JP2000047198A - Liquid crystal optical modulation element and projection display device - Google Patents

Liquid crystal optical modulation element and projection display device

Info

Publication number
JP2000047198A
JP2000047198A JP10213695A JP21369598A JP2000047198A JP 2000047198 A JP2000047198 A JP 2000047198A JP 10213695 A JP10213695 A JP 10213695A JP 21369598 A JP21369598 A JP 21369598A JP 2000047198 A JP2000047198 A JP 2000047198A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
light modulation
reflection
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10213695A
Other languages
Japanese (ja)
Other versions
JP4055970B2 (en
Inventor
Yuichiro Otoshi
祐一郎 大利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP21369598A priority Critical patent/JP4055970B2/en
Priority to US09/362,372 priority patent/US6359719B1/en
Publication of JP2000047198A publication Critical patent/JP2000047198A/en
Application granted granted Critical
Publication of JP4055970B2 publication Critical patent/JP4055970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0415Recording geometries or arrangements for recording reflection holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0434In situ recording when the hologram is recorded within the device used for reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject

Abstract

PROBLEM TO BE SOLVED: To provide a reflective liquid crystal optical modulation element which can perform a high quality color display with a simple construction without using an absorption type color filter and an inexpensive single plate type projection display device which can provide a bright high quality color display. SOLUTION: A diffraction element D1 separating a white illuminating light L1 into B, G, R, a liquid crystal layer 2 modulating intensity of an incident light on plural two dimensional pixels, microlenses 1 condensing the lights separated by the diffraction element D1 to be guided to each pixel of the liquid crystal layer 2 and a reflective electrode M reflecting a light transmitted by the liquid crystal layer 2 are provided. The reflective electrode M has a function to reflect the incident light toward almost the same direction as the direction of the incident light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶光変調素子及
び投影表示装置に関するものであり、更に詳しくは、反
射型の液晶光変調素子と、それを用いてカラー画像をス
クリーン上に投影する投影表示装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal light modulation device and a projection display device, and more particularly to a reflection type liquid crystal light modulation device and a projection for projecting a color image on a screen using the same. The present invention relates to a display device.

【0002】[0002]

【従来の技術】光変調素子の代表である液晶光変調素子
には透過型と反射型があり、いずれのタイプについて
も、パネルの小型化とともに表示画素数の増加が求めら
れている。大きさが同じパネルであれば、画素数が増え
ると一般には開口率が低下してしまうが、反射型の液晶
光変調素子では画素の駆動配線等を反射電極の裏側に配
置することができるため、同じ大きさで同じ画素数であ
れば開口率を大きくとることができる。また、同じ開口
率で同じ画素数であれば小型化が可能である。したがっ
て、反射型の液晶光変調素子はデジタルTV等のHDT
V(high definitiontelevision)フォーマットに対応す
る上で有利であり、反射型の液晶光変調素子を用いれば
高品位な表示を得ることができる。
2. Description of the Related Art There are a transmission type and a reflection type as liquid crystal light modulation elements, which are representative of light modulation elements. In each case, there is a demand for an increase in the number of display pixels as well as a reduction in panel size. If the size of the panel is the same, the aperture ratio generally decreases as the number of pixels increases. However, in a reflective liquid crystal light modulation element, the drive wiring and the like of the pixel can be arranged behind the reflective electrode. If the size is the same and the number of pixels is the same, the aperture ratio can be increased. Further, miniaturization is possible if the same aperture ratio and the same number of pixels are used. Therefore, the reflection type liquid crystal light modulation element is an HDT such as a digital TV.
This is advantageous in supporting a V (high definition television) format, and a high-quality display can be obtained by using a reflective liquid crystal light modulation element.

【0003】また、液晶光変調素子を用いてカラー画像
を表示する装置には、R(赤),G(緑),B(青)のそれぞ
れに対応した3枚の液晶光変調素子を用いる3板式と、
1枚の液晶光変調素子を用いる単板式と、がある。単板
式の方が装置の小型化が可能であり、また部品点数も少
なくできることからコストの面で非常に有利である。し
かし、カラー化のためにRGBのパターンを有する吸収
型カラーフィルターが液晶光変調素子に用いられるた
め、略3分の2の光が無駄になってしまう。したがっ
て、単板式には照明効率が非常に悪いという欠点があ
る。これを解決するために、カラーフィルターとして回
折素子(例えばホログラム)を用いた液晶光変調素子が提
案されている。
A device for displaying a color image using a liquid crystal light modulation device uses three liquid crystal light modulation devices corresponding to R (red), G (green), and B (blue). Plate type,
And a single-plate type using one liquid crystal light modulation element. The single-plate type is very advantageous in terms of cost because the size of the apparatus can be reduced and the number of parts can be reduced. However, approximately two-thirds of the light is wasted because an absorption type color filter having an RGB pattern is used for the liquid crystal light modulation element for colorization. Therefore, the single-plate type has a disadvantage that the lighting efficiency is very poor. In order to solve this, a liquid crystal light modulation element using a diffraction element (for example, a hologram) as a color filter has been proposed.

【0004】図13に、回折素子から成るカラーフィル
ターが用いられた透過型の液晶光変調素子の一例を示
す。白色照明光(L1)は、アレイ状に配置されたマイクロ
レンズで集光されるとともに、1次元の回折素子(D0)で
B,G,Rの各波長帯域に分光される。分光された各光
束は、液晶層(2)の対応画素を透過してカラー画像の表
示に用いられる。このように、回折素子をカラーフィル
ターとして用いる液晶光変調素子の大部分は透過型であ
る。これは、反射型の液晶光変調素子に回折素子から成
るカラーフィルターを用いると、以下に説明するような
問題が生じるからである。
FIG. 13 shows an example of a transmission type liquid crystal light modulation element using a color filter composed of a diffraction element. The white illumination light (L1) is condensed by microlenses arranged in an array, and is also separated into the B, G, and R wavelength bands by a one-dimensional diffraction element (D0). Each of the split light beams passes through the corresponding pixel of the liquid crystal layer (2) and is used for displaying a color image. As described above, most of the liquid crystal light modulation element using the diffraction element as a color filter is of a transmission type. This is because the use of a color filter composed of a diffractive element as the reflective liquid crystal light modulation element causes the following problem.

