JP2000049390A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000049390A
JP2000049390A JP10242511A JP24251198A JP2000049390A JP 2000049390 A JP2000049390 A JP 2000049390A JP 10242511 A JP10242511 A JP 10242511A JP 24251198 A JP24251198 A JP 24251198A JP 2000049390 A JP2000049390 A JP 2000049390A
Authority
JP
Japan
Prior art keywords
heat conduction
semiconductor
heat
temperature difference
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242511A
Other languages
Japanese (ja)
Inventor
Masakazu Morisato
正和 森里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10242511A priority Critical patent/JP2000049390A/en
Publication of JP2000049390A publication Critical patent/JP2000049390A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a thermoelectric power generation element which outputs a practical voltage, even at a low temperature difference by a method, wherein a heating means and a heat dissipating means are installed respectively at both ends of a semiconductor pair formed on a semiconductor chip. SOLUTION: A P-type semiconductor 5 and an N-type semiconductor 7 are formed on an intrinsic semiconductor chip 8 by a diffusion operation or the like. A semiconductor pair which is connected in series by an aluminum evaporated interconnection or the like is constituted. A heat conduction band A 3 and a heat conduction band B 9 heat or absorb heat at both ends of the semiconductor pair. In addition, heat is conducted to the outside of a package 6 by a heat conduction metal A 1 and a heat conduction metal B 12 by using a bonding wire 2. For example, when the heat conduction metal A 1 is kept at a high temperature and the heat conduction metal B 12 is kept at a low temperature, the heat conduction band A 3 is set to the side of high temperature, and the heat conduction band B 9 is set to the side of the low temperature by heat conduction. A temperature difference is generated between both ends of the semiconductor pair. Consequently, when the heat conduction metal B 12 is added between an electrode A 11 and an electrode B 13, a DC voltage is generated, and it is possible to form a thermoelectric power generation element which can generate electric power, even with small temperature difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路技
術を応用し、低い温度差でも実用的な電圧を出力する熱
電発電素子を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a thermoelectric power generation element which outputs a practical voltage even at a low temperature difference by applying a semiconductor integrated circuit technology.

【0002】[0002]

【従来の技術】例えば岩波書店発行の“電子物性(材料
科学入門IV)”に示されるように、P型・N型半導体
を金属で接合した半導体ペアの一端を加熱することによ
り発電が可能で、必要な数の半導体ペアを組みあわせる
ことにより必要な電圧を得ることができる。
2. Description of the Related Art As shown in, for example, "Electronic Physical Properties (Introduction to Materials Science IV)" issued by Iwanami Shoten, power can be generated by heating one end of a semiconductor pair in which a P-type / N-type semiconductor is joined with a metal. The required voltage can be obtained by combining the required number of semiconductor pairs.

【0003】[0003]

【発明が解決しようとする課題】前述の文献によると、
半導体ペア当たりの出力電圧は最高でも摂氏100度の
温度差で50mVと低く、実用的な出力電圧を得るため
には高い温度差が、あるいは多くの半導体ペアが、ある
いはその両方が必要である。さらに、その温度差を作り
出す熱源、例えば燃焼ガスなど、が必要である。
According to the above-mentioned document,
The output voltage per semiconductor pair is as low as 50 mV with a maximum temperature difference of 100 degrees Celsius, and a high temperature difference, many semiconductor pairs, or both are required to obtain a practical output voltage. Further, a heat source that generates the temperature difference, such as a combustion gas, is required.

【0004】[0004]

【課題を解決するための手段】本発明は、発電電圧が半
導体ペアの数に比例することに注目し、半導体集積回路
技術を応用してその数を飛躍的に増やすことが可能であ
ることを発見し、それを熱電発電装置に応用するもので
ある。
The present invention focuses on the fact that the generated voltage is proportional to the number of semiconductor pairs, and demonstrates that the number can be dramatically increased by applying semiconductor integrated circuit technology. Discover and apply it to thermoelectric generators.

【0005】[0005]

【発明の実施の形態】半導体集積回路の微細加工技術に
より多くの半導体ペアを半導体チップ上に形成し、その
半導体ペアの両端にそれぞれ加熱・放熱手段を設ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A large number of semiconductor pairs are formed on a semiconductor chip by a fine processing technique of a semiconductor integrated circuit, and heating and heat radiating means are provided at both ends of the semiconductor pair.

