oxygen outlet line 49 from the separator 25 communicates with the oxygen line 53 via the pressure control valve 17, which is not shown. Contact appropriate collection equipment. The oxygen outlet line 53 is also provided with a pressure relief valve 35.

【0009】水素側の水戻りライン47に流体的に連絡
した入口ライン43と酸素側の水戻りライン51に流体
的に連絡した入口ライン45との間には、自律差圧制御
手段60が設けられている。これを詳述すれば、窒素ガ
ス供給系61に圧力制御弁63を介して連絡した差圧制
御容器65は、内部下方が2個の空間に仕切られてい
る。その区画室63aは連通管65により入口ライン4
3に連絡し、区画室63bは連通管67により入口ライ
ン45に連絡している。
An autonomous differential pressure control means 60 is provided between the inlet line 43 fluidly connected to the water return line 47 on the hydrogen side and the inlet line 45 fluidly connected to the water return line 51 on the oxygen side. Have been. In more detail, the differential pressure control container 65 connected to the nitrogen gas supply system 61 via the pressure control valve 63 is partitioned into two spaces at the lower part inside. The compartment 63a is connected to the entrance line 4 by the communication pipe 65.
3, the compartment 63b is connected to the inlet line 45 by a communication pipe 67.

【0010】以上のような構成の水電解装置において、
水電解槽1の純水は電気分解され、水素は陰極室1aに
発生し、酸素は陽極室1bに発生する。陰極室1aから
の水素/水二相流は出口ライン9を通ってセパレータ1
1に入り、気体の水素と水とに分けられる。セパレータ
11において分離された水は、水戻りライン47を通っ
て両軸ポンプ41の吸込み側へ至り、この両軸ポンプ4
1により再び入口ライン43を通して水電解槽1に供給
される。一方、分離された水素(気体)は、出口ライン
49、圧力制御弁17を順次通過して水素ライン19に
流出し、適宜な回収装置に回収される。尚、圧力逃し弁
21は系統内の過大な圧力上昇を防止している。
In the water electrolysis apparatus having the above configuration,
Pure water in the water electrolyzer 1 is electrolyzed, hydrogen is generated in the cathode chamber 1a, and oxygen is generated in the anode chamber 1b. The hydrogen / water two-phase flow from the cathode chamber 1a passes through the outlet line 9 to the separator 1
1 and is divided into gaseous hydrogen and water. The water separated in the separator 11 reaches the suction side of the double-shaft pump 41 through the water return line 47,
1 again feeds the water electrolysis tank 1 through the inlet line 43. On the other hand, the separated hydrogen (gas) passes through the outlet line 49 and the pressure control valve 17 sequentially, flows out to the hydrogen line 19, and is collected by an appropriate collecting device. The pressure relief valve 21 prevents an excessive rise in pressure in the system.

【0011】他方、陽極室1bからの酸素/水二相流は
出口ライン23を通ってセパレータ25に入り、気体の
酸素と水とに分けられる。セパレータ25において分離
された水は、水戻りライン51を通って両軸ポンプ41
の他方の吸込み側へ至り、両軸ポンプ41により再び入
口ライン45を通して水電解槽1に供給される。一方、
分離された酸素(気体)は、出口ライン53、圧力制御
弁31を順次通過して酸素ライン33に流出し、適宜な
回収装置で回収される。尚、圧力逃し弁35は系統内の
過大な圧力上昇を防止している。
On the other hand, the oxygen / water two-phase flow from the anode chamber 1b enters the separator 25 through the outlet line 23 and is separated into gaseous oxygen and water. The water separated in the separator 25 passes through a water return line 51,
And the water is supplied again to the water electrolysis tank 1 through the inlet line 45 by the double shaft pump 41. on the other hand,
The separated oxygen (gas) passes through the outlet line 53 and the pressure control valve 31 sequentially, flows out to the oxygen line 33, and is collected by an appropriate collecting device. The pressure relief valve 35 prevents an excessive rise in pressure in the system.

