JP2000051881A - Method and apparatus for treating drainage - Google Patents

Method and apparatus for treating drainage

Info

Publication number
JP2000051881A
JP2000051881A JP22280198A JP22280198A JP2000051881A JP 2000051881 A JP2000051881 A JP 2000051881A JP 22280198 A JP22280198 A JP 22280198A JP 22280198 A JP22280198 A JP 22280198A JP 2000051881 A JP2000051881 A JP 2000051881A
Authority
JP
Japan
Prior art keywords
oxygen
treatment
wastewater
oxygen supply
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22280198A
Other languages
Japanese (ja)
Inventor
Takashi Seki
隆志 関
Tsuguhito Itou
世人 伊藤
Takuhei Kimura
拓平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22280198A priority Critical patent/JP2000051881A/en
Publication of JP2000051881A publication Critical patent/JP2000051881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat a BOD waste liquid of high concentration efficiently by supplying oxygen in an oxygen supply capacity of at least a specified value in a method for treating drainage containing organic compounds aerobically by using microorganisms. SOLUTION: In an apparatus, oxygen is supplied in an oxygen supply capacity of at least 0.5 kg/m3.hr-O2 to drainage containing organic compounds for aerobic treatment. In this way, microorganisms which decompose a specified substance efficiently are prioritized to increase treatment efficiency. In this process, a treatment tank 1 is equipped with an oxygen supply means capable of prescribed oxygen supply, oxygen-containing gas supplied from an oxygen-containing gas supply line 6 is diffused from a diffuser 3, and oxygen dissolution efficiency is improved by an agitator 2 to obtain a prescribed oxygen supply capacity. By the efficient oxygen supply, the drainage of waste liquid of high BOD (biological oxygen demand) chiefly containing weight-reduction treatment waste liquid of polyester fabrics by sodium hydroxide and others can be treated by a compact apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は好気的な微生物を利
用して有機物を含有する排水の処理方法および排水装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing organic matter by utilizing aerobic microorganisms and a wastewater apparatus.

【0002】[0002]

【従来の技術】排水処理の代表的な方法である活性汚泥
法では、活性汚泥槽で好気的に微生物処理を行うことに
よって、排水中の有機物を菌体に変化させ、その後、沈
殿槽を始めとする固液分離処理を行い有機物の除去され
た液を得ている。
2. Description of the Related Art In an activated sludge method, which is a typical method of wastewater treatment, an organic substance in wastewater is converted into microbial cells by aerobic microbial treatment in an activated sludge tank. First, a solid-liquid separation process is performed to obtain a liquid from which organic substances have been removed.

【0003】活性汚泥法は昔からある排水処理方法であ
り、詳細な処理メカニズムはいまだに判明していない部
分もあるが、長年の実績から各種の経験則により維持、
管理方法はほぼ確立されており、そのため排水処理の多
くは活性汚泥法を利用している現状である。
[0003] The activated sludge method is an existing wastewater treatment method, and although the detailed treatment mechanism has not yet been clarified, it has been maintained by various empirical rules based on many years of experience.
The management method is almost established, and therefore most of the wastewater treatment uses the activated sludge method.

【0004】活性汚泥処理では通常後段の沈殿槽で固液
分離し、上澄み液を処理水として放流するため、沈殿槽
で汚泥がフロックを形成し、重力沈降分離できる条件で
活性汚泥槽の処理条件を管理する必要があった。そのた
め、汚泥濃度を上げて処理能力を上げたい場合において
も沈降分離性から限界があり、通常の活性汚泥法ではM
LSS15,000mg/リットル(以下Lと記載)程
度が限界である。また、高濃度の原水に対しては原水が
汚泥に転化した時にすでに管理基準のMLSSを超える
ため、希釈して処理する必要があった。
In the activated sludge treatment, solid-liquid separation is usually carried out in a subsequent settling tank, and the supernatant liquid is discharged as treated water. Therefore, sludge forms flocs in the settling tank and the treatment conditions of the activated sludge tank can be settled by gravity. Had to be managed. Therefore, even when it is desired to increase the sludge concentration to increase the treatment capacity, there is a limit due to the sedimentation and separability.
The limit is about 15,000 mg / liter LSS (hereinafter referred to as L). In addition, for raw water having a high concentration, when the raw water is converted into sludge, the raw water already exceeds the MLSS of the management standard, so that it is necessary to dilute and treat the raw water.

【0005】このような状況を打破するため、近年では
沈降分離条件でしばられていた活性汚泥槽の処理条件
を、膜分離を用いることにより改善する方法がみられ
る。これらによれば、固液分離操作を膜分離で行うため
に沈降性を考慮する必要がなく、MLSS20,000
mg/L程度で運転できることが明らかにされている
が、処理法自体は活性汚泥法の域を出ておらず、また膜
分離が新しい技術であるために長期安定運転の実績も少
なく、普及するにはいたっていない。
[0005] In order to overcome such a situation, there has been a method of improving the treatment conditions of an activated sludge tank, which has been tied to sedimentation separation conditions in recent years, by using membrane separation. According to these, there is no need to consider sedimentation in order to perform the solid-liquid separation operation by membrane separation, and the MLSS 20,000 is not required.
It is clear that operation can be performed at about mg / L, but the treatment method itself is not out of the range of the activated sludge method. I have not reached.

