JP2000051178A - Superconductive magnet device - Google Patents

Superconductive magnet device

Info

Publication number
JP2000051178A
JP2000051178A JP10226958A JP22695898A JP2000051178A JP 2000051178 A JP2000051178 A JP 2000051178A JP 10226958 A JP10226958 A JP 10226958A JP 22695898 A JP22695898 A JP 22695898A JP 2000051178 A JP2000051178 A JP 2000051178A
Authority
JP
Japan
Prior art keywords
superconducting magnet
magnetic field
magnetic
magnetic material
cryostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226958A
Other languages
Japanese (ja)
Other versions
JP4105808B2 (en
Inventor
Ryoichi Hirose
量一 広瀬
Mamoru Hamada
衛 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MAGNET TECHNOL KK
Kobe Steel Ltd
Original Assignee
JAPAN MAGNET TECHNOL KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MAGNET TECHNOL KK, Kobe Steel Ltd filed Critical JAPAN MAGNET TECHNOL KK
Priority to JP22695898A priority Critical patent/JP4105808B2/en
Publication of JP2000051178A publication Critical patent/JP2000051178A/en
Application granted granted Critical
Publication of JP4105808B2 publication Critical patent/JP4105808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To significantly reduce working time by making it easy to provide a magnetic body for a compensating magnetic field to compensate the nonuniformity of the main magnetic field. SOLUTION: This superconductive magnet device is composed of a superconductive magnet 1 which generates a main magnetic field to be applied to a subject held in a measurement space inside the device, a cryostat 2 which coaxially surrounds and cools the superconductive magnet 1, and a magnetic body for compensating magnetic field which is held at the inside area of the superconductive magnet 1 and compensates the nonuniformity of the main magnetic field. The magnetic body for compensating magnetic field is a magnetic body piece S', which is made of iron powder mixed with an epoxy resin for fixing and is adhered to multiple specified points at the measuring face of the cryostat 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】NMR装置は、人体の断層図
を画像化するNMR−CT(核磁気共鳴イメージング装
置)や、有機化合物の結合状態解析装置などのような核
磁気共鳴現象(NMR:Nuclear Magnetic Resonance)
を観測・測定する装置である。本発明は、NMR装置用
の超電導磁石装置に関し、詳しくは、超電導磁石による
主磁場の不均一を補正して高い磁場均一度を得るための
磁場補正用磁性体を備えた超電導磁石装置に関するもの
である。
BACKGROUND OF THE INVENTION An NMR apparatus is a nuclear magnetic resonance phenomenon (NMR) such as an NMR-CT (nuclear magnetic resonance imaging apparatus) for imaging a tomogram of a human body and an apparatus for analyzing the bonding state of organic compounds. Magnetic Resonance)
It is a device for observing and measuring. The present invention relates to a superconducting magnet apparatus for an NMR apparatus, and more particularly, to a superconducting magnet apparatus having a magnetic body for magnetic field correction for correcting non-uniformity of a main magnetic field by a superconducting magnet and obtaining high magnetic field uniformity. is there.

【0002】[0002]

【従来の技術】NMR装置用の超電導磁石装置では、測
定空間の磁場均一度が極めて高いこと、つまり磁束密度
が一様で勾配がなく、磁束密度の空間的変化が極めて小
さいことが要求される。そのため、このような磁場の高
均一化を実現するために、設計段階では主磁場を発生す
る超電導磁石のコイル形状や電流密度等に工夫が施され
ている。しかし、設計通りの製作精度が得られ難いこと
や、装置設置場所に存在する例えば鉄筋コンクリート建
屋の鉄筋のような外乱となる磁性体の影響を受けること
などにより、所望の磁場均一度が得られないことがあ
る。このため、超電導磁石装置には、超電導磁石による
主磁場の不均一を補正するための磁場補正用磁性体とし
て、例えばニッケル片あるいは鉄片からなる大きさが数
ミリ角程度の磁性体片が多数個配されている。この小さ
い磁性体片は磁性体シム(シム:shim)と称されてい
る。
2. Description of the Related Art A superconducting magnet apparatus for an NMR apparatus is required to have a very high magnetic field uniformity in a measurement space, that is, a uniform magnetic flux density, no gradient, and a very small spatial change in magnetic flux density. . Therefore, in order to realize such a high uniformity of the magnetic field, the coil shape and the current density of the superconducting magnet that generates the main magnetic field are devised at the design stage. However, the desired magnetic field uniformity cannot be obtained due to the difficulty in obtaining the manufacturing accuracy as designed or the influence of a magnetic substance that becomes a disturbance, such as a reinforcing bar of a reinforced concrete building, which is present at the device installation location. Sometimes. For this reason, in the superconducting magnet device, for example, a large number of magnetic material pieces each composed of a nickel piece or an iron piece having a size of several millimeters square are used as magnetic field correcting magnetic bodies for correcting non-uniformity of the main magnetic field due to the superconducting magnet. Are arranged. This small magnetic piece is called a magnetic shim.

【0003】図9は従来の超電導磁石装置を示す模式的
構成説明図で、全体の1/4 部分を切り取って装置内部を
示すようにした図である。同図において、1は被測定物
Tに印加する主磁場を発生する円筒状をなす超電導磁
石、3は立体円環状をなす銅製の液体ヘリウム容器であ
る。超電導磁石1は液体ヘリウム容器3内に該磁石1を
超電導の作動温度まで冷却して運転するための図示しな
い液体ヘリウム中に浸漬されて配置されている。4は立
体円環状をなし、超電導磁石7を収容した液体ヘリウム
容器3を囲繞する真空容器である。真空容器4はその内
筒4aが銅製で、それ以外の部分はステンレス鋼製であ
る。この真空容器4と液体ヘリウム容器3との間に形成
された真空断熱空間により、液体ヘリウムに対する室温
からの熱放射を防ぐようになされている。
FIG. 9 is a schematic structural explanatory view showing a conventional superconducting magnet device, in which a quarter of the whole is cut away to show the inside of the device. In FIG. 1, reference numeral 1 denotes a cylindrical superconducting magnet for generating a main magnetic field applied to the object T, and reference numeral 3 denotes a three-dimensional annular liquid helium container made of copper. The superconducting magnet 1 is disposed in a liquid helium container 3 immersed in liquid helium (not shown) for cooling and operating the magnet 1 to the superconducting operating temperature. Reference numeral 4 denotes a vacuum container which has a three-dimensional annular shape and surrounds the liquid helium container 3 containing the superconducting magnet 7. The vacuum vessel 4 has an inner cylinder 4a made of copper, and the other parts are made of stainless steel. The vacuum heat insulating space formed between the vacuum container 4 and the liquid helium container 3 prevents heat radiation from room temperature to the liquid helium.

【0004】本例では、液体ヘリウム容器3及び真空容
器4は、超電導磁石1をこれと同心状をなして囲繞し保
冷するクライオスタット(極低温恒温装置)2を構成し
ている。被測定物Tは、超電導磁石1の内側領域に形成
される室温の測定空間に配されようになっている。そし
て、真空容器内筒4aの該容器外部側の面に、主磁場の
不均一成分を補正するために多数個の磁性体片Sが配さ
れている。
In this embodiment, the liquid helium container 3 and the vacuum container 4 constitute a cryostat (cryogenic constant temperature device) 2 which surrounds the superconducting magnet 1 concentrically and keeps it cool. The DUT T is arranged in a measurement space at room temperature formed in the inner region of the superconducting magnet 1. A large number of magnetic pieces S are arranged on the surface of the vacuum vessel inner cylinder 4a on the outside of the vessel to correct the non-uniform component of the main magnetic field.