【0006】[0006]

【実施例】図1に実施例の概略図を示す。8:真性半導
体上に5:P型半導体と7:N型半導体とを拡散等によ
り形成し、アルミ蒸着配線等で直列接続された半導体ペ
アを図のように構成する。3:熱伝導帯Aと9:熱伝導
帯Bとは、半導体ペアの両端のそれぞれに加熱あるいは
吸熱を行うもので、さらに2:ボンディングワイアによ
り1:熱伝導金属Aおよび12:熱伝導金属Bとにより
6:パッケージの外部に熱伝導される。例えば、今1熱
伝導金属Aを高温に、12:熱伝導金属Bを低音に保つ
と、熱伝導により3:熱伝導帯Aが高温側に、9:熱伝
導帯Bが低温側に滞熱し、半導体ペアの両端に温度差を
生じさせる。従って、11:電極Aと13:電極Bとの
間に11:電極Aをプラスとする直流電圧が発生する。
図2は実施例の外観図である。パッケージとしては、そ
の外にテープキャリヤやチップキャリヤ等への応用も容
易に考えられる。ここで、半導体ペアの数について考え
てみると、現在ではすでに最新技術ではなくなった0.
5ミクロンメートル(1ミクロンは1000分の1ミリ
メートル、以下、umと表記)の加工技術で1半導体ペ
アを2umの幅で作成可能だから、有効配線領域の幅が
例えば5mmだとすると、2500半導体ペアの構成が
可能となる。これは、同じ構成を持つペルチェ素子で、
半導体素子の冷却等に使用されるサーモモジュール、例
えば(株)千石電商の6300・127・060AM
(127ペア、大きさは39.6x39.6x4.1
6、単位mm)の約20倍のペア数である。今半導体ペ
アの発電能力が同じとすると、約20分の1の温度差で
同じ大きさの電圧を出力できる。
FIG. 1 is a schematic diagram of an embodiment. 8: A 5: P-type semiconductor and a 7: N-type semiconductor are formed on an intrinsic semiconductor by diffusion or the like, and a semiconductor pair connected in series by aluminum deposition wiring or the like is configured as shown in the figure. 3: heat conduction bands A and 9: heat conduction band B heat or absorb heat at both ends of the semiconductor pair, respectively, and 2: heat conduction metal A and 12: heat conduction metal B by bonding wires. 6: Heat is conducted to the outside of the package. For example, if the heat conduction metal A is kept at a high temperature and the heat conduction metal B is kept at a low tone, the heat conduction band 3 stays on the high temperature side and the heat conduction band B stays on the low temperature side due to heat conduction. Causes a temperature difference between both ends of the semiconductor pair. Therefore, a DC voltage is generated between the 11: electrode A and the 13: electrode B with the 11: electrode A being positive.
FIG. 2 is an external view of the embodiment. In addition to the package, application to a tape carrier, a chip carrier, and the like can be easily considered. Here, considering the number of semiconductor pairs, it is no longer the latest technology.
One semiconductor pair can be formed with a width of 2 μm by a processing technique of 5 μm (1 μm is 1/1000 millimeter, hereinafter referred to as um), so if the width of the effective wiring area is, for example, 5 mm, the configuration of 2500 semiconductor pairs Becomes possible. This is a Peltier device with the same configuration,
Thermo modules used for cooling semiconductor elements, for example, 6300.127.060AM of Sengoku Densho Co., Ltd.
(127 pairs, size is 39.6x39.6x4.1
The number of pairs is about 20 times as large as (6, unit mm). Assuming that the power generation capacity of the semiconductor pair is the same, a voltage of the same magnitude can be output with a temperature difference of about 1/20.