【0005】[0005]

【発明が解決しようとする課題】例えば、反射型の液晶
光変調素子を用いてカラー画像の投影を行う表示装置で
は、透過型とは異なり、一般に液晶面から投影面までの
間で、偏光ビームスプリッタ等により照明光と投影光と
が分離される。3板式の場合、液晶光変調素子には色分
解後の照明光が入射するため、各素子にそれぞれ入射す
る光束の主光線は、集光用のマイクロレンズを通過し、
液晶層の対応画素に対して垂直に入射した後、反射電極
で正反射されて同じマイクロレンズに戻ることになる。
For example, in a display device for projecting a color image by using a reflection type liquid crystal light modulation element, unlike a transmission type, a polarization beam is generally applied between a liquid crystal surface and a projection surface. The illumination light and the projection light are separated by a splitter or the like. In the case of the three-panel type, the illumination light after color separation enters the liquid crystal light modulation element, so that the principal ray of the light beam incident on each element passes through the condensing microlens,
After vertically entering the corresponding pixel of the liquid crystal layer, the light is specularly reflected by the reflective electrode and returns to the same microlens.

【0006】これに対し、カラーフィルターとして回折
素子を用いた単板式の場合には、回折素子の回折分散作
用によって分光されたB,G,Rの光束のうちの少なく
とも2つは、その主光線が反射電極面に対して所定の角
度をもって入射することになる。例えば図14に示すよ
うに、集光用のマイクロレンズ(1)と分光用の回折素子
(D0)を照明光(L1)が通過すると、第1基板(P1)及び液晶
層(2)を通過して第2基板(P2)上の反射電極(3)に集光・
入射する光束のうち、RとGの光束の主光線は反射電極
(3)の反射面に対して所定の角度をもって入射すること
になる。したがって、RとGの光成分の一部は通常のミ
ラーのように反射面で正反射されて、他の画素の方向に
反射されてしまう。この光は迷光(LS)として、投影光(L
2)と共にカラー画像の表示に用いられることになるた
め、絵素ごとのクロストークが発生して、投影画像の表
示品質が大きく低下してしまう。
On the other hand, in the case of a single plate type using a diffractive element as a color filter, at least two of the B, G, and R luminous fluxes separated by the diffractive dispersion action of the diffractive element are the principal rays thereof. Is incident on the reflective electrode surface at a predetermined angle. For example, as shown in FIG. 14, a microlens (1) for condensing and a diffractive element for spectroscopy
When the illumination light (L1) passes through (D0), it passes through the first substrate (P1) and the liquid crystal layer (2), and condenses on the reflective electrode (3) on the second substrate (P2).
The principal rays of the R and G light beams among the incident light beams are reflected electrodes.
The light is incident on the reflecting surface of (3) at a predetermined angle. Therefore, some of the R and G light components are specularly reflected on the reflection surface like a normal mirror, and are reflected in the direction of other pixels. This light is projected light (L) as stray light (LS).
Since it is used for displaying a color image together with 2), crosstalk occurs for each picture element, and the display quality of the projected image is greatly reduced.

【0007】特開平9−50016号公報や特開平9−
288268号公報では、上記問題を解決するために工
夫された液晶光変調素子が提案されている。しかしその
構成によれば、解決しなければならない問題が新たに発
生してしまう。例えば前者の液晶光変調素子では、液晶
の画像信号の駆動を従来と異なる方法で行うような複雑
な構成にする必要がある。後者の液晶光変調素子では、
照明光を斜めから入射させる必要があるため4層構造の
複雑なホログラムが必要である。また、P,S偏光の分
離を十分に行うためにホログラムを厚くする必要があ
り、波長及び角度に対するホログラムの回折効率の依存
性が増大することになる。
[0007] Japanese Patent Application Laid-Open Nos.
Japanese Patent Publication No. 288268 proposes a liquid crystal light modulation device devised to solve the above problem. However, according to the configuration, a new problem to be solved occurs. For example, in the former liquid crystal light modulation element, it is necessary to have a complicated configuration such that driving of a liquid crystal image signal is performed by a method different from the conventional method. In the latter liquid crystal light modulation element,
Since the illumination light needs to be incident obliquely, a complicated hologram having a four-layer structure is required. In addition, the hologram needs to be thick in order to sufficiently separate the P and S polarized lights, and the dependence of the diffraction efficiency of the hologram on the wavelength and the angle increases.

【0008】本発明は、このような状況に鑑みてなされ
たものであって、吸収型のカラーフィルターを用いるこ
となく、簡単な構成で高い表示品質のカラー表示を行う
ことが可能な反射型の液晶光変調素子を提供することを
目的とする。さらに、明るく高品位なカラー表示を行う
ことができる安価な単板式の投影表示装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has been made in consideration of the above circumstances, and is intended to provide a reflective type which can perform high-quality color display with a simple configuration without using an absorption type color filter. It is an object to provide a liquid crystal light modulation element. Still another object is to provide an inexpensive single-panel projection display device capable of performing bright and high-quality color display.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の液晶光変調素子は、白色照明光を所定
の波長帯域ごとに分光する分光手段と、2次元の複数画
素に対する入射光の強度を変調する液晶層と、前記分光
手段で分光された光が前記液晶層の各画素に導光される
ように集光する集光手段と、前記液晶層を透過した光を
反射させる反射手段と、を備えた反射型の液晶光変調素
子であって、前記反射手段が入射光の入射方向と略同じ
方向に入射光を反射させる機能を有することを特徴とす
る。
In order to achieve the above object, a liquid crystal light modulation device according to a first aspect of the present invention comprises a spectral means for spectrally separating white illumination light for each predetermined wavelength band, and a two-dimensional plurality of pixels. A liquid crystal layer for modulating the intensity of the incident light; a light condensing means for condensing the light separated by the light separating means so as to be guided to each pixel of the liquid crystal layer; and a light reflecting part of the light transmitted through the liquid crystal layer. A reflection type liquid crystal light modulation element comprising: a reflection unit having a function of reflecting incident light in substantially the same direction as the incident direction of incident light.

【0010】第2の発明の液晶光変調素子は、上記第1
の発明の構成において、前記反射手段がホログラムアレ
イ素子であることを特徴とする。
[0010] The liquid crystal light modulation device of the second invention is a liquid crystal light modulation device according to the first aspect.
In the structure of the invention, the reflection means is a hologram array element.

【0011】第3の発明の液晶光変調素子は、上記第1
の発明の構成において、前記反射手段がブレーズド反射
回折格子であることを特徴とする。
The liquid crystal light modulation device according to a third aspect of the present invention is the liquid crystal light modulation device according to the first aspect.
In the configuration of the present invention, the reflection means is a blazed reflection diffraction grating.

【0012】第4の発明の液晶光変調素子は、上記第1
の発明の構成において、前記反射手段が再帰反射型素子
であることを特徴とする。
A liquid crystal light modulation device according to a fourth aspect of the present invention is the liquid crystal light modulation device according to the first aspect.
In the configuration of the present invention, the reflection means is a retroreflective element.

【0013】第5の発明の液晶光変調素子は、上記第1
の発明の構成において、前記分光手段が回折素子である
ことを特徴とする。
A liquid crystal light modulation device according to a fifth aspect of the present invention is the liquid crystal light modulation device according to the first aspect.
In the configuration of the invention, the spectroscopic means is a diffraction element.