【0005】この磁性体片Sの配設作業について説明す
る。本例の場合、超電導磁石1の外形寸法:内径92m
m,外径220mm,軸方向長さ370mmとし、真空
容器4の外形寸法(クライオスタットの外形寸法):内
径54mm,外径600mm,軸方向長さ800mmと
し、超電導磁石1により該磁石中心部の測定空間に7テ
スラ(プロトン核磁気共鳴周波数300MHz相当)の
高均一度磁場を発生させるものとし、厚み0.2mm×
幅2mm×長さ4mmで、矩形をなすニッケル箔よりな
る磁性体片Sを、130箇所の位置にピンセットを用い
て瞬間接着剤(エポキシ樹脂など)で貼りつけた。これ
らの磁性体片Sの貼りつけ位置はシミュレーション計算
によって決定されたものであり、この貼りつけ作業には
約20時間を要した。
The operation of disposing the magnetic piece S will be described. In the case of this example, the outer dimensions of the superconducting magnet 1: an inner diameter of 92 m
m, outer diameter 220 mm, axial length 370 mm, outer dimensions of vacuum vessel 4 (outer dimensions of cryostat): inner diameter 54 mm, outer diameter 600 mm, axial length 800 mm, superconducting magnet 1 used to measure the center of the magnet A high uniformity magnetic field of 7 Tesla (equivalent to a proton nuclear magnetic resonance frequency of 300 MHz) is generated in the space, and a thickness of 0.2 mm ×
A magnetic material piece S made of nickel foil and having a rectangular shape and a width of 2 mm and a length of 4 mm was attached to 130 positions using tweezers with an instant adhesive (epoxy resin or the like). The position where these magnetic pieces S were attached was determined by simulation calculation, and this attaching work required about 20 hours.

【0006】このようにして、内側領域に形成される測
定空間に配された被測定物Tに印加する主磁場を発生す
る超電導磁石1と、該超電導磁石1をこれと同心状をな
して囲繞し保冷するクライオスタット2と、超電導磁石
1の内側領域であって、クライオスタット2の室温測定
空間壁面に配置された多数個の磁性体片Sとを備えた超
電導磁石装置が構成されている。
[0006] Thus, the superconducting magnet 1 for generating a main magnetic field to be applied to the object T arranged in the measurement space formed in the inner region, and surrounding the superconducting magnet 1 concentrically therewith. A superconducting magnet device comprising a cryostat 2 to be kept cool and a number of magnetic pieces S arranged in the inner region of the superconducting magnet 1 and on the wall surface of the cryostat 2 at the room temperature measurement space is configured.

【0007】[0007]

【発明が解決しようとする課題】前述した従来の超電導
磁石装置では、磁場補正用磁性体として個々の大きさが
数ミリ角程度の多数個の磁性体片Sを、クライオスタッ
ト2の数十ミリメートルという小径で円筒面をなす測定
空間壁面の各所要位置にそれぞれ貼りつける構造のもの
であるから、これらの磁性体片Sの貼りつけ作業に多大
の時間がかかるという問題があった。
In the above-described conventional superconducting magnet apparatus, a large number of magnetic material pieces S each having a size of several millimeters square as a magnetic material for magnetic field correction are several tens of millimeters of the cryostat 2. Since it has a structure in which it is attached to each required position on the wall of the measurement space having a small diameter and a cylindrical surface, there is a problem that it takes a long time to attach these magnetic pieces S.

【0008】そこで本発明の目的は、主磁場の不均一を
補正するための磁場補正用磁性体を設ける作業が容易
で、該作業にかかる時間を大幅に減らすことができるよ
うにした超電導磁石装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting magnet apparatus in which a magnetic field correcting magnetic body for correcting non-uniformity of a main magnetic field can be easily provided, and the time required for the work can be greatly reduced. Is to provide.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、本願第1の発明は、内側領域に形成される測定空
間に配された被測定物に印加する主磁場を発生する超電
導磁石と、該超電導磁石をこれと同心状をなして囲繞し
保冷するクライオスタットと、前記超電導磁石の内側領
域に配置され、前記主磁場の不均一を補正するための磁
場補正用磁性体とを備えた超電導磁石装置において、前
記磁場補正用磁性体が、磁性体粉と固着用の高粘性液と
を混合したものを各所要位置に所要量付着させ形成した
磁性体片であることを特徴とする超電導磁石装置として
構成されている。
According to a first aspect of the present invention, there is provided a superconducting magnet for generating a main magnetic field to be applied to an object to be measured disposed in a measurement space formed in an inner region. A cryostat that surrounds the superconducting magnet concentrically and cools it, and a magnetic body for magnetic field correction disposed in an inner region of the superconducting magnet and correcting non-uniformity of the main magnetic field. In the superconducting magnet apparatus, the magnetic material for magnetic field correction is a magnetic material piece formed by adhering a mixture of a magnetic powder and a high-viscosity liquid for fixation at a required amount to each required position. It is configured as a magnet device.

【0010】第2の発明は、内側領域に形成される測定
空間に配された被測定物に印加する主磁場を発生する超
電導磁石と、該超電導磁石をこれと同心状をなして囲繞
し保冷するクライオスタットと、前記超電導磁石の内側
領域に配置され、前記主磁場の不均一を補正するための
磁場補正用磁性体とを備えた超電導磁石装置において、
前記超電導磁石の内側領域に非磁性材よりなる円筒形基
板が前記超電導磁石と同心状をなして配され、該円筒形
基板表面の各所要位置に前記磁場補正用磁性体として磁
性体片が取り付けられていることを特徴とする超電導磁
石装置として構成されている。
According to a second aspect of the present invention, there is provided a superconducting magnet for generating a main magnetic field to be applied to an object to be measured disposed in a measurement space formed in an inner region, and surrounding the superconducting magnet concentrically with the superconducting magnet. A cryostat, and a superconducting magnet device, which is disposed in an inner region of the superconducting magnet and includes a magnetic field correcting magnetic body for correcting non-uniformity of the main magnetic field.
A cylindrical substrate made of a non-magnetic material is disposed concentrically with the superconducting magnet in an inner region of the superconducting magnet, and a magnetic material piece is attached to each required position on the surface of the cylindrical substrate as the magnetic field correcting magnetic material. This is configured as a superconducting magnet device.

【0011】第3の発明は、内側領域に形成される測定
空間に配された被測定物に印加する主磁場を発生する超
電導磁石と、該超電導磁石をこれと同心状をなして囲繞
し保冷するクライオスタットと、前記超電導磁石の内側
領域に配置され、前記主磁場の不均一を補正するための
磁場補正用磁性体とを備えた超電導磁石装置において、
前記磁場補正用磁性体が各所要位置部分を除去した円筒
形磁性材でなり、該窓部付き円筒形磁性体が前記超電導
磁石と同心状をなして配されていることを特徴とする超
電導磁石装置として構成されている。
According to a third aspect of the present invention, there is provided a superconducting magnet for generating a main magnetic field applied to an object to be measured arranged in a measurement space formed in an inner region, and surrounding the superconducting magnet concentrically with the superconducting magnet. A cryostat, and a superconducting magnet device, which is disposed in an inner region of the superconducting magnet and includes a magnetic field correcting magnetic body for correcting non-uniformity of the main magnetic field.
The superconducting magnet, wherein the magnetic field compensating magnetic body is formed of a cylindrical magnetic material from which respective required portions are removed, and the cylindrical magnetic body with a window portion is arranged concentrically with the superconducting magnet. It is configured as a device.

【0012】前記第1の発明による超電導磁石装置は、
磁場補正用磁性体として、例えばクライオスタットの測
定空間壁面の各所要位置に、磁性体粉と常温で固化する
高固着用の粘性液とを混合したものを所要量付着するこ
とで磁性体片を設ける構造のものである。したがって、
個々の大きさが数ミリ角程度の多数個の磁性体片を一つ
ずつ貼りつける従来装置に比べて、磁場補正用磁性体を
設ける作業が簡単で容易となる。
The superconducting magnet device according to the first invention comprises:
As a magnetic material for magnetic field correction, a magnetic material piece is provided by, for example, adhering a required amount of a mixture of a magnetic material powder and a viscous liquid for solidification that solidifies at room temperature to each required position on a measurement space wall surface of a cryostat, for example. Of structure. Therefore,
As compared with a conventional apparatus in which a large number of magnetic pieces each having a size of several mm square are attached one by one, the operation of providing the magnetic material for magnetic field correction is simpler and easier.

