JP2000054144A - Formation of deposited film by plasma cvd method and device therefor - Google Patents

Formation of deposited film by plasma cvd method and device therefor

Info

Publication number
JP2000054144A
JP2000054144A JP10219263A JP21926398A JP2000054144A JP 2000054144 A JP2000054144 A JP 2000054144A JP 10219263 A JP10219263 A JP 10219263A JP 21926398 A JP21926398 A JP 21926398A JP 2000054144 A JP2000054144 A JP 2000054144A
Authority
JP
Japan
Prior art keywords
pipe
gas
raw material
reaction vessel
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10219263A
Other languages
Japanese (ja)
Inventor
Kazuhiko Takada
和彦 高田
Hideaki Matsuoka
秀彰 松岡
Hiroyuki Katagiri
宏之 片桐
Yoshio Seki
好雄 瀬木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10219263A priority Critical patent/JP2000054144A/en
Publication of JP2000054144A publication Critical patent/JP2000054144A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformize the balance of the gas to be released from a gas releasing hole provided on the outer pipe of a double pipe into a reaction space in circumferential direction of a reaction vessel by providing a gas distribution pipe feeding a gaseous raw material from a gaseous raw material feeding source to plural gaseous raw material introducing pipes, making this distribution pipe of a double pipe structure and connecting the inner pipe of the double pipe to the gaseous raw material feeding source. SOLUTION: The gas distribution pipe feeding a gaseous raw material from a gaseous raw material feeding source to plural gaseous raw material introducing pipes 104 is made to have a double pipe structure composed of an inner pipe 120 and an outer pipe 103. The inner pipe 120 of the double pipes is connected to the gaseous raw material feeding source, and a gaseous raw material is introduced into the inner pipe 120, thereby, the gaseous raw material is released into a reaction space via a gas releasing hole in the gaseous raw material introducing pipe 104 connected to the outer pipe 103 of the double pipe. At this time, the angle of the gas releasing hole in the inner pipe 120 is made 45 to 315 degrees to the blow-off hole of the outer pipe 103. In this way, the gas on the space between the inner pipe 120 and the outer pipe 103 is uniformized, and the uniformization of the deposited film thickness and film quality in the circumferential direction of a circular pipe-shaped supporting body 102 can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマCVD法
により、支持体上に機能性堆積膜、特に電子写真用感光
体、光起電力デバイス、画像入力用ラインセンサー、撮
像デバイス、TFT等の半導体素子として好適に利用で
きる、結晶質、または非単結晶質半導体を連続的に形成
可能な堆積膜形成方法および形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional deposited film formed on a support by a plasma CVD method, in particular, a semiconductor such as an electrophotographic photosensitive member, a photovoltaic device, an image input line sensor, an imaging device, and a TFT. The present invention relates to a method and an apparatus for forming a deposited film capable of continuously forming a crystalline or non-single-crystalline semiconductor which can be suitably used as an element.

【0002】[0002]

【従来の技術】従来より、半導体デバイス、電子写真用
感光体、画像入力用ラインセンサー、撮像デバイス、光
起電力デバイス、その他各種エレクトロニクス素子、光
学素子等に用いる素子部材として、アモルファスシリコ
ン、例えば水素または/およびハロゲン(例えばフッ
素、塩素等)で補償されたアモルフアスシリコン[以下、
A-Si(H,X)と略記する]のような、非単結晶質の堆積
膜またはダイヤモンド簿膜やポリシリコン簿膜のような
結晶質の堆積膜が提案され、その中のいくつかは実用に
供されている。そして、こうした堆積膜は、プラズマC
VD法、すなわち原料ガスを直流または高周波、あるい
はマイクロ波によるグロー放電によって分解し、ガラ
ス、石英、耐熱性合成樹脂フイルム、ステンレス、アル
ミニウム等の支持体上に堆積膜を形成する方法により形
成され、そのための装置も各種提案されている。
2. Description of the Related Art Conventionally, amorphous silicon such as hydrogen has been used as an element member for semiconductor devices, electrophotographic photoreceptors, image input line sensors, imaging devices, photovoltaic devices, other various electronic elements, optical elements, and the like. Or / and amorphous silicon compensated with halogen (eg, fluorine, chlorine, etc.)
A-Si (H, X)], or non-monocrystalline deposited films or crystalline deposited films such as diamond films and polysilicon films. It has been put to practical use. And such a deposited film is plasma C
VD method, that is, formed by a method of decomposing a raw material gas by direct current or high frequency, or glow discharge by microwave and forming a deposited film on a support such as glass, quartz, heat-resistant synthetic resin film, stainless steel, and aluminum, Various devices have been proposed for this purpose.

【0003】例えば、図2はプラズマCVD法(以下、
PCVDと略記する)による電子写真用感光体の製造装
置の一例を示す模式的な構成図である。図2に示す製造
装置の構成は下記の通りである。この装置は大別する
と、堆積膜形成装置200、原料ガスの供給装置(不図
示)、円筒状反応容器201内を減圧にするための排気
装置214,215から構成されている。成膜装置20
0中の円筒状反応容器210内には、円筒状支持体20
2、支持体加熱用ヒーター209、原料ガス導入管20
4が設置され、さらに高周波マッチングボックス211
が接続されている。
For example, FIG. 2 shows a plasma CVD method (hereinafter, referred to as a plasma CVD method).
FIG. 2 is a schematic configuration diagram illustrating an example of an apparatus for manufacturing an electrophotographic photosensitive member by PCVD). The configuration of the manufacturing apparatus shown in FIG. 2 is as follows. This apparatus is roughly divided into a deposited film forming apparatus 200, a source gas supply apparatus (not shown), and exhaust apparatuses 214 and 215 for reducing the pressure inside the cylindrical reaction vessel 201. Film forming apparatus 20
In the cylindrical reaction vessel 210 in FIG.
2. Heater 209 for heating the support, raw material gas introduction pipe 20
4 and a high-frequency matching box 211
Is connected.

【0004】原料ガス供給装置(不図示)は、SiH4,Ge
4,H2,CH4,B26,PH3等の原料ガスのボンベ(不
図示)とバルブ(不図示)およびマスフローコントローラ
ー(不図示)から構成され、各原料ガスのボンベはバルブ
(不図示)を介して円筒状反応容器201内のガス導入管
204に接続されている。
[0004] A source gas supply device (not shown) is made of SiH 4 , Ge.
It consists of a source gas cylinder (not shown) such as H 4 , H 2 , CH 4 , B 2 H 6 , PH 3 , a valve (not shown) and a mass flow controller (not shown).
It is connected to a gas introduction pipe 204 in the cylindrical reaction vessel 201 via (not shown).

【0005】こうした従来の堆積膜形成装置を用いた堆
積膜の形成は、例えば以下のように行なわれる。まず、
円筒状反応容器201内に円筒状支持体202を設置
し、排気装置214により円筒状反応容器201内を排
気する。続いて、支持体加熱用ヒーター209により円
筒状支持体202の温度を20〜450℃の所定の温度
に制御する。堆積膜形成用の原料ガスを円筒状反応容器
201に流入させるには、ガスボンベのバルブ(不図
示)、円筒状反応容器のリークバルブ212が閉じられ
ていることを確認し、また、流入バルブ(不図示)、流出
バルブ(不図示)、補助バルブ(不図示)が開かれているこ
とを確認して、まずメイン排気バルブ213を開いて円
筒状反応容器内201およびガス分配管203を排気す
る。
The formation of a deposited film using such a conventional deposited film forming apparatus is performed, for example, as follows. First,
The cylindrical support 202 is set in the cylindrical reaction vessel 201, and the inside of the cylindrical reaction vessel 201 is evacuated by the exhaust device 214. Subsequently, the temperature of the cylindrical support 202 is controlled to a predetermined temperature of 20 to 450 ° C. by the support heating heater 209. In order to allow the source gas for forming the deposited film to flow into the cylindrical reaction vessel 201, it is confirmed that the valve of the gas cylinder (not shown) and the leak valve 212 of the cylindrical reaction vessel are closed, and the inflow valve ( (Not shown), the outflow valve (not shown), and the auxiliary valve (not shown) are confirmed to be open. First, the main exhaust valve 213 is opened to exhaust the inside 201 of the cylindrical reaction vessel and the gas distribution pipe 203. .