【0014】第6の発明の液晶光変調素子は、上記第1
の発明の構成において、前記集光手段が屈折素子である
ことを特徴とする。
According to a sixth aspect of the present invention, there is provided the liquid crystal light modulation device according to the first aspect.
In the structure of the invention, the light collecting means is a refraction element.

【0015】第7の発明の液晶光変調素子は、上記第1
の発明の構成において、前記集光手段が回折素子である
ことを特徴とする。
According to a seventh aspect of the present invention, there is provided the liquid crystal light modulating element according to the first aspect.
In the structure of the invention, the light condensing means is a diffraction element.

【0016】第8の発明の投影表示装置は、上記第1〜
第7の発明のいずれか1つの液晶光変調素子を用いてカ
ラー画像の投影表示を行うことを特徴とする。
According to an eighth aspect of the present invention, there is provided the projection display apparatus, wherein
According to a seventh aspect of the present invention, a color image is projected and displayed using any one of the liquid crystal light modulation elements.

【0017】[0017]

【発明の実施の形態】以下、本発明を実施した液晶光変
調素子及び投影表示装置を、図面を参照しつつ説明す
る。なお、実施の形態相互で同一の部分や相当する部分
には同一の符号を付して重複説明を適宜省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a liquid crystal light modulation device and a projection display device embodying the present invention will be described with reference to the drawings. Note that the same or corresponding portions in the embodiments are denoted by the same reference numerals, and redundant description will be appropriately omitted.

【0018】《第1の実施の形態》図1に、第1の実施
の形態の断面構造を示す。第1の実施の形態は反射型の
液晶光変調素子であって、マイクロレンズ(1),回折素
子(D1),第1基板(P1),液晶層(2),反射電極(M)及び第
2基板(P2)を備えている。第1基板(P1)の下面には透明
電極(不図示)が設けられており、その透明電極と反射電
極(M)との間に液晶層(2)が位置している。この液晶層
(2)は、2次元の複数画素に対する入射光の強度を変調
する変調手段である。
<< First Embodiment >> FIG. 1 shows a cross-sectional structure of a first embodiment. The first embodiment relates to a reflection type liquid crystal light modulation element, which includes a micro lens (1), a diffraction element (D1), a first substrate (P1), a liquid crystal layer (2), a reflection electrode (M), It has two substrates (P2). A transparent electrode (not shown) is provided on the lower surface of the first substrate (P1), and a liquid crystal layer (2) is located between the transparent electrode and the reflective electrode (M). This liquid crystal layer
(2) is a modulating means for modulating the intensity of incident light on a plurality of two-dimensional pixels.

【0019】回折素子(D1)は、白色照明光(L1)を所定の
波長帯域ごとに分光する分光手段であって、1次元の回
折格子構造を有している。また回折素子(D1)は、B,
G,Rの各波長帯域の中心波長がいずれも同じ回折次数
(通常+1次を用いる。)で回折分光されるタイプであっ
て、広い波長帯域で高い回折効率を持つ薄い回折素子で
ある。この回折素子(D1)としては、図10に示すような
表面レリーフ型の回折素子、バイナリー素子型の回折素
子、薄いホログラムから成る回折素子等を用いることが
できる。マイクロレンズ(1)は、回折素子(D1)で分光さ
れた光が液晶層(2)の各画素に導光されるように集光す
る集光手段であって、シリンドリカルレンズアレイ構造
を有している。屈折素子であるマイクロレンズ(1)の集
光作用と回折素子(D1)の分光作用との組み合わせによっ
て、B,G,Rの各波長帯域の光が液晶層(2)の対応画
素に導光されることになる。
The diffractive element (D1) is a spectral means for dispersing the white illumination light (L1) for each predetermined wavelength band, and has a one-dimensional diffraction grating structure. The diffraction element (D1)
The center order of each wavelength band of G and R is the same diffraction order
(Usually, the + 1st order is used.) This is a thin diffraction element having a high diffraction efficiency over a wide wavelength band. As the diffractive element (D1), a surface relief type diffractive element, a binary element type diffractive element, a diffractive element composed of a thin hologram, or the like as shown in FIG. 10 can be used. The microlens (1) is a condensing means for condensing the light dispersed by the diffraction element (D1) so as to be guided to each pixel of the liquid crystal layer (2), and has a cylindrical lens array structure. ing. The light of each wavelength band of B, G, and R is guided to the corresponding pixel of the liquid crystal layer (2) by a combination of the condensing action of the microlens (1), which is a refraction element, and the spectral action of the diffraction element (D1). Will be done.

【0020】反射電極(M)は、液晶層(2)を透過した光を
反射させる反射手段であって、入射光の入射方向と略同
じ方向に入射光を反射させる機能を有している。通常の
ミラーであれば正反射によって入射光と反射光の光路が
大きく異なることになるが、反射電極(M)では正反射が
行われず、液晶層(2)を透過した光は反射電極(M)に対す
る入射光と略同じ方向(クロストークが生じない程度に
同じ方向であればよい。)に反射されるため、反射電極
(M)に対する入射光と反射光とは同じ光路を通ることに
なる。反射電極(M)の上記機能を実現するための構成例
を以下に挙げて説明する。
The reflection electrode (M) is reflection means for reflecting light transmitted through the liquid crystal layer (2), and has a function of reflecting incident light in substantially the same direction as the incident light. In a normal mirror, the optical path of the incident light and the reflected light is greatly different due to specular reflection.However, the specular reflection is not performed at the reflective electrode (M), and the light transmitted through the liquid crystal layer (2) is reflected at the reflective electrode (M ) Is reflected in substantially the same direction as the incident light (the same direction as long as no crosstalk occurs).
The incident light and the reflected light with respect to (M) pass through the same optical path. A configuration example for realizing the above function of the reflective electrode (M) will be described below.

【0021】図5は、反射型体積ホログラムで反射面が
構成された反射電極(M)を示している。この反射電極(M)
は、反射型体積ホログラムと、その液晶層(2)側の面に
設けられた透明電極(不図示)と、が一体化された構造を
有している。透明電極はITO膜等で構成されており、
反射型体積ホログラムはB,G,Rの各波長帯域に対し
て反射光の回折効率が最大となるようなホログラムアレ
イ構造を有している。
FIG. 5 shows a reflection electrode (M) having a reflection surface constituted by a reflection type volume hologram. This reflective electrode (M)
Has a structure in which a reflection type volume hologram and a transparent electrode (not shown) provided on the surface on the liquid crystal layer (2) side are integrated. The transparent electrode is composed of an ITO film or the like,
The reflection volume hologram has a hologram array structure that maximizes the diffraction efficiency of reflected light in each of the B, G, and R wavelength bands.