【0013】第2の発明による超電導磁石装置は、非磁
性材よりなる円筒形基板の各所要位置に磁場補正用磁性
体として磁性体片が取り付けられたものを超電導磁石の
内側領域に挿入して配設した構造のものである。したが
って、従来装置と違って直接にクライオスタット壁面に
磁性体片の取付けを行う必要がなく、磁性体片取付け時
に軽量・短尺の円筒形基板を自由に扱えることから、取
り付けの容易な円筒形基板外周面に各磁性体片を取り付
けたり、平板の各所要位置に磁性体片を取り付けたもの
を円筒形に成形したりすることにより、円筒形基板への
磁性体片の取り付けを容易に行うことができる。この第
2の発明による超電導磁石装置において、円筒形基板の
所要位置に、ニッケル箔などの磁性体片を貼りつけるの
ではなく、磁性体粉と固着用の高粘性液とを混合したも
のを所要量付着することで磁性体片を設けるようにした
ものでは、磁場補正用磁性体を設ける作業がより容易と
なる。
A superconducting magnet device according to a second aspect of the present invention is a superconducting magnet device in which a magnetic substrate is attached to each required position of a cylindrical substrate made of a non-magnetic material as a magnetic material for magnetic field correction and inserted into an inner region of the superconducting magnet. It is of the structure arranged. Therefore, unlike the conventional device, it is not necessary to directly attach the magnetic piece to the wall of the cryostat, and the lightweight and short cylindrical board can be freely handled when the magnetic piece is attached. By attaching each magnetic piece to the surface, or forming the magnetic piece attached to each required position on the flat plate into a cylindrical shape, it is easy to attach the magnetic piece to the cylindrical substrate. it can. In the superconducting magnet device according to the second aspect of the present invention, instead of sticking a magnetic piece such as a nickel foil to a required position of a cylindrical substrate, a mixture of a magnetic powder and a high-viscosity liquid for fixing is required. In the case where the magnetic material pieces are provided by attaching a large amount, the operation of providing the magnetic material for magnetic field correction becomes easier.

【0014】また、第3の発明による超電導磁石装置
は、磁場補正用磁性体として、主磁場の不均一を補正す
べく各所要位置部分を所要形状にて除去してなる窓部付
き円筒形磁性体を、超電導磁石の内側領域に挿入して配
設した構造のものである。これにより該装置では、窓部
付き円筒形磁性体は、例えば平板の磁性材にパンチによ
る打ち抜きを施したものを円筒形に成形することなどに
より、容易に製作できる。
In the superconducting magnet device according to the third aspect of the present invention, the magnetic material for correcting the magnetic field includes a cylindrical magnetic member with a window formed by removing each required position in a required shape in order to correct unevenness of the main magnetic field. It has a structure in which the body is inserted and disposed in the inner region of the superconducting magnet. Thus, in this apparatus, the cylindrical magnetic body with a window can be easily manufactured by, for example, forming a flat magnetic material punched by a punch into a cylindrical shape.

【0015】さらに、前記第2、3の発明による超電導
磁石装置において、磁場補正用磁性体をクライオスタッ
トの内部に配するようにしたものでは、測定空間の温度
変化に影響されることなく磁場補正用磁性体の温度を略
一定に保つことができるので、測定空間に高均一磁場を
安定性良く発生できるという利点がある。
Further, in the superconducting magnet device according to the second and third aspects of the present invention, in which the magnetic material for magnetic field correction is arranged inside the cryostat, the magnetic material for magnetic field correction is not affected by a temperature change in the measurement space. Since the temperature of the magnetic body can be kept substantially constant, there is an advantage that a highly uniform magnetic field can be generated in the measurement space with good stability.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。図1は第1の発明の一
実施の形態を示す超電導磁石装置の模式的構成説明図
で、全体の1/4部分を切り取って装置内部を示すように
した図である。ここで、以降の各実施の形態における超
電導磁石1及びクライオスタット2については、前記図
9に示した従来の超電導磁石装置のそれと同一形状、同
一寸法であり、図9と同一の符号を付してその説明を省
略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the first invention, wherein a quarter of the whole is cut away to show the inside of the device. Here, the superconducting magnet 1 and the cryostat 2 in each of the following embodiments have the same shape and the same dimensions as those of the conventional superconducting magnet device shown in FIG. 9, and are denoted by the same reference numerals as in FIG. The description is omitted.

【0017】図1に示すように、本例による超電導磁石
装置では、超電導磁石1による主磁場の不均一を補正す
るための磁場補正用磁性体として、クライオスタット2
の測定空間壁面に、詳しくはクライオスタット2を構成
する真空容器4の内筒4aの該容器外部側の面の各所要
位置に、磁性体粉と固着用の高粘性液とによる磁性体片
S’が配されている。これらの磁性体片S’は、磁性体
粉として平均粒径70μmの鉄粉と常温で化学反応によ
り固化する高粘性液としてEPON系エポキシ樹脂とを
均一に混合した混合液を、該混合液を一滴ずつ噴出可能
な混合液噴出装置7により、各所要位置に一滴分ずつ付
着させて形成したものである。混合液に対する鉄粉の重
量比は30%、噴出装置7は一滴あたり60mgの混合
液を噴出するもので、よって各磁性体片S’は、それぞ
れ、18mgの鉄片による磁場補正を有するものとなっ
ている。なお、前記EPON系エポキシ樹脂の他に、ス
タイキャストが挙げられる。
As shown in FIG. 1, in the superconducting magnet apparatus according to this embodiment, a cryostat 2 is used as a magnetic field correcting magnetic body for correcting non-uniformity of the main magnetic field caused by the superconducting magnet 1.
In the measurement space wall surface, specifically, at each required position on the outer surface of the inner cylinder 4a of the vacuum vessel 4 constituting the cryostat 2, a magnetic substance piece S 'made of a magnetic substance powder and a high-viscosity liquid for fixing is provided. Is arranged. These magnetic pieces S ′ were prepared by uniformly mixing a mixture of iron powder having an average particle diameter of 70 μm as a magnetic powder and an EPON-based epoxy resin as a high-viscosity liquid that solidifies by a chemical reaction at room temperature. It is formed by adhering one droplet at each required position by a mixed liquid ejecting device 7 capable of ejecting one droplet at a time. The weight ratio of the iron powder to the mixed solution is 30%, and the ejection device 7 ejects 60 mg of the mixed solution per one drop. Therefore, each magnetic piece S ′ has a magnetic field correction by 18 mg of the iron piece. ing. In addition, a sty cast may be used in addition to the EPON-based epoxy resin.

【0018】これらの磁性体片S’を設ける位置は、磁
場不均一成分を補正すべくシミュレーション計算によっ
て決定されたもので本例では170箇所であった。その
結果、シミュレーション計算通りの補正効果が得られ、
測定空間に高均一磁場を発生することができた。そして
このように、鉄粉と固着用エポキシ樹脂との混合液を付
着させて磁性体片S’を形成するようにしたので、磁性
体片を一つずつ貼りつける構造の従来装置に比べて磁場
補正用磁性体を設ける作業が簡単で該作業時間を大幅に
減らすことが可能となった。
The positions at which these magnetic material pieces S 'are provided are determined by simulation calculations in order to correct the non-uniform magnetic field component, and are 170 in this example. As a result, the correction effect according to the simulation calculation is obtained,
A highly uniform magnetic field could be generated in the measurement space. As described above, since the magnetic material pieces S 'are formed by adhering the mixed solution of the iron powder and the fixing epoxy resin, the magnetic field is smaller than that of the conventional device in which the magnetic material pieces are attached one by one. The work of providing the magnetic material for correction is simple, and the work time can be greatly reduced.