【0012】そして、差圧制御容器63の区画室63a
及び区画室63bの差圧は、圧力制御弁63を介して供
給される窒素ガスによって一定に保持されるようになっ
ているから、これらが連通管65、67により連絡され
た入口ライン43、45の圧力差も一定に保持される。
即ち、水電解槽1の陰極室1aと陽極室1bとの差圧が
一定に保持される。
The compartment 63a of the differential pressure control container 63
And the differential pressure in the compartment 63b is kept constant by the nitrogen gas supplied through the pressure control valve 63, so that these are connected to the inlet lines 43, 45 connected by the communication pipes 65, 67. Is also kept constant.
That is, the pressure difference between the cathode chamber 1a and the anode chamber 1b of the water electrolysis tank 1 is kept constant.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
陰極室と陽極室とに内部が隔離された水電解槽を有する
固体高分子膜型水電解装置において、陰極室と陽極室と
にそれぞれ連絡した陰極室側循環路と陰極室側循環路と
の間に自律差圧制御手段を設けたので、水電解槽の陰極
室と陽極室との間の差圧を容易に一定に保持し、隔膜で
ある固体高分子電解膜の損傷を防止することができる。
As described above, according to the present invention,
In a solid polymer membrane type water electrolysis apparatus having a water electrolysis tank in which a cathode chamber and an anode chamber are separated from each other, the cathode chamber side circulation path and the cathode chamber side circulation path connected to the cathode chamber and the anode chamber, respectively. Since the autonomous differential pressure control means is provided between the cathode and anode compartments of the water electrolysis tank, the pressure difference between the cathode compartment and the anode compartment can be easily maintained at a constant level to prevent damage to the solid polymer electrolyte membrane which is a diaphragm. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】従来の装置の系統図である。FIG. 2 is a system diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1 水電解槽 1a 陰極室 1b 陽極室 3 固体高分子電解質膜 9 出口ライン 11 セパレータ 17 圧力制御弁 19 水素ライン 23 出口ライン 25 セパレータ 31 圧力制御弁 33 酸素ライン 41 両軸ポンプ 43,45 入口ライン 47 水戻りライン 49 水素出口ライン 51 水戻りライン 53 酸素出口ライン 60 自律差圧制御手段 61 窒素ガス供給系 63 圧力制御弁 63a、63b 区画室 65,67 連通管 DESCRIPTION OF SYMBOLS 1 Water electrolysis tank 1a Cathode chamber 1b Anode chamber 3 Solid polymer electrolyte membrane 9 Outlet line 11 Separator 17 Pressure control valve 19 Hydrogen line 23 Outlet line 25 Separator 31 Pressure control valve 33 Oxygen line 41 Double shaft pump 43,45 Inlet line 47 Water return line 49 Hydrogen outlet line 51 Water return line 53 Oxygen outlet line 60 Autonomous differential pressure control means 61 Nitrogen gas supply system 63 Pressure control valves 63a, 63b Compartment chambers 65, 67 Communication pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中森 信夫 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 4K021 AA01 BA02 CA09 CA10 CA11 CA13 DB28 DC15  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuo Nakamori 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo F-term in Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (Reference) 4K021 AA01 BA02 CA09 CA10 CA11 CA13 DB28 DC15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜によって内部が陽極
室と陰極室に区画された水電解槽と、前記陰極室に連絡
し水素/水セパレータと第1の循環ポンプとを備えた陰
極室側循環路と、前記陽極室に連絡し酸素/水セパレー
タと第2の循環ポンプとを備えた陽極室側循環路と、前
記両循環路に接続され両者の差圧を一定に保持する自律
差圧制御手段とを備えてなる固体高分子膜型水電解装
置。
1. A catholyte side, the inside of which is partitioned by a solid polymer electrolyte membrane into an anode compartment and a cathode compartment, and a hydrogen / water separator connected to the cathode compartment and comprising a first circulation pump. A circulation path, an anode chamber side circulation path communicating with the anode chamber and including an oxygen / water separator and a second circulation pump; and an autonomous differential pressure connected to the both circulation paths and maintaining a constant pressure difference between the two. A solid polymer membrane type water electrolysis device comprising a control means.
【請求項2】前記第1及び第2の循環ポンプを両軸ポン
プで構成した請求項1記載の固体高分子膜型水電解装
置。
2. The solid polymer membrane type water electrolysis apparatus according to claim 1, wherein said first and second circulating pumps are constituted by dual shaft pumps.
JP10217367A 1998-07-31 1998-07-31 Solid polymer membrane-type water electrolyzer Withdrawn JP2000054175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217367A JP2000054175A (en) 1998-07-31 1998-07-31 Solid polymer membrane-type water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217367A JP2000054175A (en) 1998-07-31 1998-07-31 Solid polymer membrane-type water electrolyzer

Publications (1)

Publication Number Publication Date
JP2000054175A true JP2000054175A (en) 2000-02-22

Family

ID=16703074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217367A Withdrawn JP2000054175A (en) 1998-07-31 1998-07-31 Solid polymer membrane-type water electrolyzer

Country Status (1)