【0006】次に、真空計217の読みが約6.7×1
-4Paになった時点で、補助バルブ(不図示)、流出バ
ルブ(不図示)を閉じる。その後、ガスボンベ(不図示)よ
り各ガスをバルブ(不図示)を開いて導入し、圧力調整器
(不図示)により各ガス圧を2Kg/cm2に調整する。
次いで流入バルブ(不図示)を徐々に開けて、各ガスをマ
スフローコントローラー(不図示)内に導入する。
Next, the reading of the vacuum gauge 217 is about 6.7 × 1.
When the pressure becomes 0 -4 Pa, the auxiliary valve (not shown) and the outflow valve (not shown) are closed. After that, open each valve (not shown) from the gas cylinder (not shown) and introduce each gas.
(Not shown), each gas pressure is adjusted to 2 kg / cm 2 .
Next, the inflow valve (not shown) is gradually opened, and each gas is introduced into the mass flow controller (not shown).

【0007】以上のようにして成膜の準備が完了した
後、以下の手順で各層の形成を行う。円筒状支持体20
2が所定の温度になったところで、流出バルブ(不図示)
のうちの必要なものおよび補助バルブ(不図示)を徐々に
開き、ガスボンベ(不図示)から所定のガスを、ガス分配
管203を介して円筒状反応容器201内に導入する。
次に、マスフローコントローラー(不図示)によって各原
料ガスが所定の流量になるように調整する。その際、円
筒状反応容器201内の圧力が133Pa以下の所定の
圧力になるように真空計217を見ながらメインバルブ
218の開口を調整する。
After the preparation for film formation is completed as described above, each layer is formed in the following procedure. Cylindrical support 20
When the temperature of 2 reaches a predetermined temperature, an outflow valve (not shown)
The necessary ones and an auxiliary valve (not shown) are gradually opened, and a predetermined gas is introduced from a gas cylinder (not shown) into the cylindrical reaction vessel 201 through a gas distribution pipe 203.
Next, each raw material gas is adjusted to a predetermined flow rate by a mass flow controller (not shown). At this time, the opening of the main valve 218 is adjusted while watching the vacuum gauge 217 so that the pressure in the cylindrical reaction vessel 201 becomes a predetermined pressure of 133 Pa or less.

【0008】内圧が安定したところで、周波数13.5
6MHzの高周波電源(不図示)を所望の電力に設定し
て、高周波マッチングボックス211を通じて円筒状反
応容器201内に高周波電力を導入し、グロー放電を生
起させる。この放電エネルギーによって反応容器内に導
入された原料ガスが分解され、円筒状支持体202上に
所定のシリコンを主成分とする堆積膜が形成されるとこ
ろとなる。
When the internal pressure becomes stable, the frequency becomes 13.5.
A 6 MHz high frequency power supply (not shown) is set to a desired power, and high frequency power is introduced into the cylindrical reaction vessel 201 through the high frequency matching box 211 to generate glow discharge. The source gas introduced into the reaction vessel is decomposed by the discharge energy, and a deposited film mainly containing predetermined silicon is formed on the cylindrical support 202.

【0009】所望の膜厚の形成が行われた後、高周波電
力の供給を止め、流出バルブを閉じて反応容器ヘのガス
の流入を止め、推積膜の形成を終える。同様の操作を複
数回繰り返すことによって、所望の多層構造の光受容層
を形成することができる。それぞれの層を形成する際に
は、必要なガス以外の流出バルブはすべて閉じられてい
ることは言うまでもなく、また、それぞれのガスが円筒
状反応容器201内、流出バルブ(不図示)から円筒状反
応容器201に至る配管内に残留することを避けるため
に、流出バルブ(不図示)を閉じ、補助バルブ(不図示)を
開き、さらにメイン排気バルブ213を全開にして系内
を一旦高真空に排気する操作を必要に応じて行う。
After the desired film thickness is formed, the supply of the high-frequency power is stopped, the outflow valve is closed to stop the gas from flowing into the reaction vessel, and the formation of the deposited film is completed. By repeating the same operation a plurality of times, a light receiving layer having a desired multilayer structure can be formed. When forming each layer, it goes without saying that all the outflow valves other than the necessary gas are closed, and each gas flows into the cylindrical reaction vessel 201 from the outflow valve (not shown). To avoid remaining in the piping leading to the reaction vessel 201, the outflow valve (not shown) is closed, the auxiliary valve (not shown) is opened, the main exhaust valve 213 is fully opened, and the system is once evacuated to high vacuum. Perform the exhausting operation as needed.

【0010】このようにして、電子写真用感光体のよう
な大面積を有する堆積膜を形成する場合、膜厚、膜質の
均一化が必要であり、そのための装置構成も各種提案さ
れている。例えば、特開平4-247877号公報によ
れば、マイクロ波プラズマCVD堆積膜形成装置におい
て、原料ガス導入管は多車管構成し、該多重管に設けた
ガス放出孔の数を、該多重管の内側から外側に向かうに
つれて増加させる構成にすることで、反応容器内のガス
分布の均一化を図る技術が開示されている。
[0010] When a deposited film having a large area such as an electrophotographic photosensitive member is formed in this manner, it is necessary to make the film thickness and film quality uniform, and various device configurations have been proposed. For example, according to Japanese Patent Application Laid-Open No. 4-247877, in a microwave plasma CVD deposited film forming apparatus, a source gas introduction pipe is configured as a multi-car pipe, and the number of gas discharge holes provided in the multi-pipe is reduced by the A technique has been disclosed in which the gas distribution in the reaction vessel is made uniform by increasing the temperature from the inside to the outside.

【0011】特開昭58-30125号公報によれば、
原料ガス導入に、円筒状電極とは独立した、ガス導入用
ガス管を用い、該ガス管に設けたガス放出孔の断面積と
間隔を円筒形支持体の長手方向で変化させ、原料ガスを
均一に放出することにより、膜厚および膜質を改善する
技術が開示されている。また、特開昭58-32413
号公報によれば、ガス導入手段兼用の円筒状電極におい
ても、ガス導入用ガス管を使用した場合においても、ガ
ス放出孔の向きを原料ガスが一定方向に回転するように
設定することにより、膜厚と膜質の均一性を改善する技
術が開示されている。
According to JP-A-58-30125,
For the introduction of the raw material gas, a gas pipe for gas introduction independent of the cylindrical electrode is used, and the cross-sectional area and interval of the gas discharge holes provided in the gas pipe are changed in the longitudinal direction of the cylindrical support, so that the raw material gas is supplied. A technique for improving the film thickness and film quality by uniformly discharging the film is disclosed. Also, Japanese Patent Application Laid-Open No. 58-32413
According to the publication, even in the cylindrical electrode serving also as the gas introduction means, even when the gas pipe for gas introduction is used, by setting the direction of the gas discharge holes so that the raw material gas rotates in a fixed direction, A technique for improving the uniformity of film thickness and film quality is disclosed.

【0012】特開昭62-218573号公報によれ
ば、ガス導入管の上部および下部を分岐管により接続す
ることにより、支持体を回転させずに膜厚、膜質の均一
性を改善する技術が開示されている。また、特開昭63
-479号公報によれば、ガス導入管のガス放出孔と円
筒状支持体との角度と、円筒状電極の内径、円筒状支持
体の内径との関係を規定することにより、支持体を回転
させずに膜厚、膜質の均一性を改善する技術が開示され
ている。
According to Japanese Patent Application Laid-Open No. 62-218573, there is a technique for improving the uniformity of the film thickness and film quality without rotating the support by connecting the upper and lower portions of the gas introduction pipe with a branch pipe. It has been disclosed. Also, JP-A-63
According to Japanese Patent No. 479, the support is rotated by defining the relationship between the angle between the gas discharge hole of the gas inlet tube and the cylindrical support, the inner diameter of the cylindrical electrode, and the inner diameter of the cylindrical support. There is disclosed a technique for improving the uniformity of the film thickness and film quality without performing the method.