【0019】図2は第2の発明の一実施の形態を示す超
電導磁石装置の模式的構成説明図で、全体の1/4 部分を
切り取って装置内部を示すようにした図である。
FIG. 2 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the second invention, wherein a quarter of the whole is cut away to show the inside of the device.

【0020】図2に示すように、本例による超電導磁石
装置は、非磁性材よりなる円筒形基板5の各所要位置に
磁場補正用磁性体として鉄粉と固着用エポキシ樹脂とに
よる磁性体片S’が取り付けられたものを、真空容器4
内側の室温の測定空間に挿入し、超電導磁石1と同心状
に配設した構造のものである。非磁性材よりなる円筒形
基板5は、この例では銅製であり、厚み1mm,内径5
1mm,軸方向長さ200mmである。この円筒形基板
5の内周面の170箇所の位置に、前記図1の場合と同
様に、混合液噴出装置7により鉄粉とエポキシ樹脂との
混合液を付着させて磁性体片S’を設け、しかる後、こ
のものを真空容器4内側の測定空間に配設してある。本
例の場合、クライオスタット2に比べて円筒形基板5が
短尺・軽量であって、該円筒形基板5と噴出装置7とを
容易に相対的に位置制御できることから、前記図1の装
置に比べてより容易に磁性体片S’を設けることができ
た。また、補正効果もシミュレーション計算通りのもの
が得られた。なお、本例では、円筒形基板5の内周面に
磁性体片S’を設けているが、これに限らず、円筒形基
板5の外周面又は両方の面に設けるように構成してもよ
い。
As shown in FIG. 2, the superconducting magnet apparatus according to the present embodiment has a magnetic piece made of iron powder and fixing epoxy resin as magnetic bodies for magnetic field correction at each required position of a cylindrical substrate 5 made of a nonmagnetic material. The vacuum vessel 4 with the S 'attached
The superconducting magnet 1 is inserted into a measurement space at room temperature at the inside and is arranged concentrically with the superconducting magnet 1. The cylindrical substrate 5 made of a non-magnetic material is made of copper in this example and has a thickness of 1 mm and an inner diameter of 5 mm.
The length is 1 mm and the axial length is 200 mm. As in the case of FIG. 1, a mixed solution of iron powder and epoxy resin is adhered to 170 locations on the inner peripheral surface of the cylindrical substrate 5 by the mixed solution jetting device 7 to remove the magnetic material pieces S ′. It is then provided in a measuring space inside the vacuum vessel 4. In the case of this example, the cylindrical substrate 5 is shorter and lighter than the cryostat 2, and the relative position of the cylindrical substrate 5 and the ejection device 7 can be easily controlled. Thus, the magnetic piece S ′ could be provided more easily. In addition, the correction effect was the same as the simulation calculation. In the present example, the magnetic piece S ′ is provided on the inner peripheral surface of the cylindrical substrate 5. However, the present invention is not limited to this, and the magnetic piece S ′ may be provided on the outer peripheral surface or both surfaces of the cylindrical substrate 5. Good.

【0021】図3は第2の発明の他の実施の形態を示す
超電導磁石装置の模式的説明図で、全体の1/4 部分を切
り取って装置内部を示すようにした図である。前記図2
の超電導磁石装置との相違点は磁性体片にある。
FIG. 3 is a schematic explanatory view of a superconducting magnet device according to another embodiment of the second invention, in which a quarter of the whole is cut away to show the inside of the device. FIG. 2
The difference from the superconducting magnet device of the first embodiment resides in the magnetic piece.

【0022】図3に示すように、本例による超電導磁石
装置は、銅製の円筒形基板5の各所要位置に磁場補正用
磁性体としてニッケル箔でなる磁性体片Sが取り付けら
れたものを、真空容器4内側の室温の測定空間に挿入
し、超電導磁石1と同心状に配設した構造のものであ
る。図2のものと同一の円筒形基板5の外周面の130
箇所の位置に、前述した図9の従来装置で用いたものと
同様に、厚み0.2mm×幅2mm×長さ4mmのニッ
ケル箔よりなる磁性体片Sをピンセットを用いて瞬間接
着剤で貼りつけ、しかる後、このものを真空容器4内側
の測定空間に配設してある。
As shown in FIG. 3, the superconducting magnet device according to the present embodiment has a structure in which a magnetic material piece S made of nickel foil is attached as a magnetic material for magnetic field correction at each required position of a cylindrical substrate 5 made of copper. The superconducting magnet 1 is inserted into a room temperature measurement space inside the vacuum vessel 4 and arranged concentrically with the superconducting magnet 1. 130 of the outer peripheral surface of the same cylindrical substrate 5 as that of FIG.
A piece of magnetic material S made of nickel foil having a thickness of 0.2 mm, a width of 2 mm, and a length of 4 mm is stuck to the position of the spot with an instant adhesive using tweezers in the same manner as that used in the conventional apparatus of FIG. 9 described above. After that, it is arranged in a measuring space inside the vacuum vessel 4.

【0023】本例の場合、これらの磁性体片Sの貼りつ
け作業にかかる時間は、約12時間であり、直接にクラ
イオスタット2の測定空間壁面に磁性体片Sを貼りつけ
る構造の前記図9に示す従来装置では狭隘でやりにくい
状態での貼りつけ作業となって約20時間を要したこと
に比べると、大幅に減らすことができた。また、シミュ
レーション計算通りの補正効果が得られた。なお、従来
装置では、シミュレーション計算による補正効果の約7
0%程度が得られており、この誤差は貼りつけ作業で生
じる貼りつけ位置の位置ずれによるものと考えられる。
In the case of this embodiment, the time required for the work of attaching the magnetic material pieces S is about 12 hours, and the structure in which the magnetic material pieces S are directly attached to the wall of the measurement space of the cryostat 2 as shown in FIG. In the conventional apparatus shown in FIG. 1, the pasting operation was performed in a narrow and difficult state, which required about 20 hours, which was significantly reduced. In addition, a correction effect according to the simulation calculation was obtained. In the conventional apparatus, the correction effect of about 7
About 0% is obtained, and it is considered that this error is caused by a positional shift of the sticking position caused by the sticking operation.

【0024】図4は第2の発明の他の実施の形態を示す
超電導磁石装置の模式的説明図で、全体の1/4 部分を切
り取って装置内部を示すようにした図である。前記図3
の超電導磁石装置との相違点は、磁性体片Sが取り付け
られた円筒形基板5’がクライオスタット2の内部に配
設されている点にある。
FIG. 4 is a schematic explanatory view of a superconducting magnet device according to another embodiment of the second invention, in which a quarter of the whole is cut away to show the inside of the device. FIG. 3
The difference from the superconducting magnet device is that a cylindrical substrate 5 ′ to which the magnetic pieces S are attached is disposed inside the cryostat 2.

【0025】図4に示すように、本例による超電導磁石
装置は、超電導磁石1の内側領域であってクライオスタ
ット2を構成する液体ヘリウム容器3内に、銅製円筒形
基板5’の各所要位置にニッケル箔でなる磁性体片Sが
貼りつけられたものを、超電導磁石1と同心状に配設し
た構造のものである。この超電導磁石装置によると、図
9の従来装置に比べて磁性体片Sを設ける作業が容易な
ことに加え、測定空間に高均一磁場を安定性良く発生で
きるという利点がある。
As shown in FIG. 4, the superconducting magnet apparatus according to the present embodiment is provided in the liquid helium container 3 constituting the cryostat 2 in the inner region of the superconducting magnet 1 at each required position of the copper cylindrical substrate 5 ′. The superconducting magnet 1 has a structure in which a magnetic material piece S made of nickel foil is adhered and arranged concentrically with the superconducting magnet 1. According to this superconducting magnet device, there is an advantage that the operation of providing the magnetic material pieces S is easier than that of the conventional device of FIG. 9, and that a highly uniform magnetic field can be generated with high stability in the measurement space.