【0006】一方、沈降分離性を無視すれば、単位容積
当たりに多くの微生物を保持する方法、つまり高MLS
Sで運転し、高濃度のBOD排水を処理することが可能
となる。しかし、この方法をとるには、その分解能力に
見合った酸素を供給する必要があり、また通常の活性汚
泥では微生物の分解能力自体がそれほど無かった。
On the other hand, if the sedimentation / separation property is neglected, a method of retaining a large number of microorganisms per unit volume, that is, a high MLS
By operating at S, it becomes possible to treat high-concentration BOD wastewater. However, in order to use this method, it is necessary to supply oxygen corresponding to its decomposing ability, and ordinary activated sludge has not much ability to decompose microorganisms.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は好気的
な排水処理、特に高濃度のBOD廃液を効率的に処理す
る排水処理方法および排水処理装置を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an aerobic wastewater treatment, particularly a wastewater treatment method and a wastewater treatment apparatus for efficiently treating a high-concentration BOD waste liquid.

【0008】[0008]

【課題を解決するための手段】本発明者らはかかる課題
を解決するために鋭意検討した結果、酸素供給能力が
0.5kg/m3 ・h−O2 以上である微生物利用有機
化合物含有排水の好気的処理方法により、基本的に達成
できることを見出した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that a wastewater containing an organic compound utilizing microorganisms having an oxygen supply capacity of 0.5 kg / m 3 · h-O 2 or more. It has been found that this can basically be achieved by the aerobic treatment method described above.

【0009】すなわち、解決する方法としては「有機化
合物を含有する排水を、微生物を利用して好気的に処理
する方法において、酸素を0.5kg/m3 ・h−O2
以上で供給することを特徴とする排水処理方法。」によ
り基本的に達成でき、また装置としては「少なくとも被
処理水流入口と処理水流出口とをもつ微生物処理槽およ
び、該微生物処理槽への酸素供給手段を有する排水処理
装置であって、該酸素供給手段の酸素供給能力が0.5
kg/m3 ・h−O2 以上であることを特徴とする排水
処理装置。」により基本的に課題を解決することができ
る。
[0009] That is, as a method for solving the problem, "a method for aerobically treating wastewater containing an organic compound by using microorganisms to reduce oxygen to 0.5 kg / m 3 · h-O 2
A wastewater treatment method characterized by being supplied as described above. And a wastewater treatment apparatus having at least a microorganism treatment tank having at least an inlet for treated water and an outlet for treated water and a means for supplying oxygen to the microorganism treatment tank. The oxygen supply capacity of the supply means is 0.5
A wastewater treatment device characterized by a weight of kg / m 3 · h-O 2 or more. Can basically solve the problem.

【0010】[0010]

【発明の実施の形態】以下本発明の詳細について具体的
に説明していく。本発明では有機物を含有する排水(以
下有機排水という)に対して酸素供給を0.5kg/m
3 ・h−O2以上行い好気的に処理を行う。有機排水に
は通常の排水や工場などの特定の物質を多量に含む排水
など多種あり、処理対処としては特に限定しないが、特
定の物質を多量に含む排水である場合にその特定の物質
を高効率で分解する微生物が優占化し、処理効率が上が
ることが多い。また、BOD濃度も特に限定はしない
が、好ましくはBOD3,000ppm以上、さらに好
ましくは5,000ppm以上で他の処理方法との優位
性が、より認められる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be specifically described below. In the present invention, the oxygen supply to the wastewater containing organic matter (hereinafter referred to as organic wastewater) is 0.5 kg / m.
Perform aerobic treatment by performing 3 hO 2 or more. There are various types of organic wastewater, such as ordinary wastewater and wastewater containing a large amount of a specific substance such as a factory.The treatment is not particularly limited.However, when the wastewater contains a large amount of a specific substance, the specific substance is increased. Microorganisms that degrade with efficiency are dominant, and processing efficiency is often increased. In addition, the BOD concentration is not particularly limited, but is preferably 3,000 ppm or more, more preferably 5,000 ppm or more, and the superiority with other treatment methods is more recognized.

【0011】高BOD排水を処理する場合、通常の活性
汚泥法においては、(a)活性汚泥槽のMLSSが非常
に高くなり、沈殿槽での沈降分離ができなくなる。ま
た、活性汚泥法ではこれだけの負荷を処理することは全
く考慮していないため、BOD負荷に対応する酸素供給
装置もなく、(b)酸素供給不足となり処理不能とな
る、といった問題があった。
In the case of treating high BOD wastewater, the MLSS in the activated sludge tank (a) becomes extremely high in the ordinary activated sludge method, and sedimentation and separation in the settling tank cannot be performed. Further, the activated sludge method does not consider treating such a load at all, and there is no oxygen supply device corresponding to the BOD load, and there is a problem that (b) oxygen supply is insufficient and the treatment cannot be performed.

【0012】これに対し本発明では、通常の活性汚泥処
理の酸素供給量がせいぜい0.2kg/m3 ・h−O2
であるのに対して、0.5kg/m3 ・h−O2 以上の
酸素供給を行う。そのため、単純に一般の活性汚泥法と
の比較をすることは難しいが、BODに対する必要酸素
量を供給できる装置を備えることから(b)の問題は解
決される。また、(a)の問題については、本発明では
処理水の沈降分離を装置設計の必須条件としない。
On the other hand, in the present invention, the oxygen supply amount in the ordinary activated sludge treatment is at most 0.2 kg / m 3 · h-O 2.
In contrast, oxygen supply of 0.5 kg / m 3 · h-O 2 or more is performed. For this reason, it is difficult to simply compare with a general activated sludge method, but the problem (b) is solved by providing a device capable of supplying a required amount of oxygen to the BOD. Regarding the problem (a), the present invention does not make the sedimentation / separation of the treated water an essential condition for the design of the apparatus.