【0013】特開昭63-7373号公報によれば、ガ
ス導入管を用い、ガス導入管の断面積、ガス放出孔の断
面積と数の関係を規定することにより、円筒形支持体を
回転させずに、形成される堆積膜の膜厚および膜質を均
一にする技術が開示されている。また、特開平9-36
52号公報によれば、円筒上支持体長手方向に対して、
セラミックリングを用いて原料ガス導入管を傾斜をさせ
ることで、長手方向での特性むらを均一にする技術が開
示されている。これらの技術により電子写真用感光体の
膜厚や膜質の均一性が向上し、それに伴って歩留りも向
上してきた。
According to Japanese Patent Application Laid-Open No. 63-7373, a cylindrical support is rotated by using a gas inlet pipe and defining the relationship between the cross-sectional area of the gas inlet pipe and the cross-sectional area and number of the gas discharge holes. A technique for making the thickness and quality of a deposited film uniform without performing the method is disclosed. Also, Japanese Patent Application Laid-Open No. 9-36
According to Japanese Patent Publication No. 52, with respect to the longitudinal direction of the cylindrical support,
A technique has been disclosed in which a material gas introduction pipe is inclined using a ceramic ring to make the characteristic unevenness in the longitudinal direction uniform. These techniques have improved the uniformity of the film thickness and film quality of the electrophotographic photoreceptor, and accordingly the yield has been improved.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、従来の
成膜装置で作製された電子写真用感光体は、膜厚、膜質
等が均一化され歩留りの面で改善されてきたが、総合的
な特性向上を図る上でさらに改良される余地が存在する
のが実情である。特に、電子写真装置の高画質化、高速
化、高耐久化は急速に進んでおり、電子写真用感光体に
おいては、電気的特性や光導電特性のさらなる向上とと
もに、帯電能、感度を維持しつつ、あらゆる環境下で大
幅に性能を延すことが求められている。
However, the photoreceptor for electrophotography manufactured by a conventional film forming apparatus has been made uniform in film thickness, film quality, etc., and has been improved in the yield. In fact, there is room for further improvement in achieving improvement. In particular, high image quality, high speed, and high durability of electrophotographic devices are rapidly progressing, and in electrophotographic photoreceptors, charging performance and sensitivity are maintained while further improving electrical and photoconductive characteristics. On the other hand, it is required to greatly extend the performance under any environment.

【0015】このような状況下において、前述した従来
技術により上記課題についてある程度の膜厚、膜質の均
一化が可能になってはきたが、未だ充分とはいえない。
特にアモルファスシリコン系感光体のさらなる高画質化
ヘの課題として、さらに均一な膜を得ることが必要とさ
れる。そのためには、反応空間内のガスの流量、速度の
バランスをとることが必要である。
Under these circumstances, the above-mentioned prior art has made it possible to achieve a certain degree of uniformity of film thickness and film quality with respect to the above-mentioned problems, but it is still not sufficient.
In particular, it is necessary to obtain a more uniform film as an issue of further improving the image quality of the amorphous silicon-based photoconductor. For that purpose, it is necessary to balance the flow rate and velocity of the gas in the reaction space.

【0016】本発明の目的は、上述のごとき従来の堆積
膜形成装置における諸問題を克服して、電子写真用感光
体に使用する堆積膜を形成する方法および装置につい
て、上述の諸問題を解決し、上述の要求を満たすように
することを目的とする。すなわち、本発明の主たる日的
は、反応容器内のガス量のバランスをとり、膜厚および
膜質が均一な堆積膜を定常的に形成し得るプラズマCV
D法による堆積膜形成方法および形成装置を提供するこ
とにある。本発明の他の目的は、形成される膜の諸物
性、成膜速度、再現性の向上、膜の生産性を向上し量産
化を行う場合の歩留りを飛躍的に向上させることを可能
にするプラズマCVD法による堆積膜量産装置を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems in a method and an apparatus for forming a deposited film used in an electrophotographic photoreceptor by overcoming the above-mentioned problems in the conventional deposited film forming apparatus. It is another object of the present invention to satisfy the above requirements. That is, on the main day of the present invention, the plasma CV capable of constantly forming a deposited film having a uniform thickness and quality by balancing the amount of gas in the reaction vessel.
An object of the present invention is to provide a method and an apparatus for forming a deposited film by a method D. Another object of the present invention is to improve various physical properties of a film to be formed, a film forming speed, reproducibility, improve film productivity, and dramatically improve the yield in mass production. An object of the present invention is to provide an apparatus for mass-producing a deposited film by a plasma CVD method.

【0017】[0017]

【課題を解決するための手段】本発明者らは、従来の堆
積膜形成方法における前述の問題を克服して、前述の本
発明の目的を達成すべく鋭意研究を重ねたところ、前記
複数の原料ガス導入管に原料ガス供給源からの原料ガス
を供給するためのガス分配管を有し、原料ガス分配管は
少なくとも二重管構成であり、該二重管の内管に原料ガ
スを導入することが堆積膜の均一性に大きく影響すると
いう知見を得た。
Means for Solving the Problems The present inventors have made intensive studies to overcome the above-mentioned problems in the conventional method of forming a deposited film and achieve the above-mentioned object of the present invention. The source gas introduction pipe has a gas distribution pipe for supplying the source gas from the source gas supply source, and the source gas distribution pipe has at least a double pipe configuration, and the source gas is introduced into the inner pipe of the double pipe. It has been found that the effect of this on the uniformity of the deposited film greatly.

【0018】すなわち、本発明は前記ガス分配管を二重
管構造とし、原料ガス供給源より導入された原料ガスが
該二重管の分配管の内管に導入され、内管のガス吹き出
し孔を経て該二重管の外管に接続したガス導入管のガス
放出孔を介して、反応空間内ヘ放出されるガスバランス
を、円筒状反応容器周方向で均一化するものであり、前
記二重管の内管のガス放出孔を、外管に設けられている
ガス放出孔に対して45度以上315度以下に設けるこ
とにより、適切な位置でガスの放出がなされるため、内
管と外管との空間で外管から放出される以前にガスが周
方向で均一化されることにより、円筒状支持体の周方向
での堆積膜厚および膜質の均一化が図られるものであ
り、前記二重管の内管のガス吹き出し孔の数を、2個以
上有することにより、円筒状反応容器周方向でのガスバ
ランスを均一化するものである。
That is, according to the present invention, the gas distribution pipe has a double pipe structure, and a raw material gas introduced from a raw gas supply source is introduced into an inner pipe of the double pipe, and a gas blowing hole of the inner pipe is provided. Through a gas discharge hole of a gas introduction pipe connected to the outer pipe of the double pipe through the gas pipe, to make the gas balance discharged into the reaction space uniform in the circumferential direction of the cylindrical reaction vessel. By providing the gas discharge holes of the inner pipe of the heavy pipe at 45 degrees or more and 315 degrees or less with respect to the gas discharge holes provided in the outer pipe, gas is released at an appropriate position. By uniformizing the gas in the circumferential direction before being released from the outer tube in the space with the outer tube, uniformization of the deposited film thickness and film quality in the circumferential direction of the cylindrical support is achieved. By having two or more gas blowing holes in the inner pipe of the double pipe It is intended to equalize the gas balance in the cylindrical reaction vessel circumferential direction.

【0019】[0019]

【発明の実施の形態】以下、図面に基づき本発明の実施
態様について具体的に詳述する。図1(a)は、本発明の
プラズマCVD法による堆積膜形成装置における原料ガ
ス導入管と電極を兼ねる円筒状反応容器、円筒状支持体
を含む対向電極の配置を模式的に示す断面図である。図
1(a)は、100が堆積膜形成装置、101は電極を兼
ねる円筒状反応容器、102は円筒状支持体、103は
原料ガス分配管である二重管、104はガス導入管、1
05は排気管、をそれぞれ示し、図1(b)〜(d)は本発
明における原料ガス分配管である二重管を模式的に示す
詳細断面図であり、(b)は二重管の外管とガス導入管の
縦断面図、(c)は、二重管の上面断面図、(d)は二重管
の上面図を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a cross-sectional view schematically showing the arrangement of a counter electrode including a cylindrical reaction vessel serving as a source gas introduction tube and an electrode, and a cylindrical support in a deposition film forming apparatus using a plasma CVD method of the present invention. is there. FIG. 1A shows a deposition film forming apparatus 100, a cylindrical reaction vessel 101 also serving as an electrode, a cylindrical support 102, a double pipe 103 as a source gas distribution pipe, a gas pipe 104,
FIG. 1B shows an exhaust pipe, and FIGS. 1B to 1D are detailed cross-sectional views schematically showing a double pipe which is a source gas distribution pipe in the present invention, and FIG. FIG. 3C is a vertical cross-sectional view of the outer pipe and the gas introduction pipe, FIG. 3C is a top cross-sectional view of the double pipe, and FIG.

【0020】従来の堆積膜形成方法および装置において
は、原料ガスはガス導入管下部から導入されるが、単管
構成で且つガス供給源が1つであるため、周方向でガス
バランスが不均一となる。そのため原料ガスを円筒状反
応容器の周方向に数箇所にわたって分配すると、原料ガ
ス供給源の供給口から離れるにしたがって、導入ガス管
に供給される原料ガスの量が少なくなり、そして、反応
空間内のガスバランスが不均一となり円筒状反応容器の
周方向に堆積膜厚むら、あるいは膜質むらを生じてしま
う。
In the conventional method and apparatus for forming a deposited film, the raw material gas is introduced from the lower portion of the gas introduction pipe. However, since the gas supply source has a single pipe structure and a single gas supply source, the gas balance is not uniform in the circumferential direction. Becomes Therefore, when the raw material gas is distributed in several places in the circumferential direction of the cylindrical reaction vessel, the amount of the raw material gas supplied to the introduction gas pipe decreases as the distance from the supply port of the raw material gas supply source decreases, and And the gas balance becomes uneven, causing unevenness of the deposited film thickness or film quality in the circumferential direction of the cylindrical reaction vessel.