【0026】すなわち、室温の測定空間内に磁性体片が
位置する例えば前記図3の超電導磁石装置では、被測定
物自体の温度を変化させて測定するときには磁性体片の
温度がその影響で変化する。この結果、磁性体片の磁化
特性が前記温度変化に起因して変化するために(磁性体
の代表である鉄の飽和磁化Isの温度変化に対する変化
割合は、室温である300K(27℃)で約70ppm
/Kである)、磁場補正効果が悪くなって測定空間で所
要高均一磁場が得られなくなる場合がある。
That is, for example, in the superconducting magnet device shown in FIG. 3 in which the magnetic piece is located in the measurement space at room temperature, when the measurement is performed by changing the temperature of the object to be measured, the temperature of the magnetic piece changes due to the influence. I do. As a result, the magnetization characteristic of the magnetic piece changes due to the temperature change. (The change ratio of the saturation magnetization Is of iron, which is a representative of the magnetic material, to the temperature change is 300 K (27 ° C.), which is room temperature. About 70ppm
/ K), the magnetic field correction effect may deteriorate, and a required high uniform magnetic field may not be obtained in the measurement space.

【0027】これに対して図4の超電導磁石装置では、
液体ヘリウム容器3内に磁性体片S付きの円筒形基板
5’を配設しているので、各磁性体片Sの温度は、該容
器3内に収容されている液体ヘリウムの温度である4.
2Kで、かつ略一定となる。この結果、測定空間の温度
を室温から100℃に変化させて測定を行った場合で
も、高均一磁場を変動することなく安定して発生するこ
とができた。このとき、液体ヘリウム容器3内に配され
ても、瞬間接着剤で貼りつけられた磁性体片Sがはがれ
たり、位置ずれしたりすることはない。なお、クライオ
スタットが液体ヘリウム容器とこれを囲繞する液体窒素
容器(77K)あるいはガス冷却容器(約40K)とを
備えた構造のものでは、磁性体片S付きの円筒形基板
5’を液体ヘリウム容器内でなく、液体窒素容器あるい
はガス冷却容器のいずれかの内部に配設してもよく、こ
のようにしても、測定空間の温度変化に影響されること
なくこれら磁性体片Sの温度を略一定に保つことができ
る。
On the other hand, in the superconducting magnet device of FIG.
Since the cylindrical substrate 5 ′ with the magnetic piece S is disposed in the liquid helium container 3, the temperature of each magnetic piece S is the temperature of the liquid helium contained in the container 3. .
It is 2K and substantially constant. As a result, even when the measurement was performed while changing the temperature of the measurement space from room temperature to 100 ° C., a highly uniform magnetic field could be generated stably without fluctuating. At this time, even if it is disposed in the liquid helium container 3, the magnetic material pieces S adhered with the instant adhesive do not peel off or displace. In the case where the cryostat has a liquid helium container and a liquid nitrogen container (77K) or a gas cooling container (about 40K) surrounding it, the cylindrical substrate 5 'with the magnetic piece S is attached to the liquid helium container. Inside the liquid nitrogen container or the gas cooling container, the temperature of the magnetic material pieces S can be substantially reduced without being affected by the temperature change of the measurement space. Can be kept constant.

【0028】また、本例の場合、クライオスタット2の
内部にニッケル箔よりなる磁性体片Sが貼りつけられた
円筒形基板5’を配設するようにしたが、これに限ら
ず、鉄粉と固着用エポキシ樹脂とによる磁性体片S’が
取り付けられた円筒形基板5’を配設する構造にしても
よい。
In the present embodiment, the cylindrical substrate 5 'on which the magnetic piece S made of nickel foil is adhered is provided inside the cryostat 2, but the present invention is not limited to this. A structure in which a cylindrical substrate 5 'to which a magnetic piece S' made of a fixing epoxy resin is attached may be provided.

【0029】図5は第2の発明の他の実施の形態を示す
超電導磁石装置の模式的説明図で、全体の1/4 部分を切
り取って装置内部を示すようにした図である。前記図3
の超電導磁石装置との相違点は、磁性体片Sを貼りつけ
る円筒形基板5”にある。
FIG. 5 is a schematic explanatory view of a superconducting magnet device according to another embodiment of the second invention, in which a quarter of the whole is cut away to show the inside of the device. FIG. 3
The difference from the superconducting magnet device of the first embodiment resides in a cylindrical substrate 5 ″ to which the magnetic piece S is attached.

【0030】図5に示すように、本例による超電導磁石
装置は、非磁性材この例では銅製の平板の各所要位置に
ニッケル箔でなる磁性体片Sを瞬間接着剤で貼りつけた
ものを円筒形に成形し、この外周面に各磁性体片Sが取
り付けられた円筒形基板5”を、真空容器4内側の室温
の測定空間に挿入し、超電導磁石1と同心状に配設した
構造のものである。前記平板の寸法は厚み0.5mmで
160mm×200mmである。本例の場合、該平板へ
の磁性体片Sの貼りつけ作業時間は約8時間であり、円
筒体に比べて平板の方が貼りつけ作業が容易なので図3
の装置に比べて時間短縮することができた。また、シミ
ュレーション計算通りの補正効果が得られた。なお、本
例の場合、円筒形基板5”の外周面(真空容器4の内筒
4aに面する側)に磁性体片Sを設けるようにしている
が、これに限らず、円筒形基板5”の内周面又は両方の
面に設けるように構成してもよい。また、磁性体片Sに
代えて鉄粉と固着用エポキシ樹脂とによる磁性体片S’
としてもよい。
As shown in FIG. 5, the superconducting magnet device according to the present embodiment is a superconducting magnet device in which a magnetic material piece S made of nickel foil is attached to each required position of a non-magnetic material, in this example, a copper flat plate with an instant adhesive. A structure in which a cylindrical substrate 5 ″ formed into a cylindrical shape and each of the magnetic substance pieces S is attached to the outer peripheral surface thereof is inserted into a measurement room at room temperature inside the vacuum vessel 4 and arranged concentrically with the superconducting magnet 1. The dimension of the flat plate is 0.5 mm in thickness and 160 mm × 200 mm. In the case of this example, the operation time of sticking the magnetic piece S to the flat plate is about 8 hours, which is smaller than that of the cylindrical body. Fig. 3
The time was shortened as compared with the device of the above. In addition, a correction effect according to the simulation calculation was obtained. In the present example, the magnetic piece S is provided on the outer peripheral surface of the cylindrical substrate 5 ″ (the side facing the inner cylinder 4a of the vacuum vessel 4), but is not limited thereto. May be provided on the inner peripheral surface or both surfaces. Further, instead of the magnetic piece S, a magnetic piece S ′ made of iron powder and an epoxy resin for fixing is used.
It may be.

【0031】図6は第3の発明の一実施の形態を示す超
電導磁石装置の模式的構成説明図で、全体の1/4 部分を
切り取って装置内部を示すようにした図である。
FIG. 6 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the third invention, wherein a quarter of the whole is cut away to show the inside of the device.