【0013】活性汚泥処理は被処理水のBOD成分を微
生物に消費させることにより菌体に転換し、その菌体を
固液分離することにより清澄な処理液を得ており、固液
分離の手段として重力沈降による沈殿槽が多く使用され
ている。活性汚泥処理では処理水質に影響する沈降性が
処理上の大きなポイントとなる。
In the activated sludge treatment, microorganisms are used to convert the BOD component of the water to be treated into microorganisms, and the microorganisms are subjected to solid-liquid separation to obtain a clear treatment liquid. A sedimentation tank by gravity settling is often used. In activated sludge treatment, sedimentation that affects the quality of treated water is a major point in treatment.

【0014】これに対し、本発明では高BOD排水の負
荷を高効率に軽減することを目的としているため、処理
水の沈降分離性は問題としない。本発明の処理水は後段
に設けた活性汚泥槽で他の低BOD排水とともに処理す
る方法がとられることが多いが、膜分離や遠心分離の方
法をとることもできるし、沈降分離できる場合は沈殿槽
などの手段で分離することもでき、特に限定はしない。
On the other hand, the present invention aims at reducing the load of the high BOD wastewater with high efficiency, so that the sedimentation and separation of the treated water does not matter. The treated water of the present invention is often treated together with other low-BOD wastewater in an activated sludge tank provided at a later stage.However, a method of membrane separation or centrifugal separation can be used, and when sedimentation can be performed, Separation can also be carried out by means such as a settling tank, and there is no particular limitation.

【0015】工場排水を例にあげると、通常原水となる
有機排水は、高BOD排水ばかりが多量に出るケースは
少なく、少量の高濃度排水が大量の低濃度排水を含めた
全体の排水のBOD濃度を高くしているケースが多い。
こういったケースの場合、活性汚泥法での処理を行う
と、全体の排水のBOD濃度が比較的高いため、そのま
までは安定して処理することが難しく、希釈して処理を
行う方法が一般的であった。この方法を用いた場合は活
性汚泥槽の必要滞留時間を確保するために活性汚泥槽が
非常に大きくなり、スペース的に余裕がある場合を除い
ては適用が難しい状況であった。
Taking factory wastewater as an example, organic wastewater, which is usually raw water, rarely emits a large amount of high-BOD wastewater in a large number, and a small amount of high-concentration wastewater contains a large amount of low-concentration wastewater. In many cases, the concentration is high.
In such a case, if the treatment by the activated sludge method is performed, the BOD concentration of the entire wastewater is relatively high, so that it is difficult to stably treat the wastewater as it is. Met. When this method is used, the activated sludge tank becomes very large in order to secure the required residence time of the activated sludge tank, and it is difficult to apply the activated sludge tank unless there is a space.

【0016】本発明をこの少量の高濃度排水と大量の低
濃度排水が出る工場のケースに適用すると、少量の高濃
度排水を本装置を用いて省スペースに効率よく処理し、
BOD負荷が軽減された少量の処理水を大量かつ低濃度
の排水で希釈し、後段の活性汚泥による処理、沈殿槽に
よる沈降分離を行う。本装置により全体の負荷のほとん
どを占める少量の高濃度排水を処理するため、後段活性
汚泥槽に対する負荷を軽減することができ、小さな活性
汚泥槽とすることができる。
When the present invention is applied to the case of a factory where a small amount of high-concentration wastewater and a large amount of low-concentration wastewater are discharged, a small amount of high-concentration wastewater can be efficiently treated in a space-saving manner by using the present apparatus.
A small amount of treated water having a reduced BOD load is diluted with a large amount of low-concentration wastewater, followed by treatment with activated sludge and sedimentation and separation in a sedimentation tank. Since the present apparatus treats a small amount of high-concentration wastewater that accounts for most of the entire load, the load on the downstream activated sludge tank can be reduced, and a small activated sludge tank can be obtained.

【0017】活性汚泥法では処理能力が汚泥負荷という
形で表されるように、MLSSあたりどれだけのBOD
が処理できるといった管理基準となっている。このた
め、沈殿槽から汚泥を返送し、活性汚泥槽のMLSSを
一定の値に保つ方法をとる。しかし、必要酸素量は有機
物分解に使用される量、微生物の維持代謝に使用される
量の合計で表される。活性汚泥法では微生物の維持代謝
に使用される量が有機物分解に使用される量に対して無
視することができない。従って、有機物分解のために高
めた汚泥濃度のため、微生物の維持代謝に使用される酸
素量も多くなり、分解に必要な酸素量以上の酸素供給を
行わなければならないため、酸素供給コスト的にも不経
済であった。
In the activated sludge method, as the treatment capacity is expressed in the form of sludge load, how much BOD per MLSS
Is a management criterion that can be processed. For this reason, a method is employed in which the sludge is returned from the settling tank and the MLSS of the activated sludge tank is maintained at a constant value. However, the amount of oxygen required is represented by the sum of the amount used for decomposing organic substances and the amount used for maintaining and metabolizing microorganisms. In the activated sludge method, the amount used for the maintenance and metabolism of microorganisms cannot be ignored with respect to the amount used for organic matter decomposition. Therefore, because of the increased sludge concentration for organic matter decomposition, the amount of oxygen used for the maintenance and metabolism of microorganisms also increases, and oxygen must be supplied in excess of the amount of oxygen required for decomposition. Was also uneconomical.

【0018】これに対して本発明では、有機物分解によ
る発生菌体を返送してもよいが、通常は返送を行わず1
パスで処理を行う。従って酸素供給のほとんどが有機物
分解に使用されるため、有機物処理における酸素利用効
率が高く、コスト的にも有利である。
On the other hand, in the present invention, the cells generated by the decomposition of organic substances may be returned.
Process with a pass. Therefore, most of the oxygen supply is used for organic matter decomposition, so that the oxygen use efficiency in the organic matter treatment is high and the cost is advantageous.