【0007】[0007]

【発明の効果】本発明により、低い温度差でも発電可能
な熱電発電素子を提供可能となり、またパッケージに入
れられるので応用分野が広がり、例えば体温や携帯懐炉
と外気温との温度差で発電しその電力で駆動されるラジ
オや無線機は非常用として、電池切れなどの危険もな
く、きわめて便利である。また、低い温度差で発電でき
ることから、例えば海水の表面と適当な深度との温度差
にて発電する事も可能で、大電力には素子を組み合わせ
たモジュールや、DC−DCコンバータのような電力変
換器を使用することで対応できる。また、ごみ焼却場や
火力発電所からの廃熱等も同様に発電に利用でき、地球
環境維持にも貢献できる。
According to the present invention, it is possible to provide a thermoelectric power generation element capable of generating power even at a low temperature difference, and to be put in a package, so that the field of application is widened. Radios and radios driven by the electric power are very useful without any danger such as running out of batteries. In addition, since power can be generated at a low temperature difference, it is possible to generate power at a temperature difference between, for example, the surface of seawater and an appropriate depth. For high power, a power module such as a module combining elements or a DC-DC converter is used. This can be handled by using a converter. Waste heat from refuse incineration plants and thermal power plants can also be used for power generation in the same way, and can contribute to the maintenance of the global environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の概略図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

【図2】実施例の外観図である。FIG. 2 is an external view of the embodiment.

【符号の説明】[Explanation of symbols]

1熱伝導金属A 2ボンディングワイヤ 3熱伝導帯
A 4アルミ配線 5P型半導体 6パッケー
ジ 7N型半導体 8真性半導体チップ 9熱伝導帯
B 10電極パッド 11電極A 12熱伝導
金属B 13電極B
1 heat conduction metal A 2 bonding wire 3 heat conduction band A 4 aluminum wiring 5P type semiconductor 6 package 7N type semiconductor 8 intrinsic semiconductor chip 9 heat conduction band B 10 electrode pad 11 electrode A 12 heat conduction metal B 13 electrode B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真性半導体あるいはサファイア基板等上
に、P型半導体とN型半導体とを交互に配置し、その両
端をそれぞれ隣り合うP型・N型半導体と接続し、電気
的にはP型・N型半導体が、交互に且つ直列接続された
構成をなし、そのP型・N型半導体の両端に温度差を加
える手段を有する半導体装置。
A P-type semiconductor and an N-type semiconductor are alternately arranged on an intrinsic semiconductor or a sapphire substrate, and both ends thereof are connected to adjacent P-type and N-type semiconductors, respectively. A semiconductor device having a configuration in which N-type semiconductors are alternately and serially connected, and having means for applying a temperature difference to both ends of the P-type and N-type semiconductors.
JP10242511A 1998-07-24 1998-07-24 Semiconductor device Pending JP2000049390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242511A JP2000049390A (en) 1998-07-24 1998-07-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242511A JP2000049390A (en) 1998-07-24 1998-07-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2000049390A true JP2000049390A (en) 2000-02-18

Family

ID=17090200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242511A Pending JP2000049390A (en) 1998-07-24 1998-07-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2000049390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048616A (en) * 2015-07-22 2015-11-11 陕西凌云电器集团有限公司 Emergency charging device utilizing temperature difference of field heat source to generate electricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048616A (en) * 2015-07-22 2015-11-11 陕西凌云电器集团有限公司 Emergency charging device utilizing temperature difference of field heat source to generate electricity

Similar Documents

Publication Publication Date Title
JP5040765B2 (en) Semiconductor device
JP4803241B2 (en) Semiconductor module
JPH0574993A (en) Thermoelectric cooling type integrated circuit package
JP2005136264A (en) Power semiconductor device and power semiconductor module
JP6976631B2 (en) Thermoelectric module and thermoelectric generator
KR101824695B1 (en) Heat sink structure for energy harvest
JP2000049390A (en) Semiconductor device
JP2012532468A (en) Module having a plurality of thermoelectric elements
JP2010199373A (en) Thermoelectric module
JP2004147472A (en) Direct current-to-alternating current converter for photovoltaic power generation
JP5925328B2 (en) Power semiconductor module
US9584061B1 (en) Electric drive systems including smoothing capacitor cooling devices and systems
JP2002164585A (en) Thermoelectric conversion module
JP6540587B2 (en) Power module
JPH04303955A (en) Semiconductor package
JPH104219A (en) Peltier element
JP2000227821A (en) Cooling device for electronic component
JP2011096828A (en) Semiconductor module
JP4460791B2 (en) Heat sink for semiconductor devices
JP2004022983A (en) Semiconductor device
RU2158988C1 (en) Thermoelectric module
SU1414235A1 (en) Solid-state unit
JP2007129150A (en) Semiconductor device
JPS6265354A (en) Resin-sealed semiconductor device
JPH0831992A (en) Semiconductor device using peltier element as its heat dissipating device