【0032】図6に示すように、本例による超電導磁石
装置は、磁場補正のために各所要位置部分が所要形状に
て打ち抜かれた円筒形磁性材でなる磁場補正用磁性体と
しての窓部付き円筒形磁性体6を、真空容器4内側の室
温の測定空間に挿入し、超電導磁石1と同心状に配設し
た構造のものである。窓部付き円筒形磁性体6は磁性材
この例ではニッケルからなり、その打ち抜き前の寸法
は、厚み0.5mm,内径53mm,軸方向長さ200
mmである。窓部(孔部)6aは2.0×4.0mmの
矩形形状をしており、パンチによる打ち抜きにより12
0箇所の位置に窓部6aを設けた。これら窓部6aの位
置は、磁場不均一成分を補正すべくシミュレーション計
算によって決定されたものである。
As shown in FIG. 6, the superconducting magnet device according to the present embodiment has a window portion as a magnetic material for magnetic field correction made of a cylindrical magnetic material whose required positions are punched out in a required shape for magnetic field correction. The cylindrical magnetic body 6 is inserted into a measurement space at room temperature inside the vacuum vessel 4 and is disposed concentrically with the superconducting magnet 1. The cylindrical magnetic body 6 with a window portion is made of a magnetic material such as nickel in this example, and has dimensions before punching of a thickness of 0.5 mm, an inner diameter of 53 mm, and an axial length of 200 mm.
mm. The window (hole) 6a has a rectangular shape of 2.0 × 4.0 mm.
The windows 6a were provided at zero positions. The positions of these windows 6a are determined by simulation calculations in order to correct the non-uniform magnetic field component.

【0033】本例の場合、これら窓部6aの打ち抜きに
かかる時間は約4時間であり、前記図3の、銅製円筒形
基板5の各所要位置にニッケル箔の磁性体片Sを瞬間接
着剤で貼りつける構造のものが貼りつけ作業に約12時
間を要したことに比べると、打ち抜き作業自体が簡単、
かつ作業能率がよいことから、大幅に時間短縮すること
ができた。また、シミュレーション計算通りの補正効果
が得られた。
In the case of this embodiment, the time required for punching these windows 6a is about 4 hours, and a magnetic material piece S of nickel foil is applied to each required position of the copper cylindrical substrate 5 in FIG. The punching work itself is simpler than that of the structure that is pasted in about 12 hours.
In addition, the work efficiency was good, so that the time was greatly reduced. In addition, a correction effect according to the simulation calculation was obtained.

【0034】図7は第3の発明の他の実施の形態を示す
超電導磁石装置の模式的説明図で、全体の1/4 部分を切
り取って装置内部を示すようにした図である。前記図6
の超電導磁石装置との相違点は窓部付き円筒形磁性体
6’がクライオスタット2の内部に配設されている点に
ある。
FIG. 7 is a schematic explanatory view of a superconducting magnet device according to another embodiment of the third invention, in which a quarter of the whole is cut away to show the inside of the device. FIG. 6
The difference from the superconducting magnet device of the first embodiment resides in that a cylindrical magnetic body 6 ′ with a window is disposed inside the cryostat 2.

【0035】図7に示すように、本例による超電導磁石
装置は、超電導磁石1の内側領域であって液体ヘリウム
容器3内に窓部付き円筒形磁性体6’を超電導磁石1と
同心状に配設した構造のものである。この超電導磁石装
置によると、従来装置に比べて磁場補正用磁性体を設け
る作業が容易となることに加え、この窓部付き円筒形磁
性体6’の温度を略一定に保つことができるので、測定
空間に高均一磁場を安定性良く発生できるという利点が
ある。
As shown in FIG. 7, in the superconducting magnet apparatus according to the present embodiment, a cylindrical magnetic body 6 ′ having a window is concentrically arranged with the superconducting magnet 1 in the liquid helium container 3 inside the superconducting magnet 1. It is of the structure arranged. According to the superconducting magnet device, the operation of providing the magnetic field correcting magnetic body is easier than the conventional device, and the temperature of the cylindrical magnetic body with window 6 ′ can be kept substantially constant. There is an advantage that a highly uniform magnetic field can be generated in the measurement space with good stability.

【0036】図8は第3の発明の他の実施の形態を示す
超電導磁石装置の模式的説明図で、全体の1/4 部分を切
り取って装置内部を示すようにした図である。前記図6
の超電導磁石装置との相違点は窓部付き円筒形磁性体
6”の構造にある。
FIG. 8 is a schematic explanatory view of a superconducting magnet device according to another embodiment of the third invention, in which a quarter of the whole is cut away to show the inside of the device. FIG. 6
The difference from this superconducting magnet device lies in the structure of the cylindrical magnetic body 6 ″ with a window.

【0037】図8に示すように、本例による超電導磁石
装置は、ニッケル製の平板の各所要位置に窓部6”aを
設けたものを円筒形に成形し、該窓部付き円筒形磁性体
6”を真空容器4内側の室温の測定空間に挿入し、超電
導磁石1と同心状に配設した構造のものである。前記平
板の寸法は厚み0.5mmで160mm×200mmで
ある。窓部6”aは2.0×4.0mmの矩形形状をし
ており、パンチによる打ち抜きにより120箇所の位置
に設けた。本例の場合、この平板での窓部6aの打ち抜
きにかかる時間は約2時間であり、円筒体に比べて平板
の方が打ち抜き作業が容易なことから、図6の装置に比
べて作業時間を半減することができた。また、シミュレ
ーション計算通りの補正効果が得られた。なお、窓部付
き円筒形磁性体6”を液体ヘリウム容器3内に配設する
ようにしてもよい。
As shown in FIG. 8, the superconducting magnet apparatus according to the present embodiment is formed by forming a nickel plate having windows 6 "a at respective required positions into a cylindrical shape, and forming the cylindrical magnet with the windows. The body 6 ″ has a structure in which the body 6 ″ is inserted into a measurement space at room temperature inside the vacuum vessel 4 and is disposed concentrically with the superconducting magnet 1. The dimensions of the flat plate are 160 mm × 200 mm with a thickness of 0.5 mm. The window 6 "a has a rectangular shape of 2.0 × 4.0 mm and is provided at 120 positions by punching with a punch. In the case of this example, the time required for punching the window 6a with this flat plate is used. Is about 2 hours, and since the punching work is easier with a flat plate than with a cylindrical body, the working time can be reduced by half as compared with the apparatus shown in FIG. It should be noted that the cylindrical magnetic body 6 ″ with a window may be provided in the liquid helium container 3.

【0038】[0038]

【発明の効果】以上述べたように、第1の発明による超
電導磁石装置では、磁場補正用磁性体として、例えばク
ライオスタットの測定空間壁面の各所要位置に、磁性体
粉と固着用高粘性液とを混合したものを所要量付着する
ことで磁性体片を設けるようにしたものであるから、個
々の大きさが数ミリ角程度の多数個の磁性体片を一つず
つ貼りつける従来装置に比べて、容易に磁性体片を設け
ることができる。作業が容易で該作業時間を大幅に減ら
すことができ、ひいては超電導磁石装置の低コスト化を
図ることができる。
As described above, in the superconducting magnet apparatus according to the first aspect of the present invention, as a magnetic field compensating magnetic body, for example, a magnetic substance powder and a high-viscosity liquid for fixing are placed at each required position on the wall of a measurement space of a cryostat. A magnetic material piece is provided by adhering a required amount of a mixture of the material, compared to a conventional device that attaches a large number of magnetic material pieces with a size of about several mm square one by one. Thus, the magnetic piece can be easily provided. The work is easy and the work time can be greatly reduced, and the cost of the superconducting magnet device can be reduced.

【0039】また、第2の発明による超電導磁石装置
は、非磁性材よりなる円筒形基板の各所要位置に磁場補
正用磁性体として磁性体片が取り付けられたものを、超
電導磁石の内側領域に配設するようにしたものである。
これにより該装置では、従来装置と違って直接にクライ
オスタット壁面に磁性体片の取付けを行う必要がなく、
磁性体片取付け時に円筒形基板を自由に扱えることか
ら、取り付けの容易な円筒形基板外周面に各磁性体片を
取り付けたり、平板の各所要位置に磁性体片を取り付け
たものを円筒形に成形したりすることにより、円筒形基
板への磁性体片の取り付けを容易に行うことができる。
Further, the superconducting magnet device according to the second aspect of the present invention provides a superconducting magnet device in which a magnetic piece is attached as a magnetic material for magnetic field correction at each required position on a cylindrical substrate made of a non-magnetic material. It is intended to be arranged.
Thus, in the device, unlike the conventional device, there is no need to directly attach the magnetic piece to the cryostat wall surface,
Since the cylindrical substrate can be handled freely when attaching the magnetic material pieces, each magnetic material piece can be attached to the outer peripheral surface of the cylindrical substrate which is easy to attach, or the magnetic material piece attached to each required position on the flat plate into a cylindrical shape By molding, the magnetic piece can be easily attached to the cylindrical substrate.