【0019】本発明に用いる酸素供給装置は、通気を行
いながら攪拌翼で攪拌し、気泡を微細化して酸素を効率
よく供給する方法や、水と空気を勢いよくノズルから噴
出し酸素供給を行うインジェクターの手法、また水中ポ
ンプ様の装置と空気噴出機構を組み合わせて効率よく酸
素供給を行う方法などがあり、酸素供給能力を満たして
いれば特に限定はしない。
The oxygen supply apparatus used in the present invention is a method of efficiently supplying oxygen by agitating with a stirring blade while aerating to make air bubbles fine, or supplying oxygen by jetting water and air from a nozzle vigorously. There are an injector method and a method of efficiently supplying oxygen by combining a submersible pump-like device and an air ejection mechanism. There is no particular limitation as long as the oxygen supply capacity is satisfied.

【0020】また、使用する酸素を含む気体は酸素濃度
約21%の大気を用いてもよいし、酸素供給能力を向上
させるために酸素濃度を増した気体を供給してもよく、
さらには酸素濃度90%以上の気体を用いてもよく、酸
素供給能力を満たしていれば特に限定はしない。
As the gas containing oxygen to be used, air having an oxygen concentration of about 21% may be used, or a gas having an increased oxygen concentration may be supplied to improve the oxygen supply capacity.
Further, a gas having an oxygen concentration of 90% or more may be used, and there is no particular limitation as long as the oxygen supply capacity is satisfied.

【0021】本発明に用いる菌体としては、最大酸素利
用速度が0.5kg/m3 ・h−O2 以上の菌または菌
群を優占種として利用することが好ましい。本装置が効
力を示すのはその高い酸素供給能力により供給される酸
素を菌体が利用し、有機物を分解する時である。そのた
め、菌体の最大酸素利用速度を事前に把握し、また最大
酸素利用速度が大きい菌をスクリーニングし、優占種と
して用いることが望ましい。優占種以外は特に酸素利用
速度を考慮する必要はないが、酸素利用速度は小さくと
も優占種に対して有用な効果をもたらす菌も存在するた
め、処理を行うに当たって共存関係を把握しておくこと
が好ましい。
As the cells used in the present invention, it is preferable to use, as a dominant species, a bacterium or a bacterium group having a maximum oxygen utilization rate of 0.5 kg / m 3 · hO 2 or more. The present device is effective when bacterial cells utilize the oxygen supplied by its high oxygen supply capacity to decompose organic substances. For this reason, it is desirable to grasp the maximum oxygen utilization rate of the cells in advance, screen for bacteria having a large maximum oxygen utilization rate, and use them as the dominant species. Except for the dominant species, there is no particular need to consider the oxygen utilization rate.However, there are bacteria that have a useful effect on the dominant species even if the oxygen utilization rate is low, so understand the coexistence relationship when performing the treatment. Preferably.

【0022】本発明の装置は基本的には酸素供給能力を
満たしていればよいが、処理菌体の効率的に分解する条
件を保つため、温度制御装置、pH制御装置が付加され
ていることが好ましい。また、溶存酸素についても常に
監視し、酸素供給不足になっていないことを確認できる
装置であることが好ましい。また、原水の濃度・流量に
よる負荷変動に対応し、処理槽内の溶存酸素濃度を検知
し、酸素供給能力を調節できる装置であればより好まし
い。このとき、調節方法としては、酸素含有気体の流量
の調節や、攪拌などの供給効率向上手段を用いている場
合にはその能力の調節が主な方法であるが、特に限定は
しない。
Basically, the apparatus of the present invention only needs to satisfy the oxygen supply capacity. However, in order to maintain the conditions for efficiently decomposing the treated cells, a temperature controller and a pH controller must be added. Is preferred. In addition, it is preferable that the apparatus be capable of constantly monitoring dissolved oxygen and confirming that there is no shortage of oxygen supply. In addition, it is more preferable that the apparatus be capable of detecting the concentration of dissolved oxygen in the treatment tank and adjusting the oxygen supply capacity in response to the load fluctuation due to the concentration and flow rate of the raw water. At this time, the main method of adjustment is to adjust the flow rate of the oxygen-containing gas or to adjust the capacity when using a supply efficiency improving means such as stirring, but the method is not particularly limited.

【0023】本発明は、ポリエステル織物の苛性ソーダ
による減量処理廃液を主成分とする排水を処理する際に
有効である。該廃液は高BOD廃液であることが多く、
従来は酸析や一般の活性汚泥法により処理されていた。
しかし、活性汚泥法による処理では高BODの排水であ
るために排水処理施設への負荷が大きく、非常に大きな
活性汚泥槽を必要としてスペース面やコスト面に問題を
かかえていた。本発明では高効率な酸素供給によりコン
パクトな装置でポリエステル織物の苛性ソーダによる減
量処理廃液を主成分とする排水を処理することができ、
スペース面やコスト面で有利であるが、被処理液はこれ
に限定されるものではない。
The present invention is effective when treating wastewater mainly composed of waste liquid for weight reduction treatment of polyester fabric with caustic soda. The waste liquid is often a high BOD waste liquid,
Conventionally, it has been treated by acid precipitation or a general activated sludge method.
However, the treatment by the activated sludge method has a large load on the wastewater treatment facility due to the high BOD wastewater, and requires a very large activated sludge tank, which poses problems in space and cost. In the present invention, it is possible to treat wastewater mainly composed of a waste liquid of weight loss treatment with caustic soda of a polyester fabric in a compact device by highly efficient oxygen supply,
Although it is advantageous in terms of space and cost, the liquid to be treated is not limited to this.