Country Link
JP (1) JP2000054175A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038287A (en) * 2000-07-26 2002-02-06 Shinko Pantec Co Ltd Hydrogen/oxygen supplying system
JP2003138391A (en) * 2001-10-31 2003-05-14 Hitachi Zosen Corp Solid polymer type water electrolysis apparatus
US7048839B2 (en) * 2002-01-29 2006-05-23 Mitsubishi Corporation System and method for generating high pressure hydrogen
US7097748B2 (en) * 2002-04-23 2006-08-29 University Of Massachusetts Electrolyzer pressure equalization system
EP3045221A1 (en) * 2015-01-19 2016-07-20 Siemens Aktiengesellschaft Checking the integrity of a membrane using at least one membrane of an electrolyzer
JP2016222955A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Simple type electrolytic hydrogen gas generator
JP2016222961A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Electrolysis tank of electrolysis type hydrogen gas generator
CN106972192A (en) * 2017-03-16 2017-07-21 江苏大学 For the method and electrolytic cell device, lithium-ion energy storage device of the prefabricated lithium of lithium-ion energy storage device negative pole
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
KR20210033952A (en) * 2018-07-27 2021-03-29 가부시끼가이샤 도꾸야마 Gas manufacturing apparatus and gas manufacturing method
JP2022009018A (en) * 2016-08-10 2022-01-14 有限会社ターナープロセス Hydrogen gas generation device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038287A (en) * 2000-07-26 2002-02-06 Shinko Pantec Co Ltd Hydrogen/oxygen supplying system
JP2003138391A (en) * 2001-10-31 2003-05-14 Hitachi Zosen Corp Solid polymer type water electrolysis apparatus
US7048839B2 (en) * 2002-01-29 2006-05-23 Mitsubishi Corporation System and method for generating high pressure hydrogen
US7097748B2 (en) * 2002-04-23 2006-08-29 University Of Massachusetts Electrolyzer pressure equalization system
US10557206B2 (en) 2015-01-19 2020-02-11 Siemens Aktiengesellschaft Electrolysis membrane systems and methods
EP3045221A1 (en) * 2015-01-19 2016-07-20 Siemens Aktiengesellschaft Checking the integrity of a membrane using at least one membrane of an electrolyzer
WO2016116211A1 (en) * 2015-01-19 2016-07-28 Siemens Aktiengesellschaft Checking the tightness of at least one membrane of an electrolyzer
JP2016222955A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Simple type electrolytic hydrogen gas generator
JP2016222961A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Electrolysis tank of electrolysis type hydrogen gas generator
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
JP2022009018A (en) * 2016-08-10 2022-01-14 有限会社ターナープロセス Hydrogen gas generation device
JP7195662B2 (en) 2016-08-10 2022-12-26 有限会社ターナープロセス hydrogen gas generator
CN106972192A (en) * 2017-03-16 2017-07-21 江苏大学 For the method and electrolytic cell device, lithium-ion energy storage device of the prefabricated lithium of lithium-ion energy storage device negative pole
KR20210033952A (en) * 2018-07-27 2021-03-29 가부시끼가이샤 도꾸야마 Gas manufacturing apparatus and gas manufacturing method
KR102664170B1 (en) 2018-07-27 2024-05-10 가부시끼가이샤 도꾸야마 Gas production device and gas production method

Similar Documents

Publication Publication Date Title
TWI772629B (en) Apparatus for alkaline water electrolysis, and gas production method
US7897023B2 (en) Device for producing anodic oxidaton products of an alkali or alkali-earth metal chloride solution
US6527921B2 (en) Electrochemical cell stacks
KR100468541B1 (en) Hydrogen and Oxygen Generator
US6274009B1 (en) Generator for generating chlorine dioxide under vacuum eduction in a single pass
US6444107B2 (en) Method and device for the simultaneous production of acid and base of high purity
HU222129B1 (en) High pressure electrolyser module, ring-shaped frame and electrolyser
JP2000054175A (en) Solid polymer membrane-type water electrolyzer
JPH09143779A (en) Hydrogen and oxygen generator
CN107849713A (en) The reducing process and electrolysis system of carbon dioxide are utilized for electrochemistry
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP5314273B2 (en) Electrolyzer and fuel cell power generation system using the same
US5296121A (en) Target electrode for preventing corrosion in electrochemical cells
AU2021279136B2 (en) Electrolytic cell, method for operating a cell of this type and electrolyser
JP2003342767A (en) Hydrogen supplying apparatus using solid polymer type water electrolytic cell
JP2005248246A (en) Apparatus for generating hydrogen by water electrolysis accommodated in high-pressure vessel
JP3766893B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JPS59203939A (en) Method of detecting structurally damaged film
KR200240002Y1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
JP3509915B2 (en) Method and apparatus for removing carbon dioxide component dissolved in water, and electrolyzed water generator equipped with the same
CZ318392A3 (en) Vessel for generating gas by electrolysis
KR20010069568A (en) Apparatus creating electrolysed-water by multi-step and diaphram
KR102625513B1 (en) Separate type bop applied water electrolysis device
JP2003342765A (en) Hydrogen supplying apparatus using solid polymer type water electrolytic cell
KR100439997B1 (en) Apparatus creating electrolysed-water by multi-step and non-diaphram

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004