【0040】第3の発明による超電導磁石装置は、磁場
補正用磁性体として、各所要位置部分を所要形状にて除
去してなる窓部付き円筒形磁性体を、超電導磁石の内側
領域に配設するようにしたものである。これにより該装
置では、窓部付き円筒形磁性体は、例えば平板の磁性材
にパンチによる打ち抜きを施したものを円筒形に成形す
ることなどにより、容易に製作できる。
In the superconducting magnet device according to the third aspect of the present invention, a cylindrical magnetic body with a window, which is obtained by removing each required portion in a required shape, is provided in the inner region of the superconducting magnet as a magnetic field correcting magnetic body. It is something to do. Thus, in this apparatus, the cylindrical magnetic body with a window can be easily manufactured by, for example, forming a flat magnetic material punched by a punch into a cylindrical shape.

【0041】したがって、本願第1、2及び3の発明に
よる超電導磁石装置によれば、従来装置に比べて磁場補
正用磁性体を設ける作業が容易で該作業時間を大幅に減
らすことができ、ひいては超電導磁石装置の低コスト化
を図ることができる。また、前記第2、3の発明による
超電導磁石装置において、磁場補正用磁性体をクライオ
スタットの内部に配するようにしたものでは、測定空間
の温度変化に影響されることなく磁場補正用磁性体の温
度を略一定に保つことができるので、測定空間に高均一
磁場を安定性良く発生できるという利点がある。
Therefore, according to the superconducting magnet device according to the first, second and third aspects of the present invention, the operation of providing the magnetic material for magnetic field correction is easier than the conventional device, and the operation time can be greatly reduced. The cost of the superconducting magnet device can be reduced. In the superconducting magnet device according to the second and third aspects of the present invention, the magnetic body for magnetic field correction is arranged inside the cryostat, so that the magnetic body for magnetic field correction is not affected by a temperature change in the measurement space. Since the temperature can be kept substantially constant, there is an advantage that a highly uniform magnetic field can be generated with high stability in the measurement space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の一実施の形態を示す超電導磁石装
置の模式的構成説明図で、全体の1/4 部分を切り取って
装置内部を示すようにした図である。
FIG. 1 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the first invention, in which a quarter of the whole is cut away to show the inside of the device.

【図2】第2の発明の一実施の形態を示す超電導磁石装
置の模式的構成説明図で、全体の1/4 部分を切り取って
装置内部を示すようにした図である。
FIG. 2 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the second invention, in which a quarter of the whole is cut away to show the inside of the device.

【図3】同第2の発明の他の実施の形態を示す超電導磁
石装置の模式的構成説明図である。
FIG. 3 is a schematic structural explanatory view of a superconducting magnet device showing another embodiment of the second invention.

【図4】同第2の発明の他の実施の形態を示す超電導磁
石装置の模式的構成説明図である。
FIG. 4 is a schematic structural explanatory view of a superconducting magnet device showing another embodiment of the second invention.

【図5】同第2の発明の他の実施の形態を示す超電導磁
石装置の模式的構成説明図である。
FIG. 5 is a schematic structural explanatory view of a superconducting magnet device showing another embodiment of the second invention.

【図6】第3の発明の一実施の形態を示す超電導磁石装
置の模式的構成説明図で、全体の1/4 部分を切り取って
装置内部を示すようにした図である。
FIG. 6 is a schematic structural explanatory view of a superconducting magnet device according to an embodiment of the third invention, in which a quarter of the whole is cut away to show the inside of the device.

【図7】同第3の発明の他の実施の形態を示す超電導磁
石装置の模式的構成説明図である。
FIG. 7 is a schematic structural explanatory view of a superconducting magnet device showing another embodiment of the third invention.

【図8】同第3の発明の他の実施の形態を示す超電導磁
石装置の模式的構成説明図である。
FIG. 8 is a schematic structural explanatory view of a superconducting magnet device showing another embodiment of the third invention.

【図9】従来の超電導磁石装置を示す模式的構成説明図
で、全体の1/4 部分を切り取って装置内部を示すように
した図である。
FIG. 9 is a schematic structural explanatory view showing a conventional superconducting magnet apparatus, and is a diagram in which a quarter portion of the whole is cut out to show the inside of the apparatus.

【符号の説明】[Explanation of symbols]

1…超電導磁石 2…クライオスタット 3…液体ヘリ
ウム容器 4…真空容器 5,5’,5”…円筒形基板
6,6’,6”…窓部付き円筒形磁性体 6a,6’
a,6”a…窓部 7…混合液噴出装置 T…被測定物
S…ニッケル箔よりなる磁性体片 S’…鉄粉と固着
用エポキシ樹脂とによる磁性体片
DESCRIPTION OF SYMBOLS 1 ... Superconducting magnet 2 ... Cryostat 3 ... Liquid helium container 4 ... Vacuum container 5, 5 ', 5 "... Cylindrical substrate 6, 6', 6" ... Cylindrical magnetic body 6a, 6 'with a window part
a, 6 "a: window 7: mixed liquid jetting device T: object to be measured S: magnetic piece made of nickel foil S ': magnetic piece made of iron powder and epoxy resin for fixing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 衛 兵庫県神戸市西区高塚台1丁目5番5号 ジャパンマグネットテクノロジー株式会社 内 Fターム(参考) 4C096 AA01 AB32 AB45 AD02 AD08 CA02 CA22 CA52  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mamoru Hamada 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Japan Magnet Technology Co., Ltd. F-term (reference) 4C096 AA01 AB32 AB45 AD02 AD08 CA02 CA22 CA52