【0021】本発明においては、原料ガス分配管を少な
くとも二重管構成とし、該二重管の内管に原料ガス供給
源を接続し、且つ前記原料ガスは前記二重管の内管に導
入することで、該二重管の外管に接続されたガス導入管
のガス放出孔を介して反応空間内ヘ放出されるガス量の
ガスバランスを円筒状反応容器周方向で均一化すること
ができた。なお、前記二重管の内管に設けられたガス放
出孔は該二重管の外管に接続されている原料ガス導入管
に直接ガスが吹き込まないように設計することが望まし
く、前記二重管の内管のガス放出孔を外管のガス吹き出
し孔に対して45度から315度にすることで、内管と
外管との空問で外管から放出される以前にガスが周方向
で均一化されることにより、円筒状支持体の周方向での
堆積膜厚および膜質の均一化が図られた。
In the present invention, the source gas distribution pipe has at least a double pipe configuration, a source gas supply source is connected to the inner pipe of the double pipe, and the source gas is introduced into the inner pipe of the double pipe. By doing so, the gas balance of the amount of gas discharged into the reaction space through the gas discharge hole of the gas introduction pipe connected to the outer pipe of the double pipe can be made uniform in the circumferential direction of the cylindrical reaction vessel. did it. It is preferable that the gas discharge holes provided in the inner pipe of the double pipe are designed so that the gas is not directly blown into the raw material gas introduction pipe connected to the outer pipe of the double pipe. By setting the gas discharge hole of the inner tube of the tube to 45 degrees to 315 degrees with respect to the gas discharge hole of the outer tube, gas is released in the circumferential direction before being released from the outer tube due to the gap between the inner tube and the outer tube. As a result, the deposited film thickness and film quality in the circumferential direction of the cylindrical support were made uniform.

【0022】また、前記二重管の内管のガス放出孔は、
少なくても2個以上設けることで反応空問内のガス量の
バランスがより適正化され、堆積される堆積膜の膜質お
よび膜厚を円筒状支持体の周方向で均一にすることがで
きた。また、前記原料ガス分配管は三重管においても同
等の効果が得られた。
The gas discharge hole of the inner pipe of the double pipe is
By providing at least two or more, the balance of the gas amount in the reaction space was made more appropriate, and the quality and thickness of the deposited film to be deposited could be made uniform in the circumferential direction of the cylindrical support. . In addition, the same effect was obtained in the case of a triple pipe for the source gas distribution pipe.

【0023】本発明において使用される支持体として
は、導電性であっても、あるいは電気絶縁性であっても
よい。導電性支持体としては、Al,Cr,Mo,Au,In,N
b,Te,V,Ti,Pt,Pd,Fe等の金属、およびこれらの合
金、例えばステンレス等が挙げられる。
The support used in the present invention may be conductive or electrically insulating. As the conductive support, Al, Cr, Mo, Au, In, N
Examples include metals such as b, Te, V, Ti, Pt, Pd, and Fe, and alloys thereof, for example, stainless steel.

【0024】また、ポリエステル、ポリエチレン、ポリ
カーボネート、セルロースアセテート、ポリプロピレ
ン、ポリ塩化ビニル、ポリスチレン、ポリアミド等の合
成樹脂のフィルムまたはシート、ガラス、セラミック等
の電気絶緑性支持体の少なくとも光受容層を形成する側
の表面を導電処理した支持体も用いることができる。
Further, at least the light-receiving layer of an electrically insulating support such as a film or sheet of a synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene and polyamide, glass and ceramic is formed. A support having a surface on the side to be conductive-treated can also be used.

【0025】本発明において使用される支持体の形状は
平滑表面あるいは凹凸表面の円筒状または板状無端ベル
ト状であることができ、その厚さは、所望通りの電子写
真用感光体を形成し得るように適宜決定するが、電子写
真用感光体としての可撓性が要求される場合には、支持
体としての機能が充分発揮できる範囲内で可能な限り簿
くすることができる。しかしながら、支持体は製造上お
よび取り扱い上、機械的強度等の点から通常は10μm
以上とされる。
The support used in the present invention may be in the form of a cylindrical or plate-shaped endless belt having a smooth surface or an uneven surface, and the thickness of the support is such that a desired electrophotographic photosensitive member can be formed. It is appropriately determined so as to obtain, but when flexibility as an electrophotographic photoreceptor is required, it can be as low as possible as long as the function as a support can be sufficiently exhibited. However, the support is usually 10 μm in view of production, handling, mechanical strength and the like.
That is all.

【0026】特にレーザー光等の可干渉性光を用いて像
記録を行う場合には、可視画像において現われる、いわ
ゆる干渉縞模様による画像不良をより効果的に解消する
ために、支持体の表面に凹凸を設けてもよい。支持体の
表面に設けられる凹凸は、特開昭60-168156
号、同60-178457号、同60-225854号各
公報等に記載された公知の方法により作成される。
In particular, in the case of performing image recording using coherent light such as laser light, in order to more effectively eliminate image defects caused by so-called interference fringe patterns appearing in a visible image, the surface of the support is preferably used. Irregularities may be provided. The unevenness provided on the surface of the support is described in JP-A-60-168156.
No. 60-178457 and No. 60-225854.

【0027】また、レーザー光等の可干渉光を用いた場
合の干渉縞模様による画像不良をより効果的に解消する
別の方法として、支持体の表面に複数の球状痕跡窪みに
よる凹凸形状を設けてもよい。すなわち、支持体の表面
が電子写真用感光体に要求される解像力よりも微少な凹
凸を有し、しかも該凹凸は、複数の球状痕跡窪みによる
ものである。支持体の表面に設けられる複数の球状痕跡
窪みによる凹凸は、特開昭61-231561号公報に
記載された公知の方法により作成される。
As another method for more effectively eliminating image defects due to interference fringe patterns when coherent light such as laser light is used, a concave-convex shape formed by a plurality of spherical trace depressions is provided on the surface of a support. You may. That is, the surface of the support has irregularities finer than the resolution required for the electrophotographic photosensitive member, and the irregularities are caused by a plurality of spherical trace depressions. The unevenness due to the plurality of spherical trace depressions provided on the surface of the support is created by a known method described in JP-A-61-231561.

【0028】本発明の装置を用いて、グロー放電法によ
って堆積膜を形成するには、基本的にはシリコン原子
(Si)を供給し得るSi供給用の原料ガスと、水素原子
(H)を供給し得るH供給用の原料ガスまたは/およびハ
ロゲン原子(X)を供給し得るX供給用の原料ガスを、反
応容器内に所望のガス状態で導入して、該反応容器内に
グロー放電を生起させ、あらかじめ所定の位置に設置さ
れてある所定の支持体上にA-Si:(H,X)からなる層を
形成すればよい。
In order to form a deposited film by the glow discharge method using the apparatus of the present invention, basically, a silicon atom is formed.
A source gas for supplying Si capable of supplying (Si), and a hydrogen atom
A source gas for supplying H capable of supplying (H) and / or a source gas for supplying X capable of supplying a halogen atom (X) are introduced into a reaction vessel in a desired gas state, and Glow discharge is caused to occur, and a layer made of A-Si: (H, X) may be formed on a predetermined support previously set at a predetermined position.

【0029】本発明において使用されるSi供給用ガス
となり得る物質としては、SiH4,Si26,Si38,Si
410等のガス状態の、またはガス化し得る水素化珪素
(シラン類)が布効に使用されるものとして挙げられ、史
に層作成時の取り扱い易さ、Si供給効率の良さ等の点
でSiH4,Si26が好ましいものとして挙げられる。そ
して、形成される堆積膜中に水素原子を構造的に導入
し、水素原子の導入割合の制御をいっそう容易になるよ
うにはかり、本発明の日的を達成する膜特性を得るため
に、これらのガスにさらにH2および/またはHeあるい
は水素原子を含む珪素化合物のガスも所望量混合して層
形成することが必要である。
The substances that can be used as the Si supply gas used in the present invention include SiH 4 , Si 2 H 6 , Si 3 H 8 , and Si.
4 gaseous state of H 10, etc., or silicon hydride can be gasified
(Silanes) are mentioned as ones used for fabric effect, and SiH 4 and Si 2 H 6 are mentioned as preferable ones in terms of ease of handling at the time of forming a layer and good Si supply efficiency. Then, hydrogen atoms are structurally introduced into the deposited film to be formed, and the control of the introduction ratio of hydrogen atoms is further facilitated. It is necessary to form a layer by further mixing a desired amount of a gas of a silicon compound containing H 2 and / or He or a hydrogen atom with the above gas.