【0024】本発明の装置構成を図1の実施例を用いて
説明すると、処理槽1には原水供給ライン4および処理
水ライン5が接続されており、処理槽1には所定の酸素
供給ができるような酸素供給手段を備える。図1の例で
は通気攪拌により酸素供給を行う例であり、酸素含有気
体供給ライン6から供給される酸素含有気体を散気装置
3から散気し、攪拌機2により酸素溶解効率を向上させ
て所定の酸素供給能力を得ている。
The apparatus configuration of the present invention will be described with reference to the embodiment of FIG. 1. A raw water supply line 4 and a treated water line 5 are connected to the treatment tank 1, and a predetermined oxygen supply is supplied to the treatment tank 1. It is provided with an oxygen supply means which can be used. In the example of FIG. 1, oxygen is supplied by aeration and agitation. The oxygen-containing gas supplied from the oxygen-containing gas supply line 6 is diffused from the diffuser 3, and the oxygen dissolving efficiency is improved by the stirrer 2 to increase the oxygen dissolving efficiency. Oxygen supply capacity.

【0025】また、酸素供給装置としてインジェクター
を利用し、処理水の菌体を分離する装置を備える構成に
した例が図2である。この例ではさらに温度測定コント
ロール装置14と熱交換器8により温度制御が、pH測
定コントロール装置13とpH調整剤投入装置10によ
りpH制御が、DO測定コントロール装置15によりイ
ンジェクターへ9の循環水と酸素含有気体の供給量を変
化させるDO制御が可能となっており、その他に無機塩
(栄養塩)投入装置11により必要な無機塩を投入する
ことができる構成になっている。また、菌体を含む処理
槽1からの処理水は菌体分離装置12により取り除か
れ、処理水ライン5から放流される。
FIG. 2 shows an example in which an injector is used as an oxygen supply device and a device for separating cells of treated water is provided. In this example, temperature control is further performed by the temperature measurement control device 14 and the heat exchanger 8, pH control is performed by the pH measurement control device 13 and the pH adjusting agent charging device 10, and circulating water and oxygen are supplied to the injector 9 by the DO measurement control device 15. DO control for changing the supply amount of the contained gas can be performed, and in addition, the inorganic salt (nutrient salt) input device 11 can input a required inorganic salt. In addition, the treated water containing the cells from the treatment tank 1 is removed by the cell separator 12 and discharged from the treated water line 5.

【0026】少量の高BOD排水と大量の低BOD排水
が排出される排水系に本発明を適用した例が図3であ
り、高BOD排水を高濃度原水供給ライン17から本発
明の装置16に導入し、処理水を活性汚泥槽19に排出
する。活性汚泥槽19は低BOD排水を低濃度原水供給
ライン18から受け入れ、本発明の装置16の処理水と
ともに活性汚泥処理する。処理水は沈殿槽20に導入さ
れて固液分離され、処理水ライン5から放流される。2
1は沈殿槽20の余剰汚泥引き抜きラインであり、22
は沈殿槽20の汚泥の一部を活性汚泥槽19に返送する
汚泥返送ラインである。
FIG. 3 shows an example in which the present invention is applied to a drainage system in which a small amount of high-BOD wastewater and a large amount of low-BOD wastewater are discharged. The high-BOD wastewater is supplied from a high-concentration raw water supply line 17 to an apparatus 16 of the present invention. The treated water is discharged to the activated sludge tank 19. The activated sludge tank 19 receives the low BOD wastewater from the low-concentration raw water supply line 18 and processes the activated sludge together with the treated water of the apparatus 16 of the present invention. The treated water is introduced into the sedimentation tank 20, separated into solid and liquid, and discharged from the treated water line 5. 2
Reference numeral 1 denotes a line for extracting excess sludge from the sedimentation tank 20;
A sludge return line for returning a part of the sludge in the settling tank 20 to the activated sludge tank 19.

【0027】[0027]

【実施例】(実施例1)槽容量1Lの本発明の装置を用
いて、テレフタル酸2ナトリウム塩8g/Lとエチレン
グリコール3g/Lを主BOD源とする混合水溶液を原
水として分解処理実験を行った。原水を167mL/h
(滞留6h)で供給し、通気攪拌により空気を酸素供給
量として1.7kg/m3 ・h−O2 供給し、また無機
塩をBOD:N:Pが100:5:1となるように添加
した。ただし、この時の酸素供給量は、排気ガスの酸素
濃度および流量を測定して通気攪拌を調節したため、実
使用量と同等であり、以下の実施例および比較例でも同
様である。処理条件は温度45℃、pH8.5になるよ
うに調整した。使用した菌群は土壌から取得し、同じ組
成の原水であらかじめ1ヵ月馴養したものを使用した。
(Example 1) Using a device of the present invention having a tank capacity of 1 L, a decomposition treatment experiment was performed using a mixed aqueous solution containing 8 g / L of disodium terephthalate and 3 g / L of ethylene glycol as a main BOD source. went. 167 mL / h of raw water
(Retention 6h), air was supplied by aeration and stirring to supply 1.7 kg / m 3 · h-O 2 as an oxygen supply amount, and inorganic salts were adjusted so that BOD: N: P became 100: 5: 1. Was added. However, the amount of oxygen supplied at this time was equivalent to the actual amount used, because the oxygen concentration and flow rate of the exhaust gas were measured and the aeration and agitation were adjusted. The same applies to the following Examples and Comparative Examples. The treatment conditions were adjusted so that the temperature was 45 ° C. and the pH was 8.5. The used bacterial group was obtained from soil and used for one month in advance with raw water having the same composition.