【0022】反射型体積ホログラムの作成は、厚いホロ
グラム基板の両側から角度を持った物体光と参照光を照
射することにより行われ、その2つの光の干渉により所
定の回折構造を有するホログラムが得られる。本実施の
形態に用いられるホログラムアレイ素子は、図6に示す
ようにB,G,Rの各波長成分で感光材料(M')を3回露
光することにより得られる。Bの露光を行う場合には、
G,Rの画素領域をマスク(4)で遮光する。そして、B
のレーザー光(LO)を物体光としてマイクロレンズ(1)に
入射させるとともに、第2基板(P2)側からマスク(4)を
介して参照光(LR)の照射を行う。このようにしてBの画
素に対応する干渉縞が感光材料(M')に記録されて、Bの
画素に対応するホログラムアレイ構造が得られる。G,
R用のホログラムアレイ構造も同様にして作成すること
ができる。このように3回の露光で1枚のホログラムを
作成してもよいが、各波長成分で露光されたホログラム
を3枚重ね合わせて反射型体積ホログラムを構成しても
よい。
A reflection type volume hologram is formed by irradiating an object light and a reference light at an angle from both sides of a thick hologram substrate, and a hologram having a predetermined diffraction structure is obtained by interference of the two lights. Can be The hologram array element used in the present embodiment is obtained by exposing the photosensitive material (M ') three times with each of the B, G, and R wavelength components as shown in FIG. When performing exposure of B,
The G and R pixel areas are shielded from light by the mask (4). And B
The laser light (LO) is incident on the microlens (1) as object light, and the reference light (LR) is irradiated from the second substrate (P2) side via the mask (4). In this way, the interference fringes corresponding to the B pixels are recorded on the photosensitive material (M '), and a hologram array structure corresponding to the B pixels is obtained. G,
The hologram array structure for R can be created in the same manner. As described above, one hologram may be created by three exposures, or a reflection type volume hologram may be formed by superposing three holograms exposed by each wavelength component.

【0023】図7は、ブレーズ化した回折面で反射面が
構成された反射電極(M)を示している。この反射電極(M)
はブレーズド反射回折格子であって、ガラス,樹脂等で
構成された表面レリーフ型回折格子の表面に金属製の電
極膜(不図示)をコートしたものでもよく、電極パターン
を有する金属シートで表面レリーフ型回折格子を構成し
たものでもよい。反射電極(M)の反射面は、B,G,R
の各波長成分に対応する領域ごとに異なる入射角θB,θ
G,θRとなるようなブレーズ形状のミラー面になってお
り、ブレーズ角度α(αB,αG,αR)が主光線の入射角度
θ(θB,θG,θR)と同じになるように構成されている。
そして、2sinθ=λ/Λ(ここで、λ:各波長領域での
中心波長、Λ:格子ピッチ、である。)を満たすこと
で、入射光と略同じ方向に反射光が戻るようにしてい
る。
FIG. 7 shows a reflection electrode (M) in which a reflection surface is constituted by a blazed diffraction surface. This reflective electrode (M)
Is a blazed reflection diffraction grating, which may be a surface relief type diffraction grating composed of glass, resin, etc., coated with a metal electrode film (not shown) on the surface, or a metal sheet having an electrode pattern. It may be one having a type diffraction grating. The reflective surface of the reflective electrode (M) is B, G, R
Angles of incidence θB, θ that differ for each region corresponding to each wavelength component of
G, θR is a blazed mirror surface, and is configured so that the blaze angle α (αB, αG, αR) is the same as the incident angle θ (θB, θG, θR) of the principal ray. I have.
By satisfying 2 sin θ = λ / Λ (where λ: center wavelength in each wavelength region, Λ: grating pitch), the reflected light is returned in substantially the same direction as the incident light. .

【0024】図8と図9は、再帰反射型素子であるレト
ロリフレクタで反射面が構成された反射電極(M)を示し
ている。このレトロリフレクタは、微細なコーナーキュ
ーブが2次元的に配置されたシート状構造を有してい
る。入射光は各コーナーキューブで3回反射されて入射
方向と同じ方向に反射されるため、各波長成分の光は入
射角度がそれぞれ異なるにもかかわらず、同じ絵素に対
応するマイクロレンズ(1)内に戻ることになる。なお、
反射電極(M)は、ガラス,樹脂等で構成されたレトロリ
フレクタの表面に金属製の電極膜(不図示)をコートした
ものでもよく、電極パターンを有する金属シートでレト
ロリフレクタを構成したものでもよい。
FIGS. 8 and 9 show a reflective electrode (M) having a reflective surface formed by a retroreflector which is a retroreflective element. This retro-reflector has a sheet-like structure in which fine corner cubes are two-dimensionally arranged. Since the incident light is reflected three times by each corner cube and reflected in the same direction as the incident direction, the light of each wavelength component has a different incidence angle, but the micro lens corresponding to the same picture element (1) Will be back inside. In addition,
The reflective electrode (M) may be a retroreflector made of glass, resin, or the like coated with a metal electrode film (not shown), or a retroreflector made of a metal sheet having an electrode pattern. Good.

【0025】図1に示すように、平行光である白色照明
光(L1)がマイクロレンズ(1)と回折素子(D1)を通過する
と、回折素子(D1)の回折作用でB,G,Rの各波長帯域
ごとに分光された光が、マイクロレンズ(1)の集光作用
で液晶層(2)の対応画素に導光される。このときB,
G,Rの光がそれぞれ所定角度で回折するため、1つの
マイクロレンズ(1)を1絵素とするとき、それに対応す
る液晶層(2)の3つの画素がマイクロレンズ(1)に対して
平行シフトすることになる。したがって、全ての波長成
分の光の主光線は、反射電極(M)の反射面に対して斜め
に集光することになる。液晶層(2)を通過した光は反射
電極(M)で反射される。先に述べたように、反射電極(M)
は入射光の入射方向と略同じ方向に入射光を反射させる
機能を有しているので、反射電極(M)に対しそれぞれ所
定の角度で入射したB,G,Rの光は、その入射方向と
略同じ方向に反射される。反射光は再び回折素子(D1)で
各波長帯域ごとに回折されて波長合成され、マイクロレ
ンズ(1)から射出する。
As shown in FIG. 1, when the white illumination light (L1), which is parallel light, passes through the microlens (1) and the diffraction element (D1), B, G, and R are diffracted by the diffraction element (D1). The light separated for each wavelength band is guided to the corresponding pixel of the liquid crystal layer (2) by the condensing action of the microlens (1). At this time,
Since each of the G and R lights is diffracted at a predetermined angle, when one microlens (1) is used as one picture element, three pixels of the liquid crystal layer (2) corresponding to the microlens (1) correspond to the microlens (1). This results in a parallel shift. Therefore, the principal rays of all the wavelength components are condensed obliquely with respect to the reflection surface of the reflection electrode (M). Light that has passed through the liquid crystal layer (2) is reflected by the reflective electrode (M). As mentioned earlier, the reflective electrode (M)
Has a function of reflecting the incident light in substantially the same direction as the incident direction of the incident light, so that the B, G, and R lights incident on the reflective electrode (M) at predetermined angles, respectively, Is reflected in substantially the same direction. The reflected light is again diffracted by the diffractive element (D1) for each wavelength band, wavelength-combined, and emitted from the microlens (1).