【0030】また、各ガスは単独種のみでなく所定の混
合比で複数種混合しても差し支えないものである。また
本発明において使用されるハロゲン原子供給用の原料ガ
スとして有効なのは、例えばハロゲンガス、ハロゲン化
物、ハロゲンを含むハロゲン間化合物、ハロゲンで置換
されたシラン誘導体等のガス状のまたはガス化し得るハ
ロゲン化合物が好ましく挙げられる。また、さらにはシ
リコン原子とハロゲン原子とを構成要素とするガス状の
またはガス化し得る、ハロゲン原子を含む水素化珪素化
合物も有効なものとして挙げることができる。
Further, each gas is not limited to a single species, and a plurality of species may be mixed at a predetermined mixture ratio. Also useful as a source gas for supplying halogen atoms used in the present invention are gaseous or gasizable halogen compounds such as halogen gas, halides, halogen-containing interhalogen compounds, and halogen-substituted silane derivatives. Are preferred. Further, a gaseous or gasifiable silicon hydride compound containing a halogen atom, which contains a silicon atom and a halogen atom as constituent elements, can also be mentioned as an effective compound.

【0031】本発明において好適に使用し得るハロゲン
化合物としては、具体的には弗素ガス(F2),BrF,Cl
F,ClF3,BrF3,BrF5,IF3,IF7等のハロゲン問
化合物を挙げることができる。ハロゲン原子を含む珪素
化合物、いわゆるハロゲン原子で置換されたシラン誘導
体としては、具体的には、例えばSiF4,Si26等の弗
化珪素が好ましいものとして挙げることができる。
As the halogen compound which can be suitably used in the present invention, specifically, fluorine gas (F 2 ), BrF, Cl
Examples of the compound include halogen compounds such as F, ClF 3 , BrF 3 , BrF 5 , IF 3 and IF 7 . As a silicon compound containing a halogen atom, that is, a silane derivative substituted with a so-called halogen atom, specifically, for example, silicon fluoride such as SiF 4 or Si 2 F 6 is preferable.

【0032】堆積膜中に含有される水素原子または/お
よびハロゲン原子の量を制御するには、例えば、支持体
の温度、水素原子または/およびロゲン原子を含有させ
るために使用される原料物質の反応容器内ヘ導入する
量、放電電力等を制御すればよい。
In order to control the amount of hydrogen atoms and / or halogen atoms contained in the deposited film, for example, the temperature of the support, the amount of the raw material used to contain hydrogen atoms and / or logene atoms, and the like can be controlled. What is necessary is just to control the amount introduced into the reaction vessel, the discharge power and the like.

【0033】本発明においては、堆積膜には必要に応じ
て伝導性を制御する原子を含有させることが好ましい。
伝導性を制御する原子は、堆積膜中に万偏なく均一に分
布した状態で含有されても良いし、あるいは層厚方向に
は不均一な分布状態で含有している部分があってもよ
い。前記伝導性を制御する原子としては、半導体分野に
おける、いわゆる不純物を挙げることができ、p型伝導
特性を与える周期律表第IIIb族に属する原子(以下、第
IIIb族原子と略記する)またはn型伝導特性を与える周
期律衣第Vb族に屈する原子(以下、第Vb族原子と略
記する)を用いることができる。
In the present invention, the deposited film preferably contains atoms for controlling conductivity as necessary.
The atoms controlling the conductivity may be contained in the deposited film in a uniformly distributed state, or may be present in the layer thickness direction in a non-uniform distribution state. . Examples of the atom that controls the conductivity include so-called impurities in the semiconductor field, and an atom belonging to Group IIIb of the periodic table that gives p-type conductivity (hereinafter, referred to as an atom).
An abbreviated group IIIb atom which gives n-type conductivity can be used.

【0034】第Шb族原子の例としては、具体的には、
硼素(B)、アルミニウム(Al)、ガリウム(Ga)、インジ
ウム(In)、タリウム(Tl)等があり、特にB,Al,Gaが
好適である。第Vb族原子としては、具体的には燐
(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)等
があり、特にP,Asが好適である。堆積膜に合有される
伝導性を制御する原子の含有量は、好ましくは1×10
-2〜1×104原子ppm、より好ましくは5×l0-2
〜5×l03原子ppm、最適には1×10-1〜1×l
3原子ppmとされるのが望ましい。
Examples of the group Шb atom include, specifically,
There are boron (B), aluminum (Al), gallium (Ga), indium (In), thallium (Tl) and the like, and B, Al and Ga are particularly preferable. Specific examples of group Vb atoms include phosphorus.
(P), arsenic (As), antimony (Sb), bismuth (Bi) and the like, and P and As are particularly preferable. The content of the atoms controlling the conductivity incorporated in the deposited film is preferably 1 × 10
−2 to 1 × 10 4 atomic ppm, more preferably 5 × 10 −2
~ 5 × 10 3 atomic ppm, optimally 1 × 10 -1 to 1 × l
0 3 desirably are atomic ppm.

【0035】伝導性を制御する原子、例えば、第IIIb
族原子あるいは第Vb族原子を構造的に導入するには、
層形成の際に、第IIIb族原子導入用の原料物質あるい
は第Vb族原子導入用の原料物質をガス状態で反応容器
中に、堆積膜を形成するための他のガスとともに導入し
てやればよい。第IIIb族原子導人用の原料物質あるい
は第Vb族原子導入用の原料物質となり得るものとして
は、常温常圧でガス状のまたは、少なくとも層形成条件
下で容易にガス化し得るものが採用されるのが望まし
い。
Atoms for controlling conductivity, for example, IIIb
To structurally introduce a group V atom or a group Vb atom,
In forming the layer, a raw material for introducing a Group IIIb atom or a raw material for introducing a Group Vb atom may be introduced in a gas state into the reaction vessel together with another gas for forming a deposited film. As a raw material for introducing a Group IIIb atom or a raw material for introducing a Group Vb atom, those which are gaseous at ordinary temperature and normal pressure or those which can be easily gasified at least under layer forming conditions are employed. Is desirable.

【0036】そのような第IIIb族原子導入用の原料物
質として共体的には、醐素原子導入用としては、B
26,B410,B59,B511,B610,B612,B6
14等の水素化硼素、BF3,BCl3,BBr3等のハロゲ
ン化側素等が挙げられる。この他、AlCl3,GaCl3,G
a(CH3)3,InCl3,TlCl3等も挙げることができる。
As such a raw material for introducing a Group IIIb atom, there is a symbiotic relationship.
2 H 6, B 4 H 10 , B 5 H 9, B 5 H 11, B 6 H 10, B 6 H 12, B 6 6
Examples thereof include boron hydride such as H 14 and halogenated ligands such as BF 3 , BCl 3 and BBr 3 . In addition, AlCl 3 , GaCl 3 , G
a (CH 3 ) 3 , InCl 3 , TlCl 3 and the like can also be mentioned.

【0037】第Vb族原子導入用の原料物質として有効
に使用されるのは、燐原子導入用としては、PH3,P2
4等の水素化燐、PH4I,PF3,PF5,PCl3,PC
l5,PBr3,PBr5,PI3等のハロゲン化燐が挙げられ
る。この他、AsH3,AsF3,AsCl3,AsBr3,AsF5,
SbH3,SbF3,SbF5,SbCl 3,SbCl5,BiH3,BiCl
3,BiBr3等も第Vb族原子導入用の出発物質の有効な
ものとして挙げることができる。また、これらの伝導性
を制御する原子導入用の原料物質を必要に応じてH2
よび/またはHeにより希釈して使用してもよい。
Effective as a raw material for introducing group Vb atoms
Is used for introducing a phosphorus atom.Three, PTwo
HFourPhosphorus hydride, PHFourI, PFThree, PFFive, PClThree, PC
lFive, PBrThree, PBrFive, PIThreeAnd the like.
You. In addition, AsHThree, AsFThree, AsClThree, AsBrThree, AsFFive,
SbHThree, SbFThree, SbFFive, SbCl Three, SbClFive, BiHThree, BiCl
Three, BiBrThreeAre also effective starting materials for introducing group Vb atoms.
Can be listed as Also, these conductive
If necessary, the raw material for atom introduction controlling HTwoYou
And / or diluted with He.