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内側領域に形成される測定空間に配され
た被測定物に印加する主磁場を発生する超電導磁石と、
該超電導磁石をこれと同心状をなして囲繞し保冷するク
ライオスタットと、前記超電導磁石の内側領域に配さ
れ、前記主磁場の不均一を補正するための磁場補正用磁
性体とを備えた超電導磁石装置において、前記磁場補正
用磁性体が、磁性体粉と固着用の高粘性液とを混合した
ものを各所要位置に所要量付着させ形成した磁性体片で
あることを特徴とする超電導磁石装置。
A superconducting magnet for generating a main magnetic field to be applied to an object to be measured arranged in a measurement space formed in an inner region;
A superconducting magnet comprising: a cryostat that surrounds the superconducting magnet concentrically therewith and keeps it cool; and a magnetic field correction magnetic body disposed in an inner region of the superconducting magnet and for correcting non-uniformity of the main magnetic field. In the apparatus, the magnetic material for magnetic field correction is a magnetic material piece formed by adhering a required amount of a mixture of a magnetic material powder and a high-viscosity liquid for fixation at required positions. .
【請求項2】 内側領域に形成される測定空間に配され
た被測定物に印加する主磁場を発生する超電導磁石と、
該超電導磁石をこれと同心状をなして囲繞し保冷するク
ライオスタットと、前記超電導磁石の内側領域に配さ
れ、前記主磁場の不均一を補正するための磁場補正用磁
性体とを備えた超電導磁石装置において、前記超電導磁
石の内側領域に非磁性材よりなる円筒形基板が前記超電
導磁石と同心状をなして配され、該円筒形基板表面の各
所要位置に前記磁場補正用磁性体として磁性体片が取り
付けられていることを特徴とする超電導磁石装置。
2. A superconducting magnet for generating a main magnetic field applied to an object to be measured disposed in a measurement space formed in an inner region,
A superconducting magnet comprising: a cryostat that surrounds the superconducting magnet concentrically therewith and keeps it cool; and a magnetic field correction magnetic body disposed in an inner region of the superconducting magnet and for correcting non-uniformity of the main magnetic field. In the apparatus, a cylindrical substrate made of a non-magnetic material is disposed concentrically with the superconducting magnet in an inner region of the superconducting magnet, and a magnetic material is provided at each required position on the surface of the cylindrical substrate as the magnetic material for magnetic field correction. A superconducting magnet device having a piece attached thereto.
【請求項3】 前記各磁性体片が、磁性体粉と空気中で
固化する高粘性液とを混合したものを前記円筒形基板表
面に付着させ形成したものであることを特徴とする請求
項2記載の超電導磁石装置。
3. A method according to claim 1, wherein each of said magnetic material pieces is formed by adhering a mixture of a magnetic material powder and a highly viscous liquid which solidifies in air to the surface of said cylindrical substrate. 3. The superconducting magnet device according to 2.
【請求項4】 前記各磁性体片が取り付けられた前記円
筒形基板が前記クライオスタットの内部に配されている
ことを特徴とする請求項2又は3記載の超電導磁石装
置。
4. The superconducting magnet device according to claim 2, wherein the cylindrical substrate to which each of the magnetic substance pieces is attached is disposed inside the cryostat.
【請求項5】 内側領域に形成される測定空間に配され
た被測定物に印加する主磁場を発生する超電導磁石と、
該超電導磁石をこれと同心状をなして囲繞し保冷するク
ライオスタットと、前記超電導磁石の内側領域に配さ
れ、前記主磁場の不均一を補正するための磁場補正用磁
性体とを備えた超電導磁石装置において、前記磁場補正
用磁性体が各所要位置部分を除去した円筒形磁性材でな
り、該窓部付き円筒形磁性体が前記超電導磁石と同心状
をなして配されていることを特徴とする超電導磁石装
置。
5. A superconducting magnet for generating a main magnetic field applied to an object to be measured arranged in a measurement space formed in an inner region,
A superconducting magnet comprising: a cryostat that surrounds the superconducting magnet concentrically therewith and keeps it cool; and a magnetic field correction magnetic body disposed in an inner region of the superconducting magnet and for correcting non-uniformity of the main magnetic field. In the apparatus, the magnetic material for magnetic field correction is a cylindrical magnetic material in which each required position portion is removed, and the cylindrical magnetic material with a window portion is arranged concentrically with the superconducting magnet. Superconducting magnet device.
【請求項6】 前記窓部付き円筒形磁性体が前記クライ
オスタットの内部に配されていることを特徴とする請求
項5記載の超電導磁石装置。
6. The superconducting magnet device according to claim 5, wherein the cylindrical magnetic body with a window is disposed inside the cryostat.
JP22695898A 1998-08-11 1998-08-11 Superconducting magnet device Expired - Lifetime JP4105808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22695898A JP4105808B2 (en) 1998-08-11 1998-08-11 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22695898A JP4105808B2 (en) 1998-08-11 1998-08-11 Superconducting magnet device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007295844A Division JP4384220B2 (en) 2007-11-14 2007-11-14 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2000051178A true JP2000051178A (en) 2000-02-22
JP4105808B2 JP4105808B2 (en) 2008-06-25

Family

ID=16853296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22695898A Expired - Lifetime JP4105808B2 (en) 1998-08-11 1998-08-11 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP4105808B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500050A (en) * 2003-05-30 2007-01-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with molded fixed shims
JP2008082751A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Nmr probe and nmr apparatus
JP2008259558A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Magnetic homogeneity adjuster, superconductive magnet unit using it and magnetic resonance imaging device
GB2457743A (en) * 2008-02-25 2009-08-26 Siemens Magnet Technology Ltd Method and Apparatus for Shimming a Magnet
JP2011255027A (en) * 2010-06-10 2011-12-22 Japan Superconductor Technology Inc Superconducting magnet device
KR101284386B1 (en) 2005-08-04 2013-07-09 미쓰비시 가가꾸 가부시키가이샤 Copolymer and detergent compositions containing the same
JP2014049570A (en) * 2012-08-30 2014-03-17 Kobe Steel Ltd Spool of superconducting magnet
DE102012220126A1 (en) * 2012-11-05 2014-05-08 Bruker Biospin Ag A magnet assembly comprising a superconducting magnet coil system and a magnetic field shaping apparatus for magnetic resonance spectroscopy
GB2586493A (en) * 2019-08-21 2021-02-24 Siemens Healthcare Ltd Method and apparatus for shimming a superconducting magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500050A (en) * 2003-05-30 2007-01-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic resonance imaging scanner with molded fixed shims
KR101284386B1 (en) 2005-08-04 2013-07-09 미쓰비시 가가꾸 가부시키가이샤 Copolymer and detergent compositions containing the same
JP2008082751A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Nmr probe and nmr apparatus
JP2008259558A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Magnetic homogeneity adjuster, superconductive magnet unit using it and magnetic resonance imaging device
GB2457743A (en) * 2008-02-25 2009-08-26 Siemens Magnet Technology Ltd Method and Apparatus for Shimming a Magnet
GB2457743B (en) * 2008-02-25 2010-09-15 Siemens Magnet Technology Ltd Method and apparatus for shimming a magnet
JP2011255027A (en) * 2010-06-10 2011-12-22 Japan Superconductor Technology Inc Superconducting magnet device
JP2014049570A (en) * 2012-08-30 2014-03-17 Kobe Steel Ltd Spool of superconducting magnet
DE102012220126A1 (en) * 2012-11-05 2014-05-08 Bruker Biospin Ag A magnet assembly comprising a superconducting magnet coil system and a magnetic field shaping apparatus for magnetic resonance spectroscopy
GB2586493A (en) * 2019-08-21 2021-02-24 Siemens Healthcare Ltd Method and apparatus for shimming a superconducting magnet
GB2586493B (en) * 2019-08-21 2021-08-18 Siemens Healthcare Ltd Method and apparatus for shimming a superconducting magnet.

Also Published As

Publication number Publication date
JP4105808B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US6489765B2 (en) Magnetic field variation measuring method and magnetic field variation compensating method for MRI apparatus, and MRI apparatus
US7928730B2 (en) Electromagnet apparatus generating a homogeneous magnetic field with ferromagnetic members arranged inside cryogenic vessels
JPH07299048A (en) Magnetic resonance image pickup device
US20080100295A1 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US7750636B2 (en) NMR system
JP2000051178A (en) Superconductive magnet device
US8726489B2 (en) Adjustment method of a magnetic resonance imaging apparatus
JP2011115480A (en) Magnetic resonance imaging apparatus, and method of adjusting magnetic field homogeneity of the apparatus
US9766312B2 (en) Easily accessible deep-frozen NMR shim arrangement
JP3733441B1 (en) Magnetic resonance imaging apparatus and magnet apparatus thereof
US6889070B2 (en) Magnetic resonance imaging apparatus and assembly process thereof
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
US6696835B2 (en) Second-order static magnetic field correcting method and MRI apparatus
US6362623B1 (en) Gradient coil for MRI apparatus using shielding coil disposed in a high winding density zone
JPH07106153A (en) C-shaped superconductive magnet
JP3737636B2 (en) Superconducting magnet device
JP2006006936A (en) Magnetic field generating device and shimming method therefor
JP4384220B2 (en) Superconducting magnet device
JP4648722B2 (en) Magnetic resonance imaging system
WO2001031360A1 (en) Shim assembly for a magnet and method for making
JP2002238874A (en) Magnet device and magnetic resonance imaging apparatus using the same, and adjuster of magnetic field uniformity coefficient, and method of adjusting the magnetic field uniformity coefficient
JPS63281411A (en) Magnetostatic field magnet for magnetic resonance imaging system
JP2019090702A (en) Superconducting magnetic field generator and nuclear magnetic resonance device
JP2002360537A (en) Super conductive magnet device and method for adjusting magnetic field uniformity of the same
WO2015072301A1 (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term