【0028】原水の実測BOD16,000ppmに対
し、発生菌体を含む処理水の実測BODは4,000p
pmであった。またこれを遠心分離した結果、上清BO
Dは300ppmであった。
The measured BOD of the treated water containing the generated bacterial cells is 4,000 p.m.
pm. In addition, as a result of centrifugation,
D was 300 ppm.

【0029】(実施例2)槽容量1Lの本発明の装置を
用いて、テレフタル酸2ナトリウム塩8g/Lとエチレ
ングリコール3g/Lを主BOD源とする混合水溶液を
原水として分解処理実験を行った。原水を167mL/
h(滞留6h)で供給し、通気攪拌により空気を酸素供
給量として1.7kg/m3 ・h−O2 供給し、また無
機塩をBOD:N:Pが100:5:1となるように添
加した。処理条件は温度45℃、pH8.5になるよう
に調整した。使用した菌群は土壌から取得し、同じ組成
の原水であらかじめ1ヵ月馴養したものから原水分解に
有用な菌株4種を単離して使用した。
(Example 2) Using the apparatus of the present invention having a tank capacity of 1 L, a decomposition treatment experiment was carried out using a mixed aqueous solution containing 8 g / L of terephthalic acid disodium salt and 3 g / L of ethylene glycol as a main BOD source as raw water. Was. 167 mL of raw water
h (residence 6h), air is supplied by aeration and stirring to supply 1.7 kg / m 3 · h-O 2 as an oxygen supply amount, and the inorganic salts are adjusted so that BOD: N: P becomes 100: 5: 1. Was added. The treatment conditions were adjusted so that the temperature was 45 ° C. and the pH was 8.5. The used bacterial groups were obtained from soil, and four kinds of bacterial strains useful for raw water decomposition were isolated from those that had been acclimated for one month in raw water having the same composition and used.

【0030】原水の実測BOD16,000ppmに対
し、発生菌体を含む処理水の実測BODは4,000p
pmであった。またこれを遠心分離した結果、上清BO
Dは300ppmと、単離した4種の菌で処理を行った
場合と単離しない場合と同じ結果であり、分解のほぼ全
てが単離した4種により行われていることが推定され
た。
The measured BOD of the treated water containing the generated bacterial cells is 4,000 p.
pm. In addition, as a result of centrifugation,
D was 300 ppm, the same result as in the case where the treatment was performed with the four isolated bacteria and in the case where the treatment was not performed, and it was presumed that almost all of the decomposition was performed by the isolated four species.

【0031】(実施例3)槽容量1Lの本装置を用い
て、テレフタル酸2ナトリウム塩8g/Lとエチレング
リコール3g/Lを主BOD源とする混合水溶液を原水
として分解処理実験を行った。原水を167mL/h
(滞留6h)で供給し、通気攪拌により空気を酸素供給
量として1.7kg/m3 ・h−O2 供給し、また無機
塩をBOD:N:Pが100:5:1となるように添加
した。処理槽処理条件は温度45℃、pH8.5になる
ように調整した。使用した菌群は土壌から取得し、同じ
組成の原水であらかじめ1ヵ月馴養したものを使用し
た。本装置からの菌体を含んだ流出水と水とを1:9の
割合で混合希釈し、容量25Lの活性汚泥槽にて処理
し、容量6Lの沈殿槽により固液分離を行った。沈殿槽
から活性汚泥槽への返送は420ml/hとし、50m
l/hを余剰汚泥として引き抜いた。
(Example 3) Using this apparatus having a tank capacity of 1 L, a decomposition treatment experiment was carried out using a mixed aqueous solution containing 8 g / L of terephthalic acid disodium salt and 3 g / L of ethylene glycol as a main BOD source. 167 mL / h of raw water
(Retention 6 h), air was supplied by aeration and stirring to supply 1.7 kg / m 3 · h-O 2 as an oxygen supply amount, and inorganic salts were adjusted so that BOD: N: P became 100: 5: 1. Was added. The processing conditions of the processing tank were adjusted so that the temperature was 45 ° C. and the pH was 8.5. The used bacterial group was obtained from soil and used for one month in advance with raw water having the same composition. The effluent containing the bacterial cells from this apparatus and the water were mixed and diluted at a ratio of 1: 9, treated in a 25-L activated sludge tank, and subjected to solid-liquid separation in a 6-L sedimentation tank. Return from the settling tank to the activated sludge tank is 420ml / h, 50m
1 / h was extracted as surplus sludge.

【0032】原水の実測BOD16,000ppmに対
し、本装置の菌体を含んだ流出水の実測BODは4,0
00ppmであった。活性汚泥槽のMLSSは2,00
0mg/Lとなり、放流水実測BODは30ppmであ
った。
The measured BOD of the effluent containing the bacterial cells of the present apparatus was 4.0, while the measured BOD of the raw water was 16,000 ppm.
It was 00 ppm. MLSS of activated sludge tank is 2,000
0 mg / L, and the measured BOD of the effluent was 30 ppm.

【0033】(比較例1)容量25Lの活性汚泥槽、容
量6Lの沈殿槽を用いて、テレフタル酸2ナトリウム塩
8g/Lとエチレングリコール3g/Lを主BOD源と
する混合水溶液を原水として分解処理実験を行った。原
水を167mL/hで供給し、5L/minで曝気し
た。この時の酸素供給量を測定したところ、0.1kg
/m3 ・h−O2 であった。また原水の実測BODは1
6,000ppmであった。
(Comparative Example 1) Using an activated sludge tank having a capacity of 25 L and a settling tank having a capacity of 6 L, a mixed aqueous solution containing 8 g / L of disodium terephthalate and 3 g / L of ethylene glycol as a main BOD source was decomposed as raw water. Processing experiments were performed. Raw water was supplied at 167 mL / h and aerated at 5 L / min. When the oxygen supply amount at this time was measured, it was 0.1 kg
/ M 3 · h-O 2 . The measured BOD of raw water is 1
It was 6,000 ppm.