【0038】本発明の目的を達成し、所望の膜特性を有
する堆積膜を形成するには、Si供給用のガスと希釈ガ
スとの混合比、反応容器内のガス圧、放電電力ならびに
支持体温度を適宜設定することが必要である。希釈ガス
として使用するH2および/またはHeの流量は、層設計
にしたがって適宜最適範囲が選択されるが、Si供給用
ガスに対しH2および/またはHeを、通常の場合1〜2
0倍、好ましくは2〜15倍、最適には3〜10倍の範
囲に制御することが望ましい。
In order to achieve the object of the present invention and to form a deposited film having desired film characteristics, the mixing ratio of the gas for supplying Si and the diluent gas, the gas pressure in the reaction vessel, the discharge power and the support It is necessary to set the temperature appropriately. The flow rate of H 2 and / or He used as a dilution gas is properly selected within an optimum range in accordance with the layer design, the H 2 and / or He to the Si-feeding gas, usually 1 to 2
It is desirable to control to a range of 0 times, preferably 2 to 15 times, and optimally 3 to 10 times.

【0039】反応容器内のガス圧も同様に、層設計にし
たがって適宜最適範囲が選択されるが、通常の場合1×
l0-2〜1330Pa、好ましくは6.7×l0-2〜6
70Pa、最適には1×10-1〜133Paとするのが
好ましい。放電電力もまた同様に、層設計にしたがって
適宜最適範囲が選択されるが、Si供給用のガスの流量
に対する放電電力を、通常の場合0.1〜7倍、好まし
くは0.5〜6倍、最適には0.7〜5倍の範囲に設定す
ることカ理ましい。さらに、支持体の温度は、層設計に
したがって適宜最適範囲が選択されるが、通常の場合2
00〜350℃とするのが望ましい。
Similarly, the optimum range of the gas pressure in the reaction vessel is appropriately selected according to the layer design.
10 −2 to 1330 Pa, preferably 6.7 × 10 −2 to 6
The pressure is preferably 70 Pa, most preferably 1 × 10 −1 to 133 Pa. Similarly, the optimum range of the discharge power is also appropriately selected according to the layer design, but the discharge power with respect to the flow rate of the gas for supplying Si is usually 0.1 to 7 times, preferably 0.5 to 6 times. Optimally, it should be set in the range of 0.7 to 5 times. Further, the temperature of the support is appropriately selected in an optimum range according to the layer design.
The temperature is desirably set to 00 to 350 ° C.

【0040】本発明においては、堆積膜を形成するため
の支持体温度、ガス圧の望ましい数値範囲として前記し
た範囲が挙げられるが、これらの条件は通常は独立的に
別々に決められるものではなく、所望の特性を有する電
子写真用感光体を形成すべく相互的且つ有機的関連性に
基づいて最適値を決めるのが望ましい。
In the present invention, the preferable ranges of the temperature of the support and the gas pressure for forming the deposited film include the above-mentioned ranges. However, these conditions are not usually determined separately and independently. It is desirable to determine the optimum value based on mutual and organic relevance in order to form an electrophotographic photoreceptor having desired characteristics.

【0041】[0041]

【実施例】以下、本発明の堆積膜形成装置について、実
施例および比較例によりさらに細詳に説明するが、本発
明はこれらにより限定されるものではない。
EXAMPLES Hereinafter, the deposited film forming apparatus of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0042】[実施例1]長さ358mm、外径φ108
mmの鏡面加工を施したAl製シリンダー(円筒状支持的
を載置したAl製ホルダー(長さ500mm)を用い、図
1に示した装置を用いて該支持体上に電荷注入阻止層、
感光層および表面層からなる光受容層を表1に示す作製
条件により形成した。なお、本例では原料ガス分配管で
ある二重管を図1(a)〜(d)に示すような構成とした。
該原料ガス分配管である二重管の内管に設けてあるガス
放出孔は、外管の放出孔とは対称な位置方向に吹き出す
形状のものを2個所設け、外管に接続してあるガス導入
管は、10本周方向に並ベ、長手方向に20個配列し、
ガス吹き出し方向は円筒状反応容器方向とした。
[Example 1] Length 358 mm, outer diameter φ108
mm mirror-finished Al cylinder (using an Al holder (length: 500 mm) on which a cylindrical support is placed) and using the apparatus shown in FIG.
A light receiving layer composed of a photosensitive layer and a surface layer was formed under the manufacturing conditions shown in Table 1. In this example, a double pipe as a source gas distribution pipe was configured as shown in FIGS. 1 (a) to 1 (d).
As for the gas discharge holes provided in the inner pipe of the double pipe which is the raw material gas distribution pipe, two gas discharge holes having a shape which blows out in a position direction symmetric to the discharge holes of the outer pipe are provided and connected to the outer pipe. 10 gas introduction pipes are arranged in a line in the circumferential direction and 20 in the longitudinal direction.
The gas blowing direction was the direction of the cylindrical reaction vessel.

【0043】[比較例1]原料ガス分配管が単管構造であ
ること以外は、実施例1と同様の条件にて作製した。
[Comparative Example 1] A sample was manufactured under the same conditions as in Example 1 except that the source gas distribution pipe had a single pipe structure.

【0044】[0044]

【表1】 実施例1および比較例1で作製した電子写真用感光体に
ついて、膜厚周方向ムラ、帯電電位周方向ムラについて
以下の評価方法で評価した。その結果を表2に示す。 (膜厚周方向ムラ)電子写真用感光体の周方向に沿って、
堆積膜の膜厚を測定し、膜厚の平均値からのばらつき
が、5%以内のものを「◎」、8%以内のものを「○」、1
0%以内のものを「△」、10%を超えるものを「×」とし
た4段階評価を行った。 (帯電電位周方向ムラ)電子写真装置(キヤノン製NP6
150をテスト用に改造)に作製した電子写真用感光体
をセットし、電子写真用感光体の周方向で帯電電位を測
定した。帯電電位の平均電位からのばらつきが5%以内
のものを「◎」、8%以内のものを「○」、10%以内のも
のを「△」、10%を超えるものを「×」とした4段階評価
を行った。
[Table 1] With respect to the electrophotographic photoconductors manufactured in Example 1 and Comparative Example 1, unevenness in the film thickness circumferential direction and unevenness in the charging potential circumferential direction were evaluated by the following evaluation methods. Table 2 shows the results. (Film thickness circumferential direction unevenness) Along the circumferential direction of the electrophotographic photosensitive member,
The film thickness of the deposited film was measured, and when the variation from the average value of the film thickness was within 5%, it was evaluated as “◎”.
A four-point evaluation was performed in which 0% or less was evaluated as "△" and 10% or more was evaluated as "x". (Charge potential circumferential direction unevenness) Electrophotographic device (Canon NP6
The electrophotographic photosensitive member prepared in (Modification 150 for test) was set, and the charging potential was measured in the circumferential direction of the electrophotographic photosensitive member. “の も の” indicates that the variation of the charged potential from the average potential was within 5%, “、” indicates that the variation was within 8%, and “△” indicates that the variation was within 10%. A four-point evaluation was performed.

【0045】[0045]

【表2】 表2から明らかのように、原料ガス分配管を二重管とし
たことで周方向のむらに対して、良好な結果が得られ
た。
[Table 2] As is apparent from Table 2, good results were obtained with respect to unevenness in the circumferential direction by using a double pipe for the raw material gas distribution pipe.

【0046】[実施例2]長さ358mm、外径φ108
mmの鏡面加工を施したAl製シリンダー(円筒状支持
体)を載置したAl製ホルダー(長さ500mm)を用い、
図1に示す装置を用いて該支持体上に電荷注入阻止層、
感光層および表面層からなる光受容層を表1に示す作製
条件により形成した。なお、本例では原料ガス分配管で
ある二重管を図1(a)〜(d)に示すような構成とした。
Example 2 Length 358 mm, outer diameter φ108
Using an Al holder (length 500 mm) on which an Al cylinder (cylindrical support) with a mirror finish of
A charge injection blocking layer on the support using the device shown in FIG.
A light receiving layer composed of a photosensitive layer and a surface layer was formed under the manufacturing conditions shown in Table 1. In this example, a double pipe as a source gas distribution pipe was configured as shown in FIGS. 1 (a) to 1 (d).

【0047】該原料ガス導入管である二重管の内管に設
けてあるガス放出孔の向きを、内管内部で変化させた。
本実施例2で作製した電子写真用感光体について、膜厚
周方向ムラ、帯電電位周方向ムラについて実施例1と同
様の評価方法で評価した。その結果を比較例1と合わせ
て表3に示す。
The direction of the gas discharge holes provided in the inner pipe of the double pipe as the raw material gas introduction pipe was changed inside the inner pipe.
The electrophotographic photosensitive member produced in Example 2 was evaluated for unevenness in the film thickness circumferential direction and unevenness in the charging potential circumferential direction by the same evaluation method as in Example 1. Table 3 shows the results together with Comparative Example 1.