【0026】上述したように、反射電極(M)に付与され
ている前記特徴的な機能によって、1つの絵素を構成す
るB,G,Rの各画素からの表示光をマイクロレンズ
(1)側に戻すことができる。したがって、図14に示す
ような迷光(LS)が生じなくなるため、絵素ごとのクロス
トークの発生が防止される。このようにして、簡単な構
成でありながら高い表示品質のカラー表示を行うことが
可能となる。また、反射型の液晶光変調素子でありなが
ら吸収型のカラーフィルターを用いずに回折素子(D1)を
カラーフィルターとして用いているため、単板でのカラ
ー表示を高い光利用効率で実現することができる。
As described above, the display light from each of the B, G, and R pixels constituting one picture element is converted into a micro lens by the characteristic function given to the reflection electrode (M).
(1) It can be returned to the side. Therefore, since stray light (LS) as shown in FIG. 14 does not occur, occurrence of crosstalk for each picture element is prevented. In this way, it is possible to perform color display of high display quality with a simple configuration. In addition, since the diffractive element (D1) is used as a color filter without using an absorption type color filter even though it is a reflective liquid crystal light modulation element, color display on a single plate can be realized with high light use efficiency. Can be.

【0027】《第2の実施の形態》図2に、第2の実施
の形態の断面構造を示す。第2の実施の形態は回折素子
(D2)に特徴があり、前記マイクロレンズ(1)及び回折素
子(D1)の代わりに回折素子(D2)が用いられているほか
は、前述した第1の実施の形態と同様に構成されてい
る。第1の実施の形態では、回折素子(D1)が分光を行い
マイクロレンズ(1)が集光を行うように機能分担されて
いるが、第2の実施の形態では、分光と集光を共に回折
素子(D2)が行う構成となっている。したがって、回折素
子(D2)と反射電極(M)との間では、B,G,Rの各波長
成分が第1の実施の形態と同じ光路をとることになる。
この回折素子(D2)は、チャープ(chirp)された1次元の
回折格子構造を有しており、その変化したピッチ周期に
よって、B,G,Rの光をそれぞれを所定の角度に回折
・集光させる。
<< Second Embodiment >> FIG. 2 shows a sectional structure of a second embodiment. Second Embodiment Diffraction Element
(D2) is characterized in that the diffraction element (D2) is used instead of the microlens (1) and the diffraction element (D1), and is configured in the same manner as the first embodiment described above. I have. In the first embodiment, the function is shared such that the diffractive element (D1) performs spectroscopy and the microlens (1) condenses light. In the second embodiment, both spectroscopy and condensing light are performed. The configuration is performed by the diffraction element (D2). Therefore, between the diffraction element (D2) and the reflection electrode (M), each of the B, G, and R wavelength components takes the same optical path as in the first embodiment.
The diffractive element (D2) has a chirped one-dimensional diffraction grating structure, and diffracts and collects B, G, and R light at predetermined angles according to the changed pitch period. Light up.

【0028】《第3の実施の形態》図3に、第3の実施
の形態の断面構造を示す。第3の実施の形態は回折素子
(D3)に特徴があり、前記回折素子(D1)の代わりに回折素
子(D3)が用いられているほかは、前述した第1の実施の
形態と同様に構成されている。第1の実施の形態で用い
られている回折素子(D1)は、B,G,Rの各波長帯域の
中心波長がいずれも同じ回折次数で回折分光されるタイ
プであるが、第3の実施の形態で用いられている回折素
子(D3)は、B,G,Rの各波長帯域の中心波長がいずれ
も異なる回折次数で回折分光されるタイプである。そし
て、R,Bの波長帯域の光はそれぞれ所定の角度で回折
し、Gの波長帯域の光は回折せずに回折素子(D3)を透過
する構成になっている。したがって、1絵素に対応する
液晶層(2)の3つの画素は、マイクロレンズアレイ(1)に
対してシフトしない位置関係となる。
<< Third Embodiment >> FIG. 3 shows a sectional structure of a third embodiment. Third Embodiment Diffraction Element
(D3) is characterized in that it is configured in the same manner as the above-described first embodiment except that a diffraction element (D3) is used instead of the diffraction element (D1). The diffraction element (D1) used in the first embodiment is of a type in which the center wavelength of each of the B, G, and R wavelength bands is diffracted at the same diffraction order. The diffraction element (D3) used in the form (1) is of a type in which the center wavelength of each of the B, G, and R wavelength bands is diffracted at different diffraction orders. The light in the R and B wavelength bands is diffracted at a predetermined angle, and the light in the G wavelength band is transmitted through the diffraction element (D3) without being diffracted. Therefore, the three pixels of the liquid crystal layer (2) corresponding to one picture element have a positional relationship that does not shift with respect to the microlens array (1).

【0029】この回折素子(D3)としては、図11に示す
ような表面レリーフ型のバイナリー回折素子を用いるこ
とができる。このような階段状構造を有する回折素子(D
3)は、半導体製造技術等を用いて容易に作成することが
可能である。各ステップの段差hは、h=λG/(n-1){こ
こで、λG:Gの中心波長(〜540nm)、n:回折素子(D3)
の媒体の屈折率、である。}で表される。回折される各
波長帯域の中心波長は、それぞれ異なる回折次数におい
て回折効率が最大となる。そして、Gの波長成分につい
ては、各ステップで2πの位相の変調が与えられるた
め、回折をしないことになる。
As the diffraction element (D3), a surface relief type binary diffraction element as shown in FIG. 11 can be used. A diffraction element having such a step-like structure (D
3) can be easily created using semiconductor manufacturing technology or the like. The step h of each step is h = λG / (n−1) {where, λG: central wavelength of G (G540 nm), n: diffraction element (D3)
Is the refractive index of the medium. }. The diffraction efficiency of the center wavelength of each wavelength band to be diffracted is maximized at different diffraction orders. The G wavelength component is not diffracted because a 2π phase modulation is given in each step.