【0034】曝気槽MLSSが上昇し、沈殿槽で沈降分
離することが不能であった上、汚泥を含む流出水からテ
レフタル酸2ナトリウム塩およびエチレングリコールが
検出され、処理も十分に行うことができなかった。
The aeration tank MLSS rises, and it is impossible to settle and separate in the sedimentation tank. In addition, terephthalic acid disodium salt and ethylene glycol are detected from the effluent containing sludge, and the treatment can be performed sufficiently. Did not.

【0035】固液分離を別としても、本装置と同じ濃度
での処理を活性汚泥槽で行うことは出来なかった。
Apart from solid-liquid separation, treatment at the same concentration as that of the present apparatus could not be performed in the activated sludge tank.

【0036】(比較例2)容量25Lの活性汚泥槽、容
量6Lの沈殿槽を用いて、テレフタル酸2ナトリウム塩
8g/Lとエチレングリコール3g/Lを主BOD源と
する混合水溶液(実測BOD16,000ppm)を、
水で40倍に希釈して活性汚泥槽への原水(BOD40
0ppm)として供給し、原水流量を変化させて分解処
理実験を行った。曝気量は5L/minであり、この時
の酸素供給量を測定したところ、0.1kg/m3 ・h
−O2 であった。
(Comparative Example 2) Using an activated sludge tank having a capacity of 25 L and a sedimentation tank having a capacity of 6 L, a mixed aqueous solution containing 8 g / L of disodium terephthalate and 3 g / L of ethylene glycol as main BOD sources (actually measured BOD 16, 000 ppm)
Raw water (BOD40) diluted 40 times with water
0 ppm), and the decomposition treatment experiment was performed by changing the flow rate of the raw water. The aeration amount was 5 L / min, and the oxygen supply amount at this time was measured to be 0.1 kg / m 3 · h
It was -O 2.

【0037】原水流量を1,700mL/h、汚泥返送
率0.25とした時に安定運転が可能であり、活性汚泥
槽のMLSSは2,000mg/L、放流水のBODは
32ppmであった。この時希釈前のテレフタル酸2ナ
トリウム塩8g/Lとエチレングリコール3g/Lを主
BOD源とする混合水溶液の処理量は42.5mL/h
であった。実施例2と比較して希釈前の混合溶液の処理
量は同じ容量の活性汚泥槽で約1/4であった。
When the raw water flow rate was 1,700 mL / h and the sludge return rate was 0.25, stable operation was possible. The MLSS of the activated sludge tank was 2,000 mg / L, and the BOD of the effluent was 32 ppm. At this time, the processing amount of the mixed aqueous solution containing 8 g / L of terephthalic acid disodium salt and 3 g / L of ethylene glycol before dilution as the main BOD source was 42.5 mL / h.
Met. Compared with Example 2, the throughput of the mixed solution before dilution was about 1/4 in the activated sludge tank having the same capacity.

【0038】したがって、本発明の装置を用いず活性汚
泥法のみで実施例1と同じ処理量を達成しようとするな
らば、活性汚泥槽の容量は4倍の100Lが必要とな
る。
Therefore, if the same throughput as in Example 1 is to be achieved only by the activated sludge method without using the apparatus of the present invention, the capacity of the activated sludge tank is required to be four times as large as 100 L.

【0039】[0039]

【発明の効果】本発明によれば、好気的な排水処理、特
に高濃度のBOD廃液をコンパクトな装置で高能率に排
水の処理を行うことができる。
According to the present invention, aerobic wastewater treatment, in particular, high-concentration BOD wastewater can be efficiently treated by a compact apparatus with high efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微生物利用有機化合物含有排水処理装
置の一例を示したフローチャート図である。
FIG. 1 is a flowchart illustrating an example of a wastewater treatment apparatus containing a microorganism-using organic compound according to the present invention.

【図2】本発明の微生物利用有機化合物含有排水処理装
置の他の例を示したフローチャート図である。
FIG. 2 is a flowchart showing another example of the wastewater treatment apparatus containing an organic compound utilizing microorganisms of the present invention.

【図3】本発明の微生物利用有機化合物含有排水処理装
置と活性汚泥処理を組み合わせた例を示したフローチャ
ート図である。
FIG. 3 is a flowchart showing an example in which the microorganism-using organic compound-containing wastewater treatment apparatus of the present invention is combined with activated sludge treatment.

【符号の説明】[Explanation of symbols]

1:処理槽 2:攪拌機 3:散気装置 4:原水供給ライン 5:処理水ライン 6:酸素含有気体供給ライン 7:循環ポンプ 8:熱交換器 9:酸素供給装置(インジェクター) 10:pH調整剤投入装置 11:無機塩(栄養塩)投入装置 12:菌体分離装置 13:pH測定コントロール装置 14:温度測定コントロール装置 15:DO測定コントロール装置 16:本発明装置 17:高濃度原水供給ライン 18:低濃度原水供給ライン 19:活性汚泥槽 20:沈殿槽 21:余剰汚泥引き抜きライン 22:汚泥返送ライン 1: treatment tank 2: stirrer 3: air diffuser 4: raw water supply line 5: treated water line 6: oxygen-containing gas supply line 7: circulation pump 8: heat exchanger 9: oxygen supply device (injector) 10: pH adjustment Agent charging device 11: Inorganic salt (nutrient salt) charging device 12: Cell separation device 13: pH measurement control device 14: Temperature measurement control device 15: DO measurement control device 16: Device of the present invention 17: High concentration raw water supply line 18 : Low concentration raw water supply line 19: Activated sludge tank 20: Settling tank 21: Excess sludge extraction line 22: Sludge return line