【0048】[0048]

【表3】 ※外管のガス導入管の向きに対して同一方向を0度とす
る。 但し、外管のガス導入管に直接ガスが吹き込まないよう
にしている。表3から明らかのように、原料ガス導入管
を二重管とすることで周方向ムラに対して良好な結果が
得られ、且つ、内管の放出孔の向きを外管に対して45
度以上315度以内とすることで、さらに周方向のむら
に対して、良好な結果が得られた。
[Table 3] * The same direction as the direction of the outer gas introduction tube is set to 0 degree. However, the gas is not directly blown into the gas inlet pipe of the outer pipe. As is evident from Table 3, a good result is obtained with respect to the unevenness in the circumferential direction by using the source gas introduction pipe as a double pipe, and the direction of the discharge hole of the inner pipe is set to 45 degrees with respect to the outer pipe.
By setting the angle to not less than 315 degrees, good results were further obtained for unevenness in the circumferential direction.

【0049】[実施例3]長さ358mm、外径φ108
mmの鏡面加工を施したAl製シリンダー(円筒状支持
体)を載置したAl製ホルダー(長さ500mm)を用い、
図1に示す装置を用いて該支持体上に電荷注入阻止層、
感光層および表面層からなる光受容層を表1の作製条件
により形成した。なお、本例では原料ガス分配管である
二重管を図1(a)〜(d)に示すような構成とした。
[Embodiment 3] Length 358 mm, outer diameter φ108
Using an Al holder (length 500 mm) on which an Al cylinder (cylindrical support) with a mirror finish of
A charge injection blocking layer on the support using the device shown in FIG.
A light receiving layer composed of a photosensitive layer and a surface layer was formed under the conditions shown in Table 1. In this example, a double pipe as a source gas distribution pipe was configured as shown in FIGS. 1 (a) to 1 (d).

【0050】該原料ガス導入管である二重管の内管に設
けてあるガス放出孔は、内管内部で外管の放出孔とは対
称位置方向に吹き出す形状に設置し、その数を1個から
8個に変化させた。外管に接続してあるガス導入管は、
10本周方向に並ベ、長手方向に20個配列し、ガス吹
き出し方向は円筒状反応容器方向とした。本実施例3で
作製した電子写真用感光体について、膜厚周方向ムラ、
帯電電位周方向ムラについて実施例1と同様の評価方法
で評価した。その結果を比較例1と含めて表4に示す。
The gas discharge holes provided in the inner tube of the double tube which is the raw material gas introduction tube are installed in a shape which blows out inside the inner tube in a direction symmetric to the discharge holes of the outer tube, and the number thereof is one. Was changed from eight to eight. The gas inlet pipe connected to the outer pipe
Ten were arranged in the circumferential direction and 20 were arranged in the longitudinal direction, and the gas blowing direction was the cylindrical reaction vessel direction. Regarding the electrophotographic photoreceptor produced in Example 3, the film thickness was uneven in the circumferential direction.
The unevenness in the circumferential direction of the charged potential was evaluated by the same evaluation method as in Example 1. The results are shown in Table 4 together with Comparative Example 1.

【0051】[0051]

【表4】 表4から明らかなように、原料ガス分配管の二重管のガ
ス放出孔は、少なくとも2個以上とすることで、周方向
むらに対して良好な結果が得られた。
[Table 4] As is evident from Table 4, good results were obtained with respect to circumferential unevenness by using at least two or more gas discharge holes in the double pipe of the raw material gas distribution pipe.

【0052】[実施例4]成膜条件を表5のようにして作
成したこと以外は、実施例1と同様にして該支持体上に
電荷注入阻止層、電荷輸送層、電荷発生層、および表面
層からなる光受容層を作製したところ、実施例1と同
様、良好な結果が得られた。
Example 4 A charge injection blocking layer, a charge transport layer, a charge generation layer, and a charge injection layer were formed on the support in the same manner as in Example 1 except that the film forming conditions were prepared as shown in Table 5. When a light receiving layer composed of a surface layer was produced, good results were obtained as in Example 1.

【0053】[0053]

【表5】 [実施例5]VHF-PCVD法で表6示す成膜条件にし
たこと以外は、実施例1と同様にして該支持体上に電荷
注入阻止層、感光層、および表面層からなる光受容層を
作製したところ、実施例1と同様、良好な結果が得られ
た。
[Table 5] Example 5 A light receiving layer comprising a charge injection blocking layer, a photosensitive layer, and a surface layer on the support in the same manner as in Example 1 except that the film forming conditions shown in Table 6 were used in the VHF-PCVD method. As a result, as in Example 1, good results were obtained.

【0054】[0054]

【表6】 [実施例6]ガス分配管を三重管にしたこと以外は、実施
例1と同様にして該支持体上に電荷注入阻止層、感光
層、および表面層からなる光受容層を作製した。
[Table 6] Example 6 A light receiving layer composed of a charge injection blocking layer, a photosensitive layer, and a surface layer was formed on the support in the same manner as in Example 1 except that the gas distribution pipe was a triple pipe.

【0055】[0055]

【表7】 表7から明らかなように、原料ガス分配管を三重管とし
た場合においても周方向のむらに対して、良好な結果が
得られた。
[Table 7] As is clear from Table 7, good results were obtained with respect to unevenness in the circumferential direction even when the source gas distribution pipe was a triple pipe.

【0056】[0056]

【発明の効果】本発明によって、複数の原料ガス導入管
に原料ガス供給源からの原料ガスを供給するガス分配管
を設け、分配管を少なくとも二重管構成となし、二重管
の内管を原料ガス供給源に接続することにより、該二重
管の外管に設けられたガス放出孔を介して反応空間内へ
放出されるガスバランスが、円筒状反応容器周方向で均
一化され、円筒状支持体の周方向での堆積膜厚および膜
質が均一化され、膜厚および膜質が均一な堆積膜を定常
的に形成し得るプラズマCVD法による堆積膜形成方法
および形成装置が提供される。
According to the present invention, a gas distribution pipe for supplying a raw material gas from a raw gas supply source is provided in a plurality of raw gas introduction pipes, and the distribution pipe has at least a double pipe configuration. By connecting to the source gas supply source, the gas balance discharged into the reaction space through the gas discharge holes provided in the outer tube of the double tube, uniform in the circumferential direction of the cylindrical reaction vessel, Provided is a method and an apparatus for forming a deposited film by a plasma CVD method in which a deposited film thickness and film quality in a circumferential direction of a cylindrical support are made uniform, and a deposited film having a uniform film thickness and film quality can be constantly formed. .

【0057】反応容器内のガス流が安定化し、膜厚およ
び膜質が均一な堆積膜が定常的に形成され、画像欠陥が
激減して、量産化が可能となり、歩留りが飛躍的に向す
る堆積膜形成方法および形成装置が提供され、電子写真
感光体の量産を行う場合にも歩留りを飛躍的に向上させ
ることができる等々、顕著な効果が奏される。
The gas flow in the reaction vessel is stabilized, a deposited film having a uniform film thickness and film quality is constantly formed, image defects are drastically reduced, mass production becomes possible, and the deposition yield is drastically improved. A film forming method and a film forming apparatus are provided, and even when mass-producing an electrophotographic photoreceptor, a remarkable effect such as a remarkable improvement in yield can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマCVD法による堆積膜形成方
法および装置における、電極を兼ねる円筒状反応容器、
円筒状支持体および原料ガス分配管である二重管、を示
す模式説明図。
FIG. 1 shows a cylindrical reaction vessel also serving as an electrode in a method and an apparatus for forming a deposited film by a plasma CVD method of the present invention.
FIG. 2 is a schematic explanatory view showing a cylindrical support and a double pipe which is a source gas distribution pipe.

【図2】本発明の電子写真用光受容部材の光受容層を形
成するための装置の一例で、高周波を用いたグロー放電
法による電子写真用光受容部材の製造装置を示す模式説
明図。
FIG. 2 is a schematic explanatory view showing an example of an apparatus for forming a light receiving layer of the electrophotographic light receiving member of the present invention, which shows an apparatus for producing an electrophotographic light receiving member by a glow discharge method using a high frequency.

【符号の説明】[Explanation of symbols]

100,200 堆積膜形成装置 101,201 (電極を兼ねる)円筒状反応容器 102,202 円筒状支持体 103,203 原料ガス分配管(である二重管の外
管) 104,204 原料ガス導入管 105,205 排気管 109 支持体加熱用ヒーーター 111,211 マッチングボックス 112,212 反応容器リークバルブ 113,213 メイン排気バルブ 114,214 メカニカルブースターポンプ 115,215 ロータリーポンプ 116,216 原料ガス導入バルブ 117,217 真空メーター 120 内管
100, 200 Deposition film forming apparatus 101, 201 Cylindrical reaction vessel 102, 202 (also serving as electrode) Cylindrical support 103, 203 Source gas distribution pipe (outer pipe of double pipe) 104, 204 Source gas introduction pipe 105,205 Exhaust pipe 109 Heater for supporting body heating 111,211 Matching box 112,212 Leak valve for reaction vessel 113,213 Main exhaust valve 114,214 Mechanical booster pump 115,215 Rotary pump 116,216 Source gas introduction valve 117,217 Vacuum meter 120 Inner tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片桐 宏之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 瀬木 好雄 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4K030 AA05 AA06 AA07 EA05 LA12 LA17 5F045 AA08 AB04 AC01 AC02 AC08 AC17 AC18 AC19 AD06 AD07 AE11 AE13 AE15 AE17 AE19 AE21 AE23 BB01 CA13 CA15 CA16 DA52 EC02 EE04 EE12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Katagiri 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Yoshio Segi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon In-house F term (reference) 4K030 AA05 AA06 AA07 EA05 LA12 LA17 5F045 AA08 AB04 AC01 AC02 AC08 AC17 AC18 AC19 AD06 AD07 AE11 AE13 AE15 AE17 AE19 AE21 AE23 BB01 CA13 CA15 CA16 DA52 EC02 EE04 EE12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法による成膜装置の円筒
状反応容器内の円筒状支持体保持手段上に円筒状支持体
を配置し、該支持体の同軸外周上に該支持体の長手方向
に沿つて設けられた複数の原料ガス導入管を介して成膜
用原料ガスを前記円筒状反応容器内に導入し、放電エネ
ルギーを該反応容器内に導入して、該反応容器内に導入
された前記成膜用原料ガスを励起種化させて、前記円筒
状支持体の表面に堆積膜を形成する堆積膜形成方法にお
いて、前記複数の原料ガス導入管に原料ガス供給源から
の原料ガスを供給するためのガス分配管を設け、該分配
管を少なくとも二重管構成となし、該二重管の内管を原
料ガス供給源に接続させることを特徴とする堆積膜形成
方法。
A cylindrical support is disposed on a cylindrical support holding means in a cylindrical reaction vessel of a film forming apparatus by a plasma CVD method, and is disposed on a coaxial outer periphery of the support in a longitudinal direction of the support. A source gas for film formation was introduced into the cylindrical reaction vessel through a plurality of source gas introduction pipes provided along the same, discharge energy was introduced into the reaction vessel, and introduced into the reaction vessel. In the deposited film forming method of forming a deposited film on the surface of the cylindrical support by exciting the source gas for film formation and supplying a source gas from a source gas supply source to the plurality of source gas introduction pipes, A method for forming a deposited film, the method comprising: providing a gas distribution pipe for performing the gas distribution, forming the distribution pipe at least in a double pipe configuration, and connecting an inner pipe of the double pipe to a source gas supply source.
【請求項2】 前記二重管の内管に設けられるガス放出
孔の角度を、該二重管の外管に設けられるガス放出孔に
対して、45ないし315度の範囲内とすることを特徴
とする、請求項1記載の堆積膜形成方法。
2. The method according to claim 1, wherein the angle of the gas discharge hole provided in the inner pipe of the double pipe is within a range of 45 to 315 degrees with respect to the gas discharge hole provided in the outer pipe of the double pipe. The method for forming a deposited film according to claim 1, wherein:
【請求項3】 前記二重管の内管に、少なくとも2個以
上のガス放出孔を設けることを特徴とする、請求項1ま
たは2記載の堆積膜形成方法。
3. The method according to claim 1, wherein at least two or more gas discharge holes are provided in the inner tube of the double tube.
【請求項4】 プラズマCVD法による成膜装置の円筒
状反応容器内の円筒状支持体保持手段上に円筒状支持体
を配置し、該支持体の同軸外周上に該支持体の長手方向
に沿つて設けられた複数の原料ガス導入管を介して成膜
用原料ガスを前記円筒状反応容器内に導入し、放電エネ
ルギーを該反応容器内に導入して、該反応容器内に導入
された前記成膜用原料ガスを励起種化させて、前記円筒
状支持体の表面に堆積膜を形成する堆積膜形成装置にお
いて、前記複数の原料ガス導入管に原料ガス供給源から
の原料ガスを供給するためのガス分配管を有し、該分配
管は少なくとも二重管構成とされ、該二重管の内管は原
料ガス供給源に接続されてなることを特徴とする堆積膜
形成装置。
4. A cylindrical support is disposed on a cylindrical support holding means in a cylindrical reaction vessel of a film forming apparatus by a plasma CVD method, and is disposed on a coaxial outer periphery of the support in a longitudinal direction of the support. A source gas for film formation was introduced into the cylindrical reaction vessel through a plurality of source gas introduction pipes provided along the same, discharge energy was introduced into the reaction vessel, and introduced into the reaction vessel. In a deposition film forming apparatus for forming a deposition film on the surface of the cylindrical support by exciting and seeding the film forming source gas, a source gas from a source gas supply source is supplied to the plurality of source gas introduction pipes. A gas distribution pipe for performing deposition, wherein the distribution pipe has at least a double pipe configuration, and an inner pipe of the double pipe is connected to a source gas supply source.
【請求項5】 前記二重管の内管に設けられるガス放出
孔は、該二重管の外管に設けられているガス放出孔に対
して45ないし315度の範囲内とされてなることを特
徴とする、請求項4記載の堆積膜形成装置。
5. The gas discharge hole provided in the inner pipe of the double pipe is set in a range of 45 to 315 degrees with respect to the gas discharge hole provided in the outer pipe of the double pipe. The deposition film forming apparatus according to claim 4, characterized in that:
【請求項6】 前記二重管の内管は、少なくとも2個以
上のガス放出孔を有してなることを特徴とする、講求項
4または5記載の堆積膜形成装置。
6. The deposition film forming apparatus according to claim 4, wherein the inner pipe of the double pipe has at least two or more gas discharge holes.
JP10219263A 1998-08-03 1998-08-03 Formation of deposited film by plasma cvd method and device therefor Pending JP2000054144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10219263A JP2000054144A (en) 1998-08-03 1998-08-03 Formation of deposited film by plasma cvd method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219263A JP2000054144A (en) 1998-08-03 1998-08-03 Formation of deposited film by plasma cvd method and device therefor

Publications (1)

Publication Number Publication Date
JP2000054144A true JP2000054144A (en) 2000-02-22

Family

ID=16732795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219263A Pending JP2000054144A (en) 1998-08-03 1998-08-03 Formation of deposited film by plasma cvd method and device therefor

Country Status (1)

Country Link
JP (1) JP2000054144A (en)

Similar Documents

Publication Publication Date Title
JP3684011B2 (en) Method and apparatus for forming deposited film by plasma CVD method
JP2000054144A (en) Formation of deposited film by plasma cvd method and device therefor
JP4298369B2 (en) Deposited film forming method
JP3428865B2 (en) Apparatus and method for forming deposited film
JP2004068083A (en) Method and apparatus for forming deposition film by plasma-cvd process
JPH11350147A (en) Formation of deposited film and its device
JP3634485B2 (en) Apparatus and method for forming deposited film by plasma CVD method
JPH11172451A (en) Deposited film forming apparatus by plasma enhanced cvd method and formation therefor
JPH11323563A (en) Deposited film forming apparatus and forming method by plasma cvd method
JPH093652A (en) Deposited film forming device by plasma cvd method
JPH11106931A (en) Deposited film forming device by plasma cvd method and method therefor
JP2000054143A (en) Formation of deposited film by plasma cvd method and device therefor
JP2000192242A (en) Method for forming deposited film and device therefor
JP3320228B2 (en) Method of manufacturing light receiving member for electrophotography
JP2001323375A (en) Method and equipment for depositing film by plasma cvd process
JPH11323564A (en) Deposited film forming apparatus by plasma cvd method and method
JPH11343573A (en) Deposited film forming device and its method
JP2001342569A (en) Apparatus and method for forming deposition film
JP2001342568A (en) Apparatus and method for forming deposition film
JP2000054146A (en) Formation of deposited film and deposited film forming device
JPH10183356A (en) Deposited film forming apparatus by plasma enhanced cvd method
JP2002097575A (en) Method and device for forming deposition film
JPH08139040A (en) Deposited film forming equipment
JP3658100B2 (en) Amorphous silicon photoconductor manufacturing apparatus and manufacturing method
JP3441876B2 (en) Method for manufacturing light receiving member