【0030】第3の実施の形態では、Gの波長帯域の光
が反射電極(M)の反射面に対して垂直方向から入射・集
光するため、反射電極(M)におけるGの対応領域に、入
射光の入射方向と略同じ方向に入射光を反射させる前記
機能を付与する必要がない。Gの波長成分は、正反射し
ても他の絵素に対応する方向には反射せず、したがって
画質を低下させることがないからである。ただし、反射
電極(M)の製作を容易にするために、Gの対応領域に前
記反射機能を付与してもよいことはいうまでもない。
In the third embodiment, since the light in the G wavelength band is incident on and condensed from the reflection surface of the reflection electrode (M) in a direction perpendicular to the reflection surface of the reflection electrode (M), the light corresponds to the region corresponding to G in the reflection electrode (M). It is not necessary to provide the function of reflecting the incident light in substantially the same direction as the incident direction of the incident light. This is because the G wavelength component does not reflect in the direction corresponding to other picture elements even if it is specularly reflected, and therefore does not degrade image quality. However, it goes without saying that the reflection function may be provided to the corresponding region of G in order to facilitate the production of the reflection electrode (M).

【0031】《第4の実施の形態》図4に、第4の実施
の形態の断面構造を示す。第4の実施の形態は回折素子
(D4)に特徴があり、前記マイクロレンズ(1)及び回折素
子(D3)の代わりに回折素子(D4)が用いられているほか
は、前述した第3の実施の形態と同様に構成されてい
る。第3の実施の形態では、回折素子(D3)が分光を行い
マイクロレンズ(1)が集光を行うように機能分担されて
いるが、第4の実施の形態では、分光と集光を共に回折
素子(D4)が行う構成となっている。したがって、回折素
子(D4)と反射電極(M)との間では、B,G,Rの各波長
成分が第3の実施の形態と同じ光路をとることになる。
<< Fourth Embodiment >> FIG. 4 shows a sectional structure of a fourth embodiment. Fourth embodiment is a diffraction element
(D4) is characterized in that it is configured similarly to the third embodiment described above, except that a diffractive element (D4) is used instead of the microlens (1) and the diffractive element (D3). I have. In the third embodiment, the function is divided so that the diffractive element (D3) separates light and the microlens (1) collects light. In the fourth embodiment, both the light separation and the light collection are performed. The configuration is performed by the diffraction element (D4). Therefore, between the diffraction element (D4) and the reflection electrode (M), each of the B, G, and R wavelength components takes the same optical path as in the third embodiment.

【0032】回折素子(D4)は、分光用の回折格子構造と
集光用の回折格子構造との両方を有するものであればよ
い。図11に示す回折素子によれば分光は可能である
が、パワーがないため集光は不可能である。そこで、集
光用のパワーを有する回折レンズを、図11に示す回折
素子に組み合わせて用いればよい。分光・集光の両機能
を兼ね備えた回折素子(D4)を用いることによって、B,
G,Rの光をそれぞれ所定の角度で集光させながら、
R,Bの波長帯域をそれぞれを所定の角度に回折させ、
Gの波長帯域については分光のための回折をさせずに回
折素子(D4)を透過させることができる。なお、回折レン
ズとしては、例えばB,G,Rの光がそれぞれ所定の角
度で集光するようにチャープ(chirp)された1次元の回
折格子構造を有するものが挙げられる。
The diffraction element (D4) only needs to have both a diffraction grating structure for spectral distribution and a diffraction grating structure for light collection. According to the diffraction element shown in FIG. 11, spectroscopy is possible, but it is impossible to condense light due to lack of power. Therefore, a diffraction lens having power for condensing light may be used in combination with the diffraction element shown in FIG. By using a diffractive element (D4) having both functions of spectroscopy and focusing,
While condensing G and R light at predetermined angles,
Each of the R and B wavelength bands is diffracted at a predetermined angle,
The G wavelength band can be transmitted through the diffraction element (D4) without performing diffraction for spectral separation. As the diffraction lens, for example, a lens having a one-dimensional diffraction grating structure chirped so that B, G, and R lights are respectively condensed at a predetermined angle can be cited.

【0033】《第5の実施の形態》図12に、第5の実
施の形態の光学構成を模式的に示す。第5の実施の形態
は、前述した第1〜第4の実施の形態のうちのいずれか
一つの液晶光変調素子(15)を用いて、スクリーン(17)に
カラー画像の投影表示を行う投影表示装置である。この
投影表示装置は、主な構成要素として、白色光源(10),
偏光変換素子(11),コンデンサーレンズ(12),偏光ビー
ムスプリッタ(13),コンデンサーレンズ(14),反射型の
液晶光変調素子(15)及び投影光学系(16)を備えている。
<< Fifth Embodiment >> FIG. 12 schematically shows an optical configuration of a fifth embodiment. The fifth embodiment uses a liquid crystal light modulation device (15) according to any one of the first to fourth embodiments described above to project a color image on a screen (17). A display device. This projection display device has a white light source (10),
It comprises a polarization conversion element (11), a condenser lens (12), a polarization beam splitter (13), a condenser lens (14), a reflective liquid crystal light modulation element (15), and a projection optical system (16).

【0034】偏光ビームスプリッタ(13)には偏光変換素
子(11)で均一なS偏光のみに揃えられた白色照明光(L1)
が入射し、その白色照明光(L1)が偏光ビームスプリッタ
(13)で反射されて液晶光変調素子(15)に入射する。そし
て、前記液晶層(2)で部分的にP偏光に変換されて、液
晶光変調素子(15)を射出する。偏光ビームスプリッタ(1
3)をそのまま直進・透過したP偏光は、投影光(L2)とし
て投影光学系(16)に入射し、スクリーン(17)上にカラー
画像を形成する。このようにして、明るく高品位なカラ
ー表示を安価な単板式で行うことができる。
The polarization beam splitter (13) is provided with white illumination light (L1) that has been adjusted to only uniform S-polarized light by the polarization conversion element (11).
Is incident, and the white illumination light (L1) is
The light is reflected by (13) and enters the liquid crystal light modulation element (15). Then, the light is partially converted into P-polarized light by the liquid crystal layer (2), and is emitted from the liquid crystal light modulation element (15). Polarizing beam splitter (1
The P-polarized light that has passed straight through and transmitted through 3) enters the projection optical system (16) as projection light (L2) and forms a color image on the screen (17). In this manner, bright and high-quality color display can be performed with an inexpensive single-plate type.