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D003 AB01 AB19 BA02 CA07 FA02 FA05 4D028 AB00 AC03 BB06 BC24 BD00 CA09 CB02 CC07 CD01 4D029 AA09 AB03 AB06 CC03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D003 AB01 AB19 BA02 CA07 FA02 FA05 4D028 AB00 AC03 BB06 BC24 BD00 CA09 CB02 CC07 CD01 4D029 AA09 AB03 AB06 CC03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】有機化合物を含有する排水を、微生物を利
用して好気的に処理する方法において、酸素を0.5k
g/m3 ・h−O2 以上で供給することを特徴とする排
水処理方法。
1. A method for aerobically treating wastewater containing an organic compound by utilizing microorganisms, wherein oxygen is added at 0.5 k
A wastewater treatment method characterized by supplying g / m 3 · h-O 2 or more.
【請求項2】最大酸素利用速度が0.5kg/m3 ・h
−O2 以上の菌または菌群を優占種として利用すること
を特徴とする請求項1記載の排水処理方法。
2. The maximum oxygen utilization rate is 0.5 kg / m 3 · h.
Waste water treatment method according to claim 1, wherein utilizing -O 2 or more fungi or bacterial group as dominant species.
【請求項3】処理槽溶存酸素濃度により酸素供給能力を
調節することを特徴とする請求項1または2の排水処理
方法。
3. The wastewater treatment method according to claim 1, wherein the oxygen supply capacity is adjusted by the concentration of dissolved oxygen in the treatment tank.
【請求項4】ポリエステル織物の苛性ソーダによる減量
処理廃液を主成分とする排水を処理することを特徴とす
る請求項1から3のいずれかに記載の排水処理方法。
4. The wastewater treatment method according to claim 1, wherein wastewater mainly composed of waste liquid of weight reduction treatment of polyester fabric with caustic soda is treated.
【請求項5】少なくとも被処理水流入口と処理水流出口
とをもつ微生物処理槽、および該微生物処理槽への酸素
供給手段を有する排水処理装置であって、該酸素供給手
段の酸素供給能力が0.5kg/m3 ・h−O2 以上で
あることを特徴とする排水処理装置。
5. A wastewater treatment apparatus having a microorganism treatment tank having at least an inlet for treated water and an outlet for treated water, and a wastewater treatment apparatus having an oxygen supply means for the microorganism treatment tank, wherein the oxygen supply means has an oxygen supply capacity of zero. A wastewater treatment device characterized by being at least 0.5 kg / m 3 · h-O 2 .
【請求項6】処理槽溶存酸素濃度により酸素供給能力を
調節する手段を備えること特徴とする請求項5に記載の
排水処理装置。
6. The wastewater treatment apparatus according to claim 5, further comprising means for adjusting an oxygen supply capacity by a concentration of dissolved oxygen in the treatment tank.
JP22280198A 1998-08-06 1998-08-06 Method and apparatus for treating drainage Pending JP2000051881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22280198A JP2000051881A (en) 1998-08-06 1998-08-06 Method and apparatus for treating drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22280198A JP2000051881A (en) 1998-08-06 1998-08-06 Method and apparatus for treating drainage

Publications (1)

Publication Number Publication Date
JP2000051881A true JP2000051881A (en) 2000-02-22

Family

ID=16788117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22280198A Pending JP2000051881A (en) 1998-08-06 1998-08-06 Method and apparatus for treating drainage

Country Status (1)

Country Link
JP (1) JP2000051881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263642A (en) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd Acclimatization method of micro-organism and treatment method of organic waste by means of acclimatized micro-organism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263642A (en) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd Acclimatization method of micro-organism and treatment method of organic waste by means of acclimatized micro-organism

Similar Documents

Publication Publication Date Title
US4292176A (en) Use of activated carbon in waste water treating process
JP4632356B2 (en) Biological nitrogen removal method and system
CN101274809A (en) Treatment apparatus for organic wastewater
US20040206700A1 (en) Sewage treatment apparatus using self-granulated activated sludge and sewage treatment method thereof
JPS60238197A (en) Method of inhibiting variaton for whole day of phosphorus content in outflow flow from waste water treater
EP1346956A1 (en) Process for sludge treatment using sludge pretreatment and membrane bioreactor
JP2008114215A (en) Method and apparatus for treating sludge
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
KR101898135B1 (en) Biological hydrogen wastewater treatment system
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
JP2000051881A (en) Method and apparatus for treating drainage
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP2007050386A (en) Apparatus for treating organic waste liquor
JP2004530530A5 (en)
CN112028403A (en) Method and system for treating wastewater containing phenol and acetone
CN112707593A (en) Synthetic ammonia wastewater treatment system and treatment method
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
CN110627314A (en) Method for efficiently removing total nitrogen in printing and dyeing wastewater by multi-process combination
JP3961246B2 (en) Method and apparatus for treating organic wastewater
KR100666605B1 (en) Wastewater treatment method for reducing waste-sludge utilizing an anaerobic digestion reactor and wastewater treatment system thereof
CN115536147B (en) Integrated synchronous biological denitrification and hardness removal method
KR20010026626A (en) Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
KR102299760B1 (en) High concentrated organic wastewater treatment system
JPS5998800A (en) Biological treatment of waste water containing organic substance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004