【0035】[0035]

【発明の効果】以上説明したように本発明の液晶光変調
素子によれば、反射手段に付与されている特徴的な機能
が迷光の発生を防止するため、簡単な構成でありながら
絵素ごとのクロストークの発生が防止される。したがっ
て、高い表示品質のカラー表示を安価に行うことができ
る。また、吸収型のカラーフィルターを用いずにカラー
表示を行うことができるため、光利用効率に優れた明る
い画像投影が可能である。そして、その液晶光変調素子
を用いた投影表示装置によれば、安価な単板式でありな
がら、明るく高密度・高品位なカラー表示を行うことが
できる。
As described above, according to the liquid crystal light modulation device of the present invention, the characteristic function given to the reflection means prevents the generation of stray light. Is prevented from occurring. Therefore, high-quality color display can be performed at low cost. In addition, since color display can be performed without using an absorption type color filter, a bright image with excellent light use efficiency can be projected. In addition, according to the projection display device using the liquid crystal light modulation element, a bright, high-density, high-quality color display can be performed while being an inexpensive single-panel type.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態を示す光学構成図。FIG. 1 is an optical configuration diagram showing a first embodiment.

【図2】第2の実施の形態を示す光学構成図。FIG. 2 is an optical configuration diagram showing a second embodiment.

【図3】第3の実施の形態を示す光学構成図。FIG. 3 is an optical configuration diagram showing a third embodiment.

【図4】第4の実施の形態を示す光学構成図。FIG. 4 is an optical configuration diagram showing a fourth embodiment.

【図5】反射型体積ホログラムで反射面が構成された反
射電極を示す断面図。
FIG. 5 is a cross-sectional view showing a reflective electrode having a reflective surface formed by a reflective volume hologram.

【図6】反射型体積ホログラムから成る反射電極の作製
方法を説明するための図。
FIG. 6 is a diagram for explaining a method for manufacturing a reflective electrode formed of a reflective volume hologram.

【図7】ブレーズ化した回折面で反射面が構成された反
射電極を示す断面図。
FIG. 7 is a cross-sectional view showing a reflective electrode in which a reflective surface is formed by a blazed diffraction surface.

【図8】シート状のレトロリフレクタで反射面が構成さ
れた反射電極を示す斜視図。
FIG. 8 is a perspective view showing a reflection electrode in which a reflection surface is formed by a sheet-shaped retro reflector.

【図9】シート状のレトロリフレクタを拡大して示す断
面図。
FIG. 9 is an enlarged cross-sectional view showing a sheet-shaped retro reflector.

【図10】第1,第2の実施の形態に用いることができ
る回折素子を示す断面図。
FIG. 10 is a sectional view showing a diffraction element that can be used in the first and second embodiments.

【図11】第3,第4の実施の形態に用いることができ
る回折素子を示す断面図。
FIG. 11 is a sectional view showing a diffraction element that can be used in the third and fourth embodiments.

【図12】第5の実施の形態を示す光学構成図。FIG. 12 is an optical configuration diagram showing a fifth embodiment.

【図13】回折素子から成るカラーフィルターが用いら
れた透過型の液晶光変調素子の従来例を示す断面図。
FIG. 13 is a cross-sectional view showing a conventional example of a transmission type liquid crystal light modulation device using a color filter composed of a diffraction element.

【図14】回折素子から成るカラーフィルターが用いら
れた反射型の液晶光変調素子の従来例を示す断面図。
FIG. 14 is a sectional view showing a conventional example of a reflection type liquid crystal light modulation element using a color filter composed of a diffraction element.

【符号の説明】[Explanation of symbols]

D1 …分光用の回折素子(分光手段) D2 …分光・集光兼用の回折素子(分光手段) D3 …分光用の回折素子(分光手段) D4 …分光・集光兼用の回折素子(分光手段) M …反射電極(反射手段) P1 …第1基板 P2 …第2基板 L1 …白色照明光 L2 …投影光 1 …マイクロレンズ(集光手段) 2 …液晶層 10 …白色光源 11 …偏光変換素子 12 …コンデンサーレンズ 13 …偏光ビームスプリッタ 14 …コンデンサーレンズ 15 …反射型の液晶光変調素子 16 …投影光学系 17 …スクリーン D1 ... Diffraction element for spectral (spectral means) D2 ... Diffractive element for spectral / condensing (spectral means) D3 ... Diffractive element for spectral / dispersive (spectral means) D4 ... Diffractive element for spectral / concentrating (spectral means) M: reflective electrode (reflecting means) P1: first substrate P2: second substrate L1: white illumination light L2: projection light 1: microlens (light collecting means) 2: liquid crystal layer 10: white light source 11: polarization conversion element 12 … Condenser lens 13… polarizing beam splitter 14… condenser lens 15… reflective liquid crystal light modulator 16… projection optical system 17… screen

フロントページの続き Fターム(参考) 2H049 AA03 AA07 AA25 AA50 AA60 AA63 AA64 BC22 CA01 CA05 CA09 CA15 CA22 2H088 EA13 HA10 HA18 HA20 HA21 HA25 MA06 2H091 FA02X FA07X FA10X FA14Z FA19X FA26X FA29X FA41X FA50Z FC10 LA16 LA17 MA07 Continued on the front page F term (reference) 2H049 AA03 AA07 AA25 AA50 AA60 AA63 AA64 BC22 CA01 CA05 CA09 CA15 CA22 2H088 EA13 HA10 HA18 HA20 HA21 HA25 MA06 2H091 FA02X FA07X FA10X FA14Z FA19X FA26X FA29X FA41X FA50

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 白色照明光を所定の波長帯域ごとに分光
する分光手段と、2次元の複数画素に対する入射光の強
度を変調する液晶層と、前記分光手段で分光された光が
前記液晶層の各画素に導光されるように集光する集光手
段と、前記液晶層を透過した光を反射させる反射手段
と、を備えた反射型の液晶光変調素子であって、前記反
射手段が入射光の入射方向と略同じ方向に入射光を反射
させる機能を有することを特徴とする液晶光変調素子。
A splitter for splitting the white illumination light for each predetermined wavelength band; a liquid crystal layer for modulating the intensity of light incident on a plurality of two-dimensional pixels; and a light split by the splitter for the liquid crystal layer. A reflection type liquid crystal light modulation device comprising: a light collection means for condensing light so as to be guided to each pixel; and a reflection means for reflecting light transmitted through the liquid crystal layer, wherein the reflection means is A liquid crystal light modulation element having a function of reflecting incident light in substantially the same direction as the incident direction of the incident light.
【請求項2】 前記反射手段がホログラムアレイ素子で
あることを特徴とする請求項1記載の液晶光変調素子。
2. A liquid crystal light modulation device according to claim 1, wherein said reflection means is a hologram array device.
【請求項3】 前記反射手段がブレーズド反射回折格子
であることを特徴とする請求項1記載の液晶光変調素
子。
3. The liquid crystal light modulation device according to claim 1, wherein said reflection means is a blazed reflection diffraction grating.
【請求項4】 前記反射手段が再帰反射型素子であるこ
とを特徴とする請求項1記載の液晶光変調素子。
4. The liquid crystal light modulation device according to claim 1, wherein said reflection means is a retroreflective element.
【請求項5】 前記分光手段が回折素子であることを特
徴とする請求項1記載の液晶光変調素子。
5. The liquid crystal light modulation device according to claim 1, wherein said spectral means is a diffraction device.
【請求項6】 前記集光手段が屈折素子であることを特
徴とする請求項1記載の液晶光変調素子。
6. The liquid crystal light modulation device according to claim 1, wherein said light collecting means is a refraction device.
【請求項7】 前記集光手段が回折素子であることを特
徴とする請求項1記載の液晶光変調素子。
7. The liquid crystal light modulation device according to claim 1, wherein the light condensing means is a diffraction device.
【請求項8】 請求項1〜7のいずれか1項に記載の液
晶光変調素子を用いてカラー画像の投影表示を行うこと
を特徴とする投影表示装置。
8. A projection display device for performing a color image projection display using the liquid crystal light modulation element according to claim 1. Description:
JP21369598A 1998-07-29 1998-07-29 Liquid crystal light modulation element and projection display device Expired - Fee Related JP4055970B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21369598A JP4055970B2 (en) 1998-07-29 1998-07-29 Liquid crystal light modulation element and projection display device
US09/362,372 US6359719B1 (en) 1998-07-29 1999-07-28 Optical modulator and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21369598A JP4055970B2 (en) 1998-07-29 1998-07-29 Liquid crystal light modulation element and projection display device

Publications (2)

Publication Number Publication Date
JP2000047198A true JP2000047198A (en) 2000-02-18
JP4055970B2 JP4055970B2 (en) 2008-03-05

Family

ID=16643470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21369598A Expired - Fee Related JP4055970B2 (en) 1998-07-29 1998-07-29 Liquid crystal light modulation element and projection display device

Country Status (2)

Country Link
US (1) US6359719B1 (en)
JP (1) JP4055970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009016A (en) * 2008-06-27 2010-01-14 Ind Technol Res Inst Composite light dividing device and imaging apparatus using the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9811782D0 (en) * 1998-06-03 1998-07-29 Sharp Kk Projection display
US6185047B1 (en) * 1999-05-17 2001-02-06 Infocus Corporation Image projection system packaged to operate lying flat with a very low profile
US7046407B2 (en) * 2000-02-14 2006-05-16 3M Innovative Properties Company Diffractive color filter
US7113231B2 (en) * 2000-02-14 2006-09-26 3M Innovative Properties Company Dot-sequential color display system
US20070203346A1 (en) * 2001-04-30 2007-08-30 Oregon State University Method for synthesizing epothilones and epothilone analogs
TW588195B (en) * 2002-07-30 2004-05-21 Hong-Da Liu Reflector structure in a liquid crystal display having light condensing effect
GB2404991A (en) * 2003-08-09 2005-02-16 Sharp Kk LCD device having at least one viewing window
JP2005062692A (en) 2003-08-19 2005-03-10 Internatl Business Mach Corp <Ibm> Color display device, optical element, and method for manufacturing color display device
US7308207B2 (en) * 2003-11-17 2007-12-11 Raytheon Company Method for identifying an interrogated object using a dynamic optical tag identification system
US7182463B2 (en) * 2003-12-23 2007-02-27 3M Innovative Properties Company Pixel-shifting projection lens assembly to provide optical interlacing for increased addressability
US7554623B2 (en) * 2005-02-18 2009-06-30 Infocus Corporation Optical assembly to provide complementary illumination of subpixels of a light valve pixel
WO2009050294A2 (en) * 2007-10-19 2009-04-23 Seereal Technologies S.A. Light modulating device
USD765612S1 (en) * 2015-07-16 2016-09-06 Sumitomo Electric Industries, Ltd. Light source module
CN109791241B (en) * 2016-09-28 2021-06-15 富士胶片株式会社 Optical laminate
CN110133859B (en) * 2018-02-09 2021-09-03 中强光电股份有限公司 Display device
CN115480401A (en) 2021-06-16 2022-12-16 中强光电股份有限公司 Illumination system and projection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726662A (en) * 1985-09-24 1988-02-23 Talig Corporation Display including a prismatic lens system or a prismatic reflective system
US5506701A (en) * 1993-01-28 1996-04-09 Dai Nippon Printing Co., Ltd. Hologram color filter, liquid crystal display device using the same, and fabrication process of hologram color filter
US5475513A (en) * 1993-06-02 1995-12-12 Sharp Kabushiki Kaisha Projection type image display device maintaining resolution of an image unaffected by parallax
US5737113A (en) 1995-08-04 1998-04-07 Canon Kabushiki Kaisha Optical modulators and color image display device employing the same
US5608552A (en) 1995-12-26 1997-03-04 Hughes Electronics Liquid crystal display having an off-axis full-color holographic filter
US5894359A (en) * 1996-08-21 1999-04-13 Victor Company Of Japan, Ltd. Color filter and color display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009016A (en) * 2008-06-27 2010-01-14 Ind Technol Res Inst Composite light dividing device and imaging apparatus using the same

Also Published As

Publication number Publication date
JP4055970B2 (en) 2008-03-05
US6359719B1 (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP3199313B2 (en) Reflection type liquid crystal display device and projection type liquid crystal display device using the same
JP4055970B2 (en) Liquid crystal light modulation element and projection display device
JP2860314B2 (en) Liquid crystal display with off-axis full color holographic filter
JP3601576B2 (en) Color image display
JPH08240868A (en) Projection type color display device
JP3647206B2 (en) Optical modulation device and projection device using the same
JP2001324762A (en) Illuminating optical system for single panel type liquid crystal projector
JP3452276B2 (en) Liquid crystal display device using hologram and method of manufacturing the same
JP2002148717A (en) Reflection type hologram screen and projection display device using the same
JP3200335B2 (en) Optical modulation device and color image display device using the same
JP3461606B2 (en) Projection type color image display
JP3233256B2 (en) Projection type image display device
JP3302267B2 (en) Optical modulation device and color image display device using the same
JP4908684B2 (en) Projection image display device
JP4017127B2 (en) Hologram color filter system
JPH09274252A (en) Light condensing spectroscopic device
JP3236194B2 (en) Optical modulation device and color image display device using the same
JPH10239687A (en) Projection color liquid crystal display device
JP3365101B2 (en) Liquid crystal display
JPH0950024A (en) Liquid crystal display device using hologram color filter
JP3200334B2 (en) Optical modulation device and color image display device using the same
JP3244078B2 (en) Reflective liquid crystal display
JPH09166781A (en) Hologram color filter system
JP2002006140A (en) Manufacturing method for reflective hologram color filter
JP3514341B2 (en) Liquid crystal display using hologram color filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees