JP2000046977A - Vibration-suppressing device - Google Patents

Vibration-suppressing device

Info

Publication number
JP2000046977A
JP2000046977A JP10213978A JP21397898A JP2000046977A JP 2000046977 A JP2000046977 A JP 2000046977A JP 10213978 A JP10213978 A JP 10213978A JP 21397898 A JP21397898 A JP 21397898A JP 2000046977 A JP2000046977 A JP 2000046977A
Authority
JP
Japan
Prior art keywords
drive shaft
optical device
rotation direction
frequency
servo mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10213978A
Other languages
Japanese (ja)
Inventor
Kenichi Sugimori
健一 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10213978A priority Critical patent/JP2000046977A/en
Publication of JP2000046977A publication Critical patent/JP2000046977A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the structural resonance between the natural frequency in the rotating direction of a drive shaft and an aerodynamic vibration frequency applied to optical equipment by fully separating them by changing an inertial coefficient in the rotary direction of the drive shaft of the optical equipment. SOLUTION: The level of the natural frequency in the rotating direction of a drive shaft 4 is changed by adjusting the gain of a servo mechanism 7. However, during normal flight, the gain of the servo mechanism 7 is set to 0, and a controller 8 gives a gain change command to the servo mechanism 7 via a signal line 7 when the aerodynamic vibration direction being applied to optical equipment 2 approaches the frequency in the rotating direction of the drive shaft 4 at the gain 0 of the servo mechanism 7, thus fully separating the natural frequency in the rotating direction of the drive shaft 4 from the frequency of aerodynamic vibration being applied to the equipment 2 and hence avoiding the structural resonance between them, eliminating the peak value of a gain at the resonance frequency in the frequency characteristics of the control system of the drive motor 4 of the optical equipment 2, and preventing the oscillation of a signal near the resonance frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、航空機に搭載す
る光学機器において光学的視野を変化させる駆動軸の回
転方向の構造的な固有振動数と光学機器にかかる空力的
振動の周波数との共振を抑制する装置に関する技術であ
り、さらに詳しく述べると、前記光学機器の駆動軸の回
転方向の固有振動数が光学機器にかかる空力的振動の周
波数に近づくときに、駆動軸の回転方向の固有振動数ま
たは減衰比を変化させ、両者の間での共振を抑制する装
置を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resonance between a structural natural frequency in a rotation direction of a drive shaft for changing an optical field of view and an aerodynamic vibration frequency applied to an optical device in an optical device mounted on an aircraft. More specifically, when the natural frequency in the rotation direction of the drive shaft of the optical device approaches the frequency of the aerodynamic vibration applied to the optical device, the natural frequency in the rotation direction of the drive shaft is reduced. Alternatively, a device that changes the damping ratio and suppresses resonance between the two is proposed.

【0002】[0002]

【従来の技術】図21は従来の航空機搭載用の光学機器
の外形図である。1は航空機の一部、2は前記航空機に
搭載された光学機器、3は光学機器2内部に設けられた
光学センサ、4は光学センサ3の光学的視野を変化させ
る駆動軸、5は駆動軸4の回転運動を制御する駆動モー
タであり、アは光学機器2まわりの気流、イは気流アの
剥離点後流にできるカルマン渦対である。図22は従来
の航空機搭載用の光学機器2の駆動モータ5の制御系の
周波数特性を示すグラフであり、横軸に周波数、縦軸に
そのゲインをとっている。ウは駆動軸4の回転方向の固
有振動数と光学機器2にかかる空力的振動の周波数との
間で共振が起こらない場合の駆動モータ5の制御系の周
波数特性、エは駆動軸4の回転方向の固有振動数と光学
機器2にかかる空力的振動の周波数との間で共振が起こ
る場合の駆動モータ5の制御系の周波数特性、オは駆動
軸4の回転方向の固有振動数と光学機器2にかかる空力
的振動の周波数との共振周波数、カは共振周波数オにお
けるゲインのピーク値である。図21において、駆動軸
4の回転方向の運動方程式を数1のごとく表す。
2. Description of the Related Art FIG. 21 is an external view of a conventional optical device mounted on an aircraft. 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive shaft Reference numeral 4 denotes a drive motor for controlling the rotational movement, wherein A is an air flow around the optical device 2 and A is a Karman vortex pair formed downstream of the separation point of the air flow A. FIG. 22 is a graph showing a frequency characteristic of a control system of the drive motor 5 of the conventional optical device 2 mounted on an aircraft, wherein the horizontal axis represents the frequency and the vertical axis represents the gain. C is the frequency characteristic of the control system of the drive motor 5 when resonance does not occur between the natural frequency of the rotation direction of the drive shaft 4 and the frequency of the aerodynamic vibration applied to the optical device 2, and d is the rotation of the drive shaft 4. Frequency characteristics of the control system of the drive motor 5 when resonance occurs between the natural frequency in the direction and the frequency of the aerodynamic vibration applied to the optical device 2; The resonance frequency with respect to the frequency of the aerodynamic vibration according to 2 and f is the peak value of the gain at the resonance frequency e. In FIG. 21, the equation of motion of the drive shaft 4 in the rotational direction is represented as in Equation 1.

【0003】[0003]

【数1】 (Equation 1)

【0004】駆動軸4の回転方向の運動方程式を数1の
ごとく表すと、駆動軸4の回転方向の固有振動数は数2
のごとく表せる。
When the equation of motion in the rotational direction of the drive shaft 4 is expressed as in Equation 1, the natural frequency in the rotational direction of the drive shaft 4 is expressed by Equation 2.
Can be expressed as

【0005】[0005]

【数2】 (Equation 2)

【0006】またカルマン渦対イの単位時間発生数をn
とすると、光学機器2の抗力方向には数3のごとき周波
数fA の交番抗力が作用するが、光学機器2の気流に対
する切断面が完全な円断面には製造できないことや駆動
軸4の取り付け位置が光学機器2の完全な中心軸上に設
定できないこと等から、前記交番抗力は抗力方向のみな
らず駆動軸4の回転方向に対しても空力的外乱振動とし
て負荷する。
Further, the number of occurrences of the Karman vortex pair a per unit time is n
When, acts alternating drag number 3 of such frequencies f A is the drag direction of the optical device 2, the mounting of it and the drive shaft 4 which can not be produced on the cut surface is a perfect circle cross section for air flow of the optical apparatus 2 Since the position cannot be set on the complete central axis of the optical device 2 or the like, the alternating drag is applied not only in the drag direction but also in the rotational direction of the drive shaft 4 as aerodynamic disturbance vibration.

【0007】[0007]

【数3】 (Equation 3)

【0008】航空機搭載用の光学機器2は、目標を補足
して追尾する際に駆動モータ5により駆動軸4を回転さ
せて光学センサ3の光学的視野を変えて目標との位置や
角度あるいは距離を計測するため、光学センサ3の光学
的視野を変化させる駆動軸4の空間安定性は重要な技術
課題であるが、数2に示す駆動軸4の回転方向の固有振
動数が数3に示す光学機器2にかかる空力的振動の周波
数に近接する場合には、両者の間で構造的な共振現象が
生じて駆動軸4が振動するなどの問題があった。
The optical device 2 mounted on an aircraft rotates the drive shaft 4 by a drive motor 5 when the target is captured and tracked, thereby changing the optical field of view of the optical sensor 3 to change the position, angle or distance from the target. The spatial stability of the drive shaft 4 that changes the optical field of view of the optical sensor 3 is an important technical issue in order to measure the natural frequency. However, the natural frequency in the rotational direction of the drive shaft 4 shown in Expression 2 is shown in Expression 3. When the frequency is close to the frequency of the aerodynamic vibration applied to the optical device 2, there is a problem that a structural resonance phenomenon occurs between the two and the drive shaft 4 vibrates.

【0009】[0009]

【発明が解決しようとする課題】航空機搭載用の光学機
器2において、光学機器2の駆動軸4の回転方向の固有
振動数が光学機器2にかかる空力的振動の周波数に近接
して両者の間で構造的な共振現象が発生すると、駆動モ
ータ5による駆動軸4の回転方向の制御系においては、
図22のごとく特定の共振周波数オ付近でゲインのピー
クが立ち、本来減衰されるはずの共振周波数オ付近の周
波数域の信号が発振する。駆動軸4が回転方向で発振す
ると、駆動モータ5は駆動軸4の回転方向の発振に追従
して発振するため、駆動モータ5における無駄な電力消
費や、消費電力過多による発熱などの問題が生じる他、
駆動軸4の回転方向の発振により光学センサ3による目
標との位置や角度あるいは距離計測が正確に行えず、光
学機器2の目標補足追尾制御性能に悪影響を与える等の
課題があった。この発明は航空機搭載用の光学機器2に
おいて、駆動軸4の回転方向の固有振動数と光学機器2
にかかる空力的振動の周波数との間での構造的な共振を
抑制させることを目的とする。
In the optical equipment 2 mounted on an aircraft, the natural frequency of the rotation direction of the drive shaft 4 of the optical equipment 2 is close to the frequency of the aerodynamic vibration applied to the optical equipment 2 and between them. When a structural resonance phenomenon occurs in the control system of the rotation direction of the drive shaft 4 by the drive motor 5,
As shown in FIG. 22, a gain peaks around a specific resonance frequency E, and a signal in a frequency range around the resonance frequency O that should be attenuated oscillates. When the drive shaft 4 oscillates in the rotation direction, the drive motor 5 oscillates following the oscillation of the drive shaft 4 in the rotation direction, so that problems such as wasteful power consumption in the drive motor 5 and heat generation due to excessive power consumption occur. other,
Oscillation of the drive shaft 4 in the rotational direction makes it impossible to accurately measure the position, angle, or distance to the target by the optical sensor 3, and thus has a problem such as adversely affecting the target supplementary tracking control performance of the optical device 2. The present invention relates to an optical device 2 mounted on an airplane, and a natural frequency of the drive shaft 4 in the rotational direction and the optical device 2
It is an object of the present invention to suppress structural resonance with the frequency of the aerodynamic vibration.

【0010】[0010]

【課題を解決するための手段】第1の発明による振動抑
制装置は、航空機に搭載する光学機器において、前記光
学機器の内部に設けられ、光学的視野を変化させる駆動
軸と、駆動軸に設けられ、駆動軸の回転運動を制御する
駆動モータと、駆動軸からの距離が変化するバランサ
と、バランサの駆動軸からの距離を変化させて駆動軸の
回転方向の慣性係数を変化させ駆動軸の回転方向の固有
振動数を変化させるサーボ機構と、光学機器内部に設け
られ、駆動軸の回転方向の固有振動数が航空機からの速
度情報をもとに推定計算した光学機器にかかる空力的振
動の周波数に近接しないようにサーボ機構のゲイン調節
を行なうコントローラとを備えたものである。
According to a first aspect of the present invention, there is provided a vibration suppression device provided in an optical device mounted on an aircraft, provided inside the optical device, and provided on a drive shaft for changing an optical field of view and on the drive shaft. A drive motor that controls the rotational movement of the drive shaft, a balancer whose distance from the drive shaft changes, and a change in the inertia coefficient in the rotational direction of the drive shaft by changing the distance of the balancer from the drive shaft. A servo mechanism that changes the natural frequency in the rotation direction, and the aerodynamic vibration applied to the optical device that is provided inside the optical device and whose natural frequency in the rotation direction of the drive shaft is estimated and calculated based on speed information from the aircraft And a controller for adjusting the gain of the servo mechanism so as not to approach the frequency.

【0011】また、第2の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸の回転方向にトルクを負荷するバネと、バネ
の伸縮長を変化させて駆動軸の回転方向の弾性係数を変
化させ駆動軸の回転方向の固有振動数を変化させるサー
ボ機構と、光学機器内部に設けられ、駆動軸の回転方向
の固有振動数が航空機からの速度情報をもとに推定計算
した光学機器にかかる空力的振動の周波数に近接しない
ようにサーボ機構のゲイン調節を行なうコントローラと
を備えたものである。
Further, a vibration suppressing device according to a second aspect of the present invention includes:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a rotation direction of the drive shaft A servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring and changes the natural frequency of the drive shaft in the rotation direction; A controller that adjusts the gain of the servo mechanism so that the natural frequency in the rotational direction of the drive shaft does not approach the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft. is there.

【0012】また、第3の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸からの距離が変化するバランサと、バランサ
の駆動軸からの距離を変化させて駆動軸の回転方向の慣
性係数を変化させ駆動軸まわりの固有振動数を変化させ
るサーボ機構と、駆動軸の回転方向にトルクを負荷する
バネと、バネの伸縮長を変化させて駆動軸の回転方向の
弾性係数を変化させ駆動軸の回転方向の固有振動数を変
化させるサーボ機構と、光学機器内部に設けられ、駆動
軸の回転方向の固有振動数が航空機からの速度情報をも
とに推定計算した光学機器にかかる空力的振動の周波数
に近接しないように各サーボ機構のゲイン調節を行なう
コントローラとを備えたものである。
Further, the vibration suppressing device according to the third aspect of the present invention comprises:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a distance from the drive shaft A servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance of the balancer from the drive shaft, and changes the natural frequency around the drive shaft, and torque in the rotation direction of the drive shaft. A spring to be loaded, a servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and changes the natural frequency of the drive shaft in the rotation direction, and a servo mechanism provided inside the optical device, A controller that adjusts the gain of each servo mechanism so that the natural frequency in the rotational direction does not approach the frequency of the aerodynamic vibration applied to the optical equipment estimated and calculated based on the speed information from the aircraft Those were example.

【0013】また、第4の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸の回転方向に減衰力を負荷するダンパーと、
ダンパーの減衰力を調節して駆動軸の回転方向の減衰係
数を変化させ駆動軸の回転方向の減衰比を変化させるサ
ーボ機構と、光学機器内部に設けられ、駆動軸の回転方
向の固有振動数が航空機からの速度情報をもとに推定計
算した光学機器にかかる空力的振動の周波数に近接する
ときにサーボ機構のゲイン調節を行ない駆動軸の回転方
向の減衰比を増大させるコントローラとを備えたもので
ある。
Further, a vibration suppressing device according to a fourth aspect of the present invention includes:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a rotation direction of the drive shaft A damper that applies damping force to the
A servo mechanism that adjusts the damping force of the damper to change the damping coefficient in the rotation direction of the drive shaft to change the damping ratio in the rotation direction of the drive shaft; A controller that adjusts the gain of the servo mechanism and increases the damping ratio in the rotational direction of the drive shaft when the frequency approaches the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft Things.

【0014】また、第5の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸からの距離が変化するバランサと、バランサ
の駆動軸からの距離を変化させて駆動軸の回転方向の慣
性係数を変化させ駆動軸の回転方向の固有振動数を変化
させるサーボ機構と、駆動軸の回転方向にトルクを負荷
するバネと、バネの伸縮長を変化させて駆動軸の回転方
向の弾性係数を変化させ駆動軸の回転方向の固有振動数
を変化させるサーボ機構と、駆動軸の回転方向に減衰力
を負荷するダンパーと、ダンパーの減衰力を調節して駆
動軸の回転方向の減衰係数を変化させ駆動軸の回転方向
の減衰比を変化させるサーボ機構と、光学機器内部に設
けられ、駆動軸の回転方向の固有振動数が航空機からの
速度情報をもとに推定計算した光学機器にかかる空力的
振動の周波数に近接するときに各サーボ機構のゲイン調
節を行ない駆動軸の回転方向の減衰比を増大させるコン
トローラとを備えたものである。
Further, a vibration suppressing device according to a fifth aspect of the present invention includes:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a distance from the drive shaft A servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance from the drive shaft of the balancer to change the natural frequency in the rotation direction of the drive shaft. A spring that applies torque, a servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and a damping force in the rotation direction of the drive shaft that changes the natural frequency of the drive shaft in the rotation direction A servo mechanism that changes the damping force of the drive shaft in the rotation direction by adjusting the damping force of the damper to change the damping ratio of the drive shaft in the rotation direction, When the natural frequency of the rolling direction approaches the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft, the gain of each servo mechanism is adjusted and the damping ratio of the rotation direction of the drive shaft is adjusted. And a controller for increasing.

【0015】また、第6の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸からの距離が変化するバランサと、バランサ
の駆動軸からの距離を変化させて駆動軸の回転方向の慣
性係数を変化させ駆動軸の回転方向の固有振動数を変化
させるサーボ機構と、光学機器の外壁面に設けられ、光
学機器にかかる空力的振動の周波数を検出する振動セン
サと、光学機器内部に設けられ、駆動軸の回転方向の固
有振動数が振動センサで検出された光学機器にかかる空
力的振動の周波数に近接しないようにサーボ機構のゲイ
ン調節を行なうコントローラとを備えたものである。
Further, a vibration suppressing device according to a sixth aspect of the present invention includes:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a distance from the drive shaft And a servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance from the drive shaft of the balancer to change the natural frequency in the rotation direction of the drive shaft, and the outer wall of the optical device. A vibration sensor that detects the frequency of aerodynamic vibration applied to the optical device; and a vibration sensor that is provided inside the optical device and detects a natural frequency in the rotation direction of the drive shaft detected by the vibration sensor. And a controller for adjusting the gain of the servo mechanism so as not to approach the frequency.

【0016】また、第7の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸の回転方向にトルクを負荷するバネと、バネ
の伸縮長を変化させて駆動軸の回転方向の弾性係数を変
化させ駆動軸の回転方向の固有振動数を変化させるサー
ボ機構と、光学機器の外壁面に設けられ、光学機器にか
かる空力的振動の周波数を検出する振動センサと、光学
機器内部に設けられ、駆動軸の回転方向の固有振動数が
振動センサで検出された光学機器にかかる空力的振動の
周波数に近接しないようにサーボ機構のゲイン調節を行
なうコントローラとを備えたものである。
Further, a vibration suppressing device according to a seventh aspect of the present invention includes:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a rotation direction of the drive shaft A servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and changes the natural frequency of the drive shaft in the rotation direction. A vibration sensor that detects the frequency of aerodynamic vibration applied to the optical device; and a frequency of aerodynamic vibration applied to the optical device that is provided inside the optical device and whose natural frequency in the rotation direction of the drive shaft is detected by the vibration sensor. And a controller that adjusts the gain of the servo mechanism so as not to approach the controller.

【0017】また、第8の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸からの距離が変化するバランサと、バランサ
の駆動軸からの距離を変化させて駆動軸の回転方向の慣
性係数を変化させ駆動軸まわりの固有振動数を変化させ
るサーボ機構と、駆動軸の回転方向にトルクを負荷する
バネと、バネの伸縮長を変化させて駆動軸の回転方向の
弾性係数を変化させ駆動軸の回転方向の固有振動数を変
化させるサーボ機構と、光学機器の外壁面に設けられ、
光学機器にかかる空力的振動の周波数を検出する振動セ
ンサと、光学機器内部に設けられ、駆動軸の回転方向の
固有振動数が振動センサで検出された光学機器にかかる
空力的振動の周波数に近接しないように各サーボ機構の
ゲイン調節を行なうコントローラとを備えたものであ
る。
Further, the vibration suppressing device according to the eighth aspect of the present invention comprises:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a distance from the drive shaft A servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance of the balancer from the drive shaft, and changes the natural frequency around the drive shaft, and torque in the rotation direction of the drive shaft. A spring to be loaded, a servo mechanism that changes the elastic modulus in the rotation direction of the drive shaft by changing the expansion and contraction length of the spring and changes the natural frequency in the rotation direction of the drive shaft, and is provided on the outer wall surface of the optical device,
A vibration sensor that detects the frequency of aerodynamic vibration applied to the optical device, and a natural frequency in the rotation direction of the drive shaft that is provided inside the optical device and is close to the frequency of the aerodynamic vibration applied to the optical device detected by the vibration sensor And a controller that adjusts the gain of each servo mechanism so as not to cause the problem.

【0018】また、第9の発明による振動抑制装置は、
航空機に搭載する光学機器において、前記光学機器の内
部に設けられ、光学的視野を変化させる駆動軸と、駆動
軸に設けられ、駆動軸の回転運動を制御する駆動モータ
と、駆動軸の回転方向に減衰力を負荷するダンパーと、
ダンパーの減衰力を調節して駆動軸の回転方向の減衰係
数を変化させ駆動軸の回転方向の減衰比を変化させるサ
ーボ機構と、光学機器の外壁面に設けられ、光学機器に
かかる空力的振動の周波数を検出する振動センサと、光
学機器内部に設けられ、駆動軸の回転方向の固有振動数
が振動センサで検出された光学機器にかかる空力的振動
の周波数に近接するときにサーボ機構のゲイン調節を行
ない駆動軸の回転方向の減衰比を増大させるコントロー
ラとを備えたものである。
Further, a vibration suppressing device according to a ninth aspect of the present invention comprises:
In an optical device mounted on an aircraft, a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational motion of the drive shaft, and a rotation direction of the drive shaft A damper that applies damping force to the
A servo mechanism that changes the damping force of the drive shaft in the rotational direction by adjusting the damping force of the damper to change the damping ratio of the drive shaft in the rotational direction, and aerodynamic vibration that is provided on the outer wall of the optical device and acts on the optical device And a gain of the servo mechanism provided inside the optical device when the natural frequency in the rotation direction of the drive shaft is close to the frequency of the aerodynamic vibration applied to the optical device detected by the vibration sensor. A controller for performing the adjustment and increasing the damping ratio in the rotational direction of the drive shaft.

【0019】また、第10の発明による振動抑制装置
は、航空機に搭載する光学機器において、前記光学機器
の内部に設けられ、光学的視野を変化させる駆動軸と、
駆動軸に設けられ、駆動軸の回転運動を制御する駆動モ
ータと、駆動軸からの距離が変化するバランサと、バラ
ンサの駆動軸からの距離を変化させて駆動軸の回転方向
の慣性係数を変化させ駆動軸の回転方向の固有振動数を
変化させるサーボ機構と、駆動軸の回転方向にトルクを
負荷するバネと、バネの伸縮長を変化させて駆動軸の回
転方向の弾性係数を変化させ駆動軸の回転方向の固有振
動数を変化させるサーボ機構と、駆動軸の回転方向に減
衰力を負荷するダンパーと、ダンパーの減衰力を調節し
て駆動軸の回転方向の減衰係数を変化させ駆動軸の回転
方向の減衰比を変化させるサーボ機構と、光学機器の外
壁面に設けられ、光学機器にかかる空力的振動の周波数
を検出する振動センサと、光学機器内部に設けられ、駆
動軸の回転方向の固有振動数が振動センサで検出された
光学機器にかかる空力的振動の周波数に近接するときに
各サーボ機構のゲイン調節を行ない駆動軸の回転方向の
減衰比を増大させるコントローラとを備えたものであ
る。
A vibration suppression device according to a tenth aspect of the present invention is an optical device mounted on an aircraft, wherein the drive shaft is provided inside the optical device and changes an optical field of view.
A drive motor provided on the drive shaft to control the rotational movement of the drive shaft, a balancer whose distance from the drive shaft changes, and a change in the inertia coefficient of the drive shaft in the rotational direction by changing the distance of the balancer from the drive shaft A servo mechanism that changes the natural frequency of the drive shaft in the rotation direction, a spring that applies torque in the rotation direction of the drive shaft, and a spring that changes the elasticity of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring. A servo mechanism that changes the natural frequency in the rotation direction of the shaft, a damper that applies a damping force in the rotation direction of the drive shaft, and a drive shaft that changes the damping coefficient in the rotation direction of the drive shaft by adjusting the damping force of the damper A servo mechanism for changing the damping ratio in the rotation direction of the optical device, a vibration sensor provided on the outer wall surface of the optical device for detecting the frequency of aerodynamic vibration applied to the optical device, and a rotation direction of the drive shaft provided inside the optical device. of A controller for adjusting the gain of each servo mechanism and increasing the damping ratio in the rotational direction of the drive shaft when the frequency of the vibration approaches the frequency of the aerodynamic vibration applied to the optical device detected by the vibration sensor. is there.

【0020】[0020]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1を示す構成図であり、図において1は航空
機の一部、2は前記航空機に搭載された光学機器、3は
光学機器2内部に設けられた光学センサ、4は光学セン
サ3の光学的視野を変化させる駆動軸、5は駆動軸4の
回転運動を制御する駆動モータ、6はバランサ、7はバ
ランサ6の駆動軸4からの距離を変化させるサーボ機
構、8はサーボ機構7のゲイン調節を行なうコントロー
ラであり、アは光学機器2まわりの気流、イは気流アの
剥離点後流にできるカルマン渦対、キは航空機からの速
度情報の信号線、クはコントローラ8からサーボ機構7
への指令信号線である。図2はこの発明の実施の形態1
を示す部分構成図であり、図において1は図1と同じ航
空機の一部、2は図1と同じ光学機器、3は図1と同じ
光学センサ、4は図1と同じ駆動軸、5は図1と同じ駆
動モータ、6は図1と同じバランサ、7は図1と同じサ
ーボ機構、8は図1と同じコントローラであり、キは図
1と同じ航空機からの速度情報の信号線、クは図1と同
じコントローラ8からサーボ機構7への指令信号線であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 7 is a servo mechanism for changing the distance of the balancer 6 from the drive shaft 4, Reference numeral 8 denotes a controller for adjusting the gain of the servo mechanism 7; A is an airflow around the optical device 2; A is a Karman vortex pair formed downstream of the separation point of the airflow A; G is a signal line of speed information from an aircraft; Is the servo mechanism 7 from the controller 8
To the command signal line. FIG. 2 shows Embodiment 1 of the present invention.
1 is a part of the same aircraft as in FIG. 1, 2 is the same optical device as in FIG. 1, 3 is the same optical sensor as in FIG. 1, 4 is the same drive shaft as in FIG. 1, 5 is 1 is the same drive motor as in FIG. 1, 6 is the same balancer as in FIG. 1, 7 is the same servo mechanism as in FIG. 1, 8 is the same controller as in FIG. 1, and key is a signal line for speed information from the same aircraft as in FIG. Is a command signal line from the controller 8 to the servo mechanism 7 as in FIG.

【0021】図1において、駆動軸4に設けられたバラ
ンサ6の駆動軸4からの距離は駆動軸4の回転方向の慣
性係数を決定するパラメータの一つであるため、前記バ
ランサ6を図2のごとく駆動軸4からの距離を変化させ
ることにより、光学機器2の駆動軸4の回転方向の運動
方程式においては、数4のごとく慣性項が変化すること
になる。
In FIG. 1, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotation direction. By changing the distance from the drive shaft 4 as described above, in the equation of motion of the optical device 2 in the rotational direction of the drive shaft 4, the inertia term changes as shown in Expression 4.

【0022】[0022]

【数4】 (Equation 4)

【0023】そのため、駆動軸4の回転方向の慣性係数
は数5のごとく変化する。
For this reason, the inertia coefficient of the drive shaft 4 in the rotational direction changes as shown in Expression 5.

【0024】[0024]

【数5】 (Equation 5)

【0025】ゆえに、駆動軸4の回転方向の固有振動数
S1は数6のごとく変化する。
Therefore, the natural frequency f S1 in the rotation direction of the drive shaft 4 changes as shown in Equation 6.

【0026】[0026]

【数6】 (Equation 6)

【0027】駆動軸4の回転方向の固有振動数fS1の大
きさはサーボ機構7のゲイン調節で変化させるが、通常
飛行中はサーボ機構7のゲインを0にしておき、光学機
器2にかかる空力的振動の周波数fA が数2に示すサー
ボ機構7のゲイン0での駆動軸4の回転方向の振動数f
S に近接する際に、コントローラ8は信号線クを経由し
てサーボ機構7にゲインを変更する指令を与え、光学機
器2にかかる空力的振動の周波数fA に対して数12に
示す駆動軸4の回転方向の固有振動数fS1を十分離反さ
せる。なお光学機器2にかかる空力的振動の周波数fA
は、コントローラ8において、信号線キより得た航空機
の速度情報及び数7の演算式により推定計算するものと
する。
The magnitude of the natural frequency f S1 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0 and applied to the optical device 2. The frequency f A of the aerodynamic vibration is the frequency f in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 shown in Expression 2.
When approaching S , the controller 8 gives a command to change the gain to the servo mechanism 7 via the signal line C, and the drive shaft shown in Expression 12 with respect to the frequency f A of the aerodynamic vibration applied to the optical device 2. The natural frequency f S1 in the rotational direction of No. 4 is sufficiently separated. The frequency f A of the aerodynamic vibration applied to the optical device 2
Is estimated and calculated by the controller 8 using the speed information of the aircraft obtained from the signal line G and the arithmetic expression of Expression 7.

【0028】[0028]

【数7】 (Equation 7)

【0029】光学機器2にかかる空力的振動の周波数f
A から駆動軸4の回転方向の固有振動数fS1を十分離反
させることにより、両者の間での構造的な共振が回避さ
れ、光学機器2の駆動モータ4の制御系の周波数特性に
おいては、図22に示された共振周波数オでのゲインの
ピーク値カがなくなり、共振周波数オ付近での信号の発
振がなくなる。
The frequency f of the aerodynamic vibration applied to the optical device 2
By making the natural frequency f S1 in the rotational direction of the drive shaft 4 far from A, structural resonance between the two can be avoided, and in the frequency characteristic of the control system of the drive motor 4 of the optical device 2, The peak value of the gain at the resonance frequency e shown in FIG. 22 disappears, and the signal oscillation around the resonance frequency e disappears.

【0030】実施の形態2.図3はこの発明の実施の形
態2を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、9はバネ、7はバネ9の伸縮
長を変化させるサーボ機構、8はサーボ機構7のゲイン
調節を行なうコントローラであり、アは光学機器2まわ
りの気流、イは気流アの剥離点後流にできるカルマン渦
対、キは航空機からの速度情報の信号線、クはコントロ
ーラ8からサーボ機構7ヘの指令信号線である。図4は
この発明の実施の形態2を示す部分構成図であり、図に
おいて1は図3と同じ航空機の一部、2は図3と同じ光
学機器、3は図3と同じ光学センサ、4は図3と同じ駆
動軸、5は図3と同じ駆動モータ、9は図3と同じバ
ネ、7は図3と同じサーボ機構、8は図3と同じコント
ローラであり、キは図3と同じ航空機からの速度情報の
信号線、クは図3と同じコントローラ8からサーボ機構
7ヘの指令信号線である。
Embodiment 2 FIG. FIG. 3 is a configuration diagram showing Embodiment 2 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 9 is a spring, 7 is a servo mechanism for changing the expansion and contraction length of the spring 9, 8 is a servo mechanism. 7 is a controller for adjusting the gain of 7; A is an airflow around the optical device 2; A is a Karman vortex pair formed downstream of the separation point of the airflow A; G is a signal line of speed information from the aircraft; This is a command signal line to the servo mechanism 7. FIG. 4 is a partial configuration diagram showing Embodiment 2 of the present invention. In FIG. 4, 1 is a part of the same aircraft as FIG. 3, 2 is the same optical device as FIG. 3, 3 is the same optical sensor as FIG. 3 is the same drive shaft as in FIG. 3, 5 is the same drive motor as in FIG. 3, 9 is the same spring as in FIG. 3, 7 is the same servo mechanism as in FIG. 3, 8 is the same controller as in FIG. A signal line for speed information from the aircraft is a command signal line from the controller 8 to the servo mechanism 7 as in FIG.

【0031】図3において、駆動軸4に設けられたバネ
9の伸縮長は駆動軸4の回転方向の弾性係数を決定する
パラメータの一つであるため、前記バネ9を図4のごと
く伸縮長を変化させることにより、光学機器2の駆動軸
4の回転方向の運動方程式においては、数8のごとく弾
性項が変化することになる。
In FIG. 3, the expansion and contraction length of the spring 9 provided on the drive shaft 4 is one of the parameters for determining the elastic modulus of the drive shaft 4 in the rotation direction. Is changed, in the equation of motion of the rotation direction of the drive shaft 4 of the optical device 2, the elastic term changes as shown in Expression 8.

【0032】[0032]

【数8】 (Equation 8)

【0033】そのため、駆動軸4の回転方向の弾性係数
は数9のごとく変化する。
Therefore, the elastic modulus of the drive shaft 4 in the rotational direction changes as shown in the following equation (9).

【0034】[0034]

【数9】 (Equation 9)

【0035】ゆえに、駆動軸4の回転方向の固有振動数
S2は数10のごとく変化する。
Therefore, the natural frequency f S2 in the rotational direction of the drive shaft 4 changes as shown in Expression 10.

【0036】[0036]

【数10】 (Equation 10)

【0037】駆動軸4の回転方向の固有振動数fS2の大
きさはサーボ機構7のゲイン調節で変化させるが、通常
飛行中はサーボ機構7のゲインを0にしておき、光学機
器2にかかる空力的振動の周波数fA が数2に示すサー
ボ機構7のゲイン0での駆動軸4の回転方向の振動数f
S に近接する際に、コントローラ8は信号線クを経由し
てサーボ機構7にゲインを変更する指令を与え、光学機
器2にかかる空力的振動の周波数fA に対して数12に
示す駆動軸4の回転方向の固有振動数fS2を十分離反さ
せる。なお光学機器2にかかる空力的振動の周波数fA
は、コントローラ8において、信号線キより得た航空機
の速度情報及び数7の演算式により推定計算するものと
する。光学機器2にかかる空力的振動の周波数fA から
駆動軸4の回転方向の固有振動数fS2を十分離反させる
ことにより、両者の間での構造的な共振が回避され、光
学機器2の駆動モータ4の制御系の周波数特性において
は、図22に示された共振周波数オでのゲインのピーク
値カがなくなり、共振周波数オ付近での信号の発振がな
くなる。
The magnitude of the natural frequency f S2 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0 and applied to the optical device 2. The frequency f A of the aerodynamic vibration is the frequency f in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 shown in Expression 2.
When approaching S , the controller 8 gives a command to change the gain to the servo mechanism 7 via the signal line C, and the drive shaft shown in Expression 12 with respect to the frequency f A of the aerodynamic vibration applied to the optical device 2. The natural frequency f S2 in the rotational direction of No. 4 is sufficiently separated. The frequency f A of the aerodynamic vibration applied to the optical device 2
Is estimated and calculated by the controller 8 using the speed information of the aircraft obtained from the signal line G and the arithmetic expression of Expression 7. By causing the natural frequency f S2 in the rotational direction of the drive shaft 4 to be sufficiently separated from the frequency f A of the aerodynamic vibration applied to the optical device 2, structural resonance between the two is avoided, and the driving of the optical device 2 is performed. In the frequency characteristic of the control system of the motor 4, the peak value of the gain at the resonance frequency e shown in FIG. 22 disappears, and the signal oscillation near the resonance frequency e disappears.

【0038】実施の形態3.図5はこの発明の実施の形
態3を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、6はバランサ、9はバネ、7
はバランサ6の駆動軸4からの距離とバネ9の伸縮長を
変化させるサーボ機構、8はサーボ機構7のゲイン調節
を行なうコントローラであり、アは光学機器2まわりの
気流、イは気流アの剥離点後流にできるカルマン渦対、
キは航空機からの速度情報の信号線、クはコントローラ
8からサーボ機構7ヘの指令信号線である。図6はこの
発明の実施の形態3を示す部分構成図であり、図におい
て1は図5と同じ航空機の一部、2は図5と同じ光学機
器、3は図5と同じ光学センサ、4は図5と同じ駆動
軸、5は図5と同じ駆動モータ、6は図5と同じバラン
サ、9は図5と同じバネ、7は図5と同じサーボ機構、
8は図5と同じコントローラであり、キは図5と同じ航
空機からの速度情報の信号線、クは図5と同じコントロ
ーラ8からサーボ機構7ヘの指令信号線である。
Embodiment 3 FIG. 5 is a configuration diagram showing Embodiment 3 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 9 is a spring, 7
Is a servo mechanism for changing the distance of the balancer 6 from the drive shaft 4 and the length of expansion and contraction of the spring 9; 8 is a controller for adjusting the gain of the servo mechanism 7; Karman vortex pairs that can be created downstream of the separation point,
G is a signal line of speed information from the aircraft, and K is a command signal line from the controller 8 to the servo mechanism 7. FIG. 6 is a partial configuration diagram showing Embodiment 3 of the present invention, in which 1 is a part of the same aircraft as that of FIG. 5, 2 is the same optical device as that of FIG. 5, 3 is the same optical sensor as that of FIG. 5 is the same drive shaft as in FIG. 5, 5 is the same drive motor as in FIG. 5, 6 is the same balancer as in FIG. 5, 9 is the same spring as in FIG. 5, 7 is the same servo mechanism as in FIG.
Reference numeral 8 denotes the same controller as that of FIG. 5, and reference character K denotes a signal line of speed information from the same aircraft as that of FIG. 5, and reference character K denotes a command signal line from the controller 8 to the servo mechanism 7 same as that of FIG.

【0039】図5において、駆動軸4に設けられたバラ
ンサ6の駆動軸4からの距離は駆動軸4の回転方向の慣
性係数を決定するパラメータの一つであり、また駆動軸
4に設けられたバネ9の伸縮長は駆動軸4の回転方向の
弾性係数を決定するパラメータの一つであるため、前記
バランサ6を図6のごとく駆動軸4からの距離を変化さ
せ、またバネ9を図6のごとく伸縮長を変化させること
により、光学機器2の駆動軸4の回転方向の運動方程式
においては、数11のごとく慣性項および弾性項が変化
することになる。
In FIG. 5, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotational direction. Since the length of expansion and contraction of the spring 9 is one of the parameters that determine the elastic modulus of the drive shaft 4 in the rotational direction, the distance between the balancer 6 and the drive shaft 4 is changed as shown in FIG. By changing the expansion and contraction length as shown in 6, in the equation of motion of the rotation direction of the drive shaft 4 of the optical device 2, the inertia term and the elasticity term are changed as shown in Expression 11.

【0040】[0040]

【数11】 [Equation 11]

【0041】そのため、駆動軸4の回転方向の慣性係数
は数5のごとく、また弾性係数は数9のごとく変化す
る。ゆえに、駆動軸6の回転方向の固有振動数fS3は数
12のごとく変化する。
Therefore, the inertia coefficient in the rotation direction of the drive shaft 4 changes as shown in Equation 5, and the elastic coefficient changes as shown in Equation 9. Therefore, the natural frequency f S3 in the rotation direction of the drive shaft 6 changes as shown in Expression 12.

【0042】[0042]

【数12】 (Equation 12)

【0043】駆動軸4の回転方向の固有振動数fS3の大
きさはサーボ機構7のゲイン調節で変化させるが、通常
飛行中はサーボ機構7のゲインを0にしておき、光学機
器2にかかる空力的振動の周波数fA が数2に示すサー
ボ機構7のゲインでの駆動軸4の回転方向の振動数fS
に近接する際に、コントローラ8は信号線クを経由して
サーボ機構7にゲインを変更する指令を与え、光学機器
2にかかる空力的振動の周波数fA に対して数12に示
す駆動軸4の回転方向の固有振動数fS3を十分離反させ
る。なお光学機器2にかかる空力的振動の周波数fA
は、コントローラ8において、信号線キより得た航空機
の速度情報及び数7の演算式により推定計算するものと
する。光学機器2にかかる空力的振動の周波数fA から
駆動軸4の回転方向の固有振動数fS3を十分離反させる
ことにより、両者の間での構造的な共振が回避され、光
学機器2の駆動モータ5の制御系の周波数特性において
は、図22に示された共振周波数オでのゲインのピーク
値カがなくなり、共振周波数オ付近での信号の発振がな
くなる。
The magnitude of the natural frequency f S3 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0 and applied to the optical device 2. The frequency f S of the rotational direction of the drive shaft 4 at the gain of the servo mechanism 7 where the frequency f A of the aerodynamic vibration is expressed by the equation (2)
The controller 8 gives a command to change the gain to the servo mechanism 7 via the signal line C when approaching to the drive shaft 4 so that the frequency f A of the aerodynamic vibration applied to the optical device 2 is equal to The natural frequency f S3 in the rotation direction is sufficiently separated. The frequency f A of the aerodynamic vibration applied to the optical device 2
Is estimated and calculated by the controller 8 using the speed information of the aircraft obtained from the signal line G and the arithmetic expression of Expression 7. By causing the natural frequency f S3 in the rotational direction of the drive shaft 4 to be sufficiently separated from the frequency f A of the aerodynamic vibration applied to the optical device 2, structural resonance between the two is avoided, and the drive of the optical device 2 is performed. In the frequency characteristic of the control system of the motor 5, the peak value of the gain at the resonance frequency e shown in FIG. 22 disappears, and the oscillation of the signal near the resonance frequency e disappears.

【0044】実施の形態4.図7はこの発明の実施の形
態4を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、10はダンパー、7はダンパ
ー10の減衰力を変化させるサーボ機構、8はサーボ機
構7のゲイン調節を行なうコントローラであり、アは光
学機器2まわりの気流、イは気流アの剥離点後流にでき
るカルマン渦対、キは航空機からの速度情報の信号線、
クはコントローラ8からサーボ機構7への指令信号線で
ある。図8はこの発明の実施の形態4を示す部分構成図
であり、図において1は図7と同じ航空機の一部、2は
図7と同じ光学機器、2は図7と同じ光学センサ、3は
図7と同じ回転機構、4は図7と同じ駆動軸、5は図7
と同じ駆動モータ、10は図7と同じダンパー、7は図
7と同じサーボ機構、8は図7と同じコントローラであ
り、キは図7と同じ航空機からの速度情報の信号線、ク
は図7と同じコントローラ8からサーボ機構7への指令
信号線である。
Embodiment 4 FIG. FIG. 7 is a configuration diagram showing a fourth embodiment of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, Reference numeral 4 denotes a drive shaft for changing the optical field of view of the optical sensor 3, 5 a drive motor for controlling the rotational movement of the drive shaft 4, 10 a damper, 7 a servo mechanism for changing the damping force of the damper 10, and 8 a servo mechanism. 7 is a controller for adjusting the gain of 7; A is an air flow around the optical device 2; A is a Karman vortex pair formed downstream of the separation point of the air flow A; K is a signal line of speed information from the aircraft;
ク is a command signal line from the controller 8 to the servo mechanism 7. FIG. 8 is a partial configuration diagram showing Embodiment 4 of the present invention, in which 1 is a part of the same aircraft as in FIG. 7, 2 is the same optical device as in FIG. 7, 2 is the same optical sensor as in FIG. 7 is the same rotary mechanism as in FIG. 7, 4 is the same drive shaft as in FIG. 7, and 5 is FIG.
7 is the same damper as in FIG. 7, 7 is the same servo mechanism as in FIG. 7, 8 is the same controller as in FIG. 7, G is the signal line of speed information from the same aircraft as in FIG. 7 is a command signal line from the controller 8 to the servo mechanism 7 which is the same as 7.

【0045】図7において、駆動軸4に設けられたダン
パー10の減衰力は駆動軸4の回転方向の減衰係数を決
定するパラメータの一つであるため、前記ダンパー10
の減衰力を図8のごとく変化させることにより、光学機
器2の駆動軸4の回転方向の運動方程式においては、数
13のごとく減衰項が変化することになる。
In FIG. 7, the damping force of the damper 10 provided on the drive shaft 4 is one of the parameters for determining the damping coefficient of the drive shaft 4 in the rotational direction.
By changing the damping force of the optical device 2 as shown in FIG. 8, in the equation of motion in the rotational direction of the drive shaft 4 of the optical device 2, the damping term changes as shown in Expression 13.

【0046】[0046]

【数13】 (Equation 13)

【0047】そのため、駆動軸4の回転方向の減衰係数
は数14のごとく変化する。
For this reason, the damping coefficient of the drive shaft 4 in the rotation direction changes as shown in Expression 14.

【0048】[0048]

【数14】 [Equation 14]

【0049】ゆえに、駆動軸4の回転方向の減衰比ζS4
は数15のごとく変化する。
Therefore, the damping ratio in the rotational direction of the drive shaft 4 駆 動S4
Changes as shown in Expression 15.

【0050】[0050]

【数15】 (Equation 15)

【0051】駆動軸4の回転方向の減衰比ζS4の大きさ
はサーボ機構7のゲイン調節で変化させるが、通常飛行
中はサーボ機構7のゲインを0にしておき、光学機器2
にかかる空力的振動の周波数fA が数2に示すサーボ機
構7のゲイン0での駆動軸4の回転方向の振動数fS
近接する際に、コントローラ8は信号線クを経由してサ
ーボ機構7にゲインを上げる指令を与え減衰比ζS4を十
分大きくする。なお光学機器2にかかる空力的振動の周
波数fA は、コントローラ8において、信号線キより得
た航空機の速度情報及び数7の演算式により推定計算す
るものとする。駆動軸4の回転方向の減衰比ζS4を十分
大きくすることにより、駆動軸4の回転方向の固有振動
数と光学機器2にかかる空力的振動の周波数との間で生
じる構造的な共振が十分減衰され、光学機器2の駆動モ
ータ5の制御系の周波数特性においては、図22に示さ
れた共振周波数オでのゲインのピーク値カが十分緩和さ
れ、共振周波数オ付近での信号の発振がなくなる。
The magnitude of the rotational direction of the damping ratio zeta S4 of the drive shaft 4 is varied by the gain adjustment of the servo mechanism 7, during normal flight leave the gain of the servo mechanism 7 to 0, the optical apparatus 2
When the frequency f A of the aerodynamic vibration according to the formula (2) approaches the frequency f S in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 shown in Equation 2, the controller 8 performs servo control via the signal line c. sufficiently large damping ratio zeta S4 provides an instruction to increase the gain in the mechanism 7. Note that the frequency f A of the aerodynamic vibration applied to the optical device 2 is estimated and calculated by the controller 8 using the aircraft speed information obtained from the signal line G and the arithmetic expression of Expression 7. By sufficiently increasing the rotational direction of the damping ratio zeta S4 of the drive shaft 4, structural resonance occurring between the frequency of the aerodynamic vibrations according to the rotational direction of the natural frequency and the optics 2 of the drive shaft 4 is sufficiently In the frequency characteristic of the control system of the drive motor 5 of the optical device 2, the peak value of the gain at the resonance frequency e shown in FIG. 22 is sufficiently relaxed, and the oscillation of the signal near the resonance frequency e is reduced. Disappears.

【0052】実施の形態5.図9はこの発明の実施の形
態5を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、6はバランサ、9はバネ、1
0はダンパー、7はバランサ6の駆動軸4からの距離と
バネ9の伸縮長とダンパー10の減衰力を変化させるサ
ーボ機構、8はサーボ機構7のゲイン調節を行なうコン
トローラであり、アは光学機器2まわりの気流、イは気
流アの剥離点後流にできるカルマン渦対、キは航空機か
らの速度情報の信号線、クはコントローラ8からサーボ
機構7ヘの指令信号線である。図10はこの発明の実施
の形態5を示す部分構成図であり、図において1は図9
と同じ航空機の一部、2は図9と同じ光学機器、3は図
9と同じ光学センサ、3は図9と同じ回転機構、4は図
9と同じ駆動軸、5は図9と同じ駆動モータ、6は図9
と同じバランサ、9は図9と同じバネ、10は図9と同
じダンパー、7は図9と同じサーボ機構、8は図9と同
じコントローラであり、キは図9と同じ航空機からの速
度情報の信号線、クは図9と同じコントローラ8からサ
ーボ機構7への指令信号線である。
Embodiment 5 FIG. FIG. 9 is a configuration diagram showing Embodiment 5 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 9 is a spring, 1
0 is a damper, 7 is a servo mechanism for changing the distance of the balancer 6 from the drive shaft 4, the length of expansion and contraction of the spring 9, and the damping force of the damper 10. 8 is a controller for adjusting the gain of the servo mechanism 7. The air flow around the device 2, A is a Karman vortex pair formed downstream of the separation point of the air flow A, G is a signal line of speed information from the aircraft, and G is a command signal line from the controller 8 to the servo mechanism 7. FIG. 10 is a partial configuration diagram showing a fifth embodiment of the present invention.
9, 2 is the same optical device as in FIG. 9, 3 is the same optical sensor as in FIG. 9, 3 is the same rotating mechanism as in FIG. 9, 4 is the same drive shaft as in FIG. 9, and 5 is the same drive as in FIG. Motor, 6 is FIG.
9 is the same spring as in FIG. 9, 10 is the same damper as in FIG. 9, 7 is the same servo mechanism as in FIG. 9, 8 is the same controller as in FIG. 9, and K is the speed information from the same aircraft as in FIG. Are signal signal lines from the controller 8 to the servo mechanism 7 as in FIG.

【0053】図9において、駆動軸4に設けられたバラ
ンサ6の駆動軸4からの距離は駆動軸4の回転方向の慣
性係数を決定するパラメータの一つであり、また駆動軸
4に設けられたバネ9の伸縮長は駆動軸4の回転方向の
弾性係数を決定するパラメータの一つであり、駆動軸4
に設けられたダンパー10の減衰力は駆動軸4の回転方
向の減衰係数を決定するパラメータの一つであるため、
前記バランサ6を図10のごとく駆動軸4からの距離を
変化させ、またバネ9を図10のごとく伸縮長を変化さ
せ、更にダンパー10の減衰力を図10のごとく変化さ
せることにより、光学機器2の駆動軸4の回転方向の運
動方程式においては、数16のごとく慣性項と弾性項及
び減衰項が変化することになる。
In FIG. 9, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotation direction. The length of expansion and contraction of the spring 9 is one of the parameters for determining the elastic modulus of the drive shaft 4 in the rotational direction.
Since the damping force of the damper 10 provided in the above is one of the parameters for determining the damping coefficient of the drive shaft 4 in the rotation direction,
By changing the distance of the balancer 6 from the drive shaft 4 as shown in FIG. 10, changing the length of expansion and contraction of the spring 9 as shown in FIG. 10, and changing the damping force of the damper 10 as shown in FIG. In the equation of motion of the two drive shafts 4 in the rotation direction, the inertia term, the elasticity term, and the damping term change as shown in Expression 16.

【0054】[0054]

【数16】 (Equation 16)

【0055】そのため、駆動軸4の回転方向の慣性係数
は数17のごとく、また弾性係数は数18のごとく、ま
た減衰係数は数14のごとく変化する。
Therefore, the inertia coefficient of the drive shaft 4 in the rotational direction changes as shown in Equation 17, the elastic coefficient changes as shown in Equation 18, and the damping coefficient changes as shown in Equation 14.

【0056】[0056]

【数17】 [Equation 17]

【0057】[0057]

【数18】 (Equation 18)

【0058】ゆえに、駆動軸4の回転方向の減衰比ζS5
は数19のごとく変化する。
Therefore, the damping ratio of the drive shaft 4 in the rotational direction 駆 動S5
Changes as shown in Expression 19.

【0059】[0059]

【数19】 [Equation 19]

【0060】駆動軸4の回転方向の減衰比ζS5の大きさ
はサーボ機構7のゲイン調節で変化させるが、通常飛行
中はサーボ機構7のゲインを0にしておき、光学機器2
にかかる空力的振動の周波数fA が数2に示すサーボ機
構7のゲイン0での駆動軸4の回転方向の振動数fS
近接する際に、コントローラ8は信号線クを経由してサ
ーボ機構7にゲインを上げる指令を与え減衰比ζS5を十
分大きくする。なお光学機器2にかかる空力的振動の周
波数fA は、コントローラ8において、信号線キより得
た航空機の速度情報及び数7の演算式により推定計算す
るものとする。駆動軸4の回転方向の減衰比ζS5を十分
大きくすることにより、駆動軸4の回転方向の固有振動
数と光学機器2にかかる空力的振動の周波数との間で生
じる構造的な共振が十分減衰され、光学機器2の駆動モ
ータ5の制御系の周波数特性においては、図22に示さ
れた共振周波数オでのゲインのピーク値カが十分緩和さ
れ、共振周波数オ付近での信号の発振がなくなる。
[0060] magnitude of the rotational direction of the damping ratio zeta S5 of the drive shaft 4 is varied by the gain adjustment of the servo mechanism 7, during normal flight leave the gain of the servo mechanism 7 to 0, the optical apparatus 2
When the frequency f A of the aerodynamic vibration according to the formula (2) approaches the frequency f S in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 shown in Equation 2, the controller 8 performs servo control via the signal line c. sufficiently large damping ratio zeta S5 provides an instruction to increase the gain in the mechanism 7. Note that the frequency f A of the aerodynamic vibration applied to the optical device 2 is estimated and calculated by the controller 8 using the aircraft speed information obtained from the signal line G and the arithmetic expression of Expression 7. By sufficiently increasing the rotational direction of the damping ratio zeta S5 of the drive shaft 4, structural resonance occurring between the frequency of the aerodynamic vibrations according to the rotational direction of the natural frequency and the optics 2 of the drive shaft 4 is sufficiently In the frequency characteristic of the control system of the drive motor 5 of the optical device 2, the peak value of the gain at the resonance frequency e shown in FIG. 22 is sufficiently relaxed, and the oscillation of the signal near the resonance frequency e is reduced. Disappears.

【0061】実施の形態6.図11はこの発明の実施の
形態6を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、6はバランサ、7はバランサ
6の駆動軸4からの距離を変化させるサーボ機構、8は
サーボ機構7のゲイン調節を行なうコントローラ、11
は光学機器2の外壁面に設けられた振動センサであり、
光学機器アは光学機器2まわりの気流、イは気流アの剥
離点後流にできるカルマン渦対、クはコントローラ8か
らサーボ機構7ヘの指令信号線、ケは振動センサ11か
らの振動情報の信号線である。図12はこの発明の実施
の形態6を示す部分構成図であり、図において1は図1
1と同じ航空機の一部、2は図11と同じ光学機器、3
は図11と同じ光学センサ、4は図11と同じ駆動軸、
5は図11と同じ駆動モータ、6は図11と同じバラン
サ、7は図11と同じサーボ機構、8は図11と同じコ
ントローラであり、クは図11と同じコントローラ8か
らサーボ機構7への指令信号線、ケは図11と同じ振動
センサ11からの振動情報の信号線である。
Embodiment 6 FIG. FIG. 11 is a block diagram showing a sixth embodiment of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 7 is a servo mechanism for changing the distance of the balancer 6 from the drive shaft 4, 8 is a controller for adjusting the gain of the servo mechanism 7;
Is a vibration sensor provided on the outer wall surface of the optical device 2,
Optical device A is an airflow around the optical device 2, A is a Karman vortex pair formed downstream of the separation point of the airflow A, K is a command signal line from the controller 8 to the servo mechanism 7, and K is vibration information from the vibration sensor 11. This is a signal line. FIG. 12 is a partial configuration diagram showing Embodiment 6 of the present invention, in which 1 is the same as FIG.
Part of the same aircraft as 1, 2 is the same optical equipment as in FIG.
Is the same optical sensor as in FIG. 11, 4 is the same drive shaft as in FIG. 11,
5 is the same drive motor as in FIG. 11, 6 is the same balancer as in FIG. 11, 7 is the same servo mechanism as in FIG. 11, 8 is the same controller as in FIG. A command signal line and a signal line are signal lines for vibration information from the vibration sensor 11 as in FIG.

【0062】図11において、駆動軸4に設けられたバ
ランサ6の駆動軸4からの距離は駆動軸4の回転方向の
慣性係数を決定するパラメータの一つであるため、前記
バランサ6を図12のごとく駆動軸4からの距離を変化
させることにより、光学機器2の駆動軸4の回転方向の
運動方程式においては、数4のごとく慣性項が変化する
ことになる。そのため、駆動軸4の回転方向の慣性係数
は数5のごとく変化する。ゆえに、駆動軸4の回転方向
の固有振動数fS1は数6のごとく変化する。駆動軸4の
回転方向の固有振動数fS1の大きさはサーボ機構7のゲ
イン調節で変化させるが、通常飛行中はサーボ機構7の
ゲインを0にしておき、光学機器2にかかる空力的振動
の周波数fA が数2に示すサーボ機構7のゲイン0での
駆動軸4の回転方向の振動数fS に近接する際に、コン
トローラ8は信号線クを経由してサーボ機構7にゲイン
を変更する指令を与え、光学機器2にかかる空力的振動
の周波数fA に対して数12に示す駆動軸4の回転方向
の固有振動数fS1を十分離反させる。なお光学機器2に
かかる空力的振動の周波数fA に関しては、振動センサ
11により光学機器2にかかる空力的振動の周波数を実
測し信号線ケを経由して得た検出値を用いるものとす
る。光学機器2にかかる空力的振動の周波数fA から駆
動軸4の回転方向の固有振動数fS1を十分離反させるこ
とにより、両者の間での構造的な共振が回避され、光学
機器2の駆動モータ4の制御系の周波数特性において
は、図22に示された共振周波数オでのゲインのピーク
値カがなくなり、共振周波数オ付近での信号の発振がな
くなる。
In FIG. 11, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotation direction. By changing the distance from the drive shaft 4 as described above, in the equation of motion of the optical device 2 in the rotational direction of the drive shaft 4, the inertia term changes as shown in Expression 4. Therefore, the inertia coefficient of the drive shaft 4 in the rotation direction changes as shown in Expression 5. Therefore, the natural frequency f S1 in the rotational direction of the drive shaft 4 changes as shown in Expression 6. The magnitude of the natural frequency f S1 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0, and the aerodynamic vibration applied to the optical device 2 is set. When the frequency f A approaches the frequency f S in the rotational direction of the drive shaft 4 at the gain 0 of the servo mechanism 7 shown in Equation 2, the controller 8 gives the gain to the servo mechanism 7 via a signal line. A change command is given, and the natural frequency f S1 in the rotational direction of the drive shaft 4 shown in Expression 12 is sufficiently deviated from the frequency f A of the aerodynamic vibration applied to the optical device 2. As for the frequency f A of the aerodynamic vibration applied to the optical device 2, a detection value obtained by actually measuring the frequency of the aerodynamic vibration applied to the optical device 2 by the vibration sensor 11 and passing through the signal line is used. By making the natural frequency f S1 in the rotational direction of the drive shaft 4 sufficiently far from the frequency f A of the aerodynamic vibration applied to the optical device 2, structural resonance between the two can be avoided, and the driving of the optical device 2 can be prevented. In the frequency characteristic of the control system of the motor 4, the peak value of the gain at the resonance frequency e shown in FIG. 22 disappears, and the signal oscillation near the resonance frequency e disappears.

【0063】実施の形態7.図13はこの発明の実施の
形態7を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、9はバネ、7はバネ9の伸縮
長を変化させるサーボ機構、8はサーボ機構7のゲイン
調節を行なうコントローラ、11は光学機器2の外壁面
に設けられた振動センサであり、アは光学機器2まわり
の気流、イは気流アの剥離点後流にできるカルマン渦
対、クはコントローラ8からサーボ機構7ヘの指令信号
線、ケは振動センサ11からの振動情報の信号線であ
る。図14はこの発明の実施の形態7を示す部分構成図
であり、図において1は図13と同じ航空機の一部、2
は図13と同じ光学機器、3は図13と同じ光学セン
サ、4は図13と同じ駆動軸、5は図13と同じ駆動モ
ータ、9は図13と同じバネ、7は図13と同じサーボ
機構、8は図13と同じコントローラであり、クは図1
3と同じコントローラ8からサーボ機構7への指令信号
線、ケは図13と同じ振動センサ11からの振動情報の
信号線である。
Embodiment 7 FIG. FIG. 13 is a configuration diagram showing a seventh embodiment of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 9 is a spring, 7 is a servo mechanism for changing the expansion and contraction length of the spring 9, 8 is a servo mechanism. 7 is a controller for adjusting the gain, 11 is a vibration sensor provided on the outer wall surface of the optical device 2, a is an airflow around the optical device 2, a is a Karman vortex pair formed downstream of the separation point of the airflow a, Is a command signal line from the controller 8 to the servo mechanism 7, and is a signal line for vibration information from the vibration sensor 11. FIG. 14 is a partial configuration diagram showing Embodiment 7 of the present invention, in which 1 is a part of the same aircraft as FIG.
13 is the same optical device as in FIG. 13, 3 is the same optical sensor as in FIG. 13, 4 is the same drive shaft as in FIG. 13, 5 is the same drive motor as in FIG. 13, 9 is the same spring as in FIG. 13, and 7 is the same servo as in FIG. The mechanism 8 is the same controller as in FIG.
Reference numeral 3 denotes a command signal line from the controller 8 to the servo mechanism 7, and reference numeral 3 denotes a vibration information signal line from the vibration sensor 11 as in FIG.

【0064】図13において、駆動軸4に設けられたバ
ネ9の伸縮長は駆動軸4の回転方向の弾性係数を決定す
るパラメータの一つであるため、前記バネ9を図14の
ごとく伸縮長を変化させることにより、光学機器2の駆
動軸4の回転方向の運動方程式においては、数8のごと
く弾性項が変化することになる。そのため、駆動軸4の
回転方向の弾性係数は数9のごとく変化する。ゆえに、
駆動軸4の回転方向の固有振動数fS2は数10のごとく
変化する。駆動軸4の回転方向の固有振動数fS2の大き
さはサーボ機構7のゲイン調節で変化させるが、通常飛
行中はサーボ機構7のゲインを0にしておき、光学機器
2にかかる空力的振動の周波数fA が数2に示すサーボ
機構7のゲイン0での駆動軸4の回転方向の振動数fS
に近接する際に、コントローラ8は信号線クを経由して
サーボ機構7にゲインを変更する指令を与え、光学機器
2にかかる空力的振動の周波数fA に対して数12に示
す駆動軸4の回転方向の固有振動数fS2を十分離反させ
る。なお光学機器2にかかる空力的振動の周波数fA
関しては、振動センサ11により光学機器2にかかる空
力的振動の周波数を実測し信号線ケを経由して得た検出
値を用いるものとする。光学機器2にかかる空力的振動
の周波数fA から駆動軸4の回転方向の固有振動数fS2
を十分離反させることにより、両者の間での構造的な共
振が回避され、光学機器2の駆動モータ4の制御系の周
波数特性においては、図22に示された共振周波数オで
のゲインのピーク値カがなくなり、共振周波数オ付近で
の信号の発振がなくなる。
In FIG. 13, the expansion and contraction length of the spring 9 provided on the drive shaft 4 is one of the parameters for determining the elastic modulus of the drive shaft 4 in the rotation direction. Is changed, in the equation of motion of the rotation direction of the drive shaft 4 of the optical device 2, the elastic term changes as shown in Expression 8. Therefore, the elastic modulus of the drive shaft 4 in the rotation direction changes as shown in Expression 9. therefore,
The natural frequency f S2 in the rotation direction of the drive shaft 4 changes as shown in Expression 10. The magnitude of the natural frequency f S2 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0, and the aerodynamic vibration applied to the optical device 2 is set. frequency f a frequency of the rotating direction of the drive shaft 4 of the gain 0 in the servo mechanism 7 shown in Formula 2 f S
The controller 8 gives a command to change the gain to the servo mechanism 7 via the signal line C when approaching to the drive shaft 4 so that the frequency f A of the aerodynamic vibration applied to the optical device 2 is equal to The natural frequency f S2 in the rotation direction is sufficiently separated. As for the frequency f A of the aerodynamic vibration applied to the optical device 2, a detection value obtained by actually measuring the frequency of the aerodynamic vibration applied to the optical device 2 by the vibration sensor 11 and passing through the signal line is used. The natural frequency f S2 in the rotation direction of the drive shaft 4 is calculated from the frequency f A of the aerodynamic vibration applied to the optical device 2.
, The structural resonance between them is avoided, and the frequency characteristic of the control system of the drive motor 4 of the optical device 2 shows the gain peak at the resonance frequency e shown in FIG. There is no value, and signal oscillation around the resonance frequency e is eliminated.

【0065】実施の形態8.図15はこの発明の実施の
形態8を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、6はバランサ、9はバネ、7
はバランサ6の駆動軸4からの距離とバネ9の伸縮長を
変化させるサーボ機構、8はサーボ機構7のゲイン調節
を行なうコントローラ、11は光学機器2の外壁面に設
けられた振動センサであり、アは光学機器2まわりの気
流、イは気流アの剥離点後流にできるカルマン渦対、キ
は航空機からの速度情報の信号線、クはコントローラ8
からサーボ機構7ヘの指令信号線、ケは振動センサ11
からの振動情報の信号線である。図16はこの発明の実
施の形態8を示す部分構成図であり、図において1は図
15と同じ航空機の一部、2は図15と同じ光学機器、
3は図15と同じ光学センサ、4は図15と同じ駆動
軸、5は図15と同じ駆動モータ、6は図15と同じバ
ランサ、9は図15と同じバネ、7は図15と同じサー
ボ機構、8は図15と同じコントローラであり、クは図
15と同じコントローラ8からサーボ機構7ヘの指令信
号線、ケは図15と同じ振動センサ11からの振動情報
の信号線である。
Embodiment 8 FIG. FIG. 15 is a configuration diagram showing Embodiment 8 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 9 is a spring, 7
Is a servo mechanism for changing the distance of the balancer 6 from the drive shaft 4 and the length of expansion and contraction of the spring 9, 8 is a controller for adjusting the gain of the servo mechanism 7, and 11 is a vibration sensor provided on the outer wall surface of the optical device 2. A is an airflow around the optical device 2, A is a Karman vortex pair formed downstream of the separation point of the airflow A, K is a signal line of speed information from an aircraft, and K is a controller 8.
Command signal line from the servo mechanism 7 to the vibration sensor 11
This is a signal line for the vibration information from. FIG. 16 is a partial configuration diagram showing Embodiment 8 of the present invention, in which 1 is a part of the same aircraft as in FIG. 15, 2 is the same optical device as in FIG.
3 is the same optical sensor as in FIG. 15, 4 is the same drive shaft as in FIG. 15, 5 is the same drive motor as in FIG. 15, 6 is the same balancer as in FIG. 15, 9 is the same spring as in FIG. 15, and 7 is the same servo as in FIG. 15 is the same controller as in FIG. 15, and ク is a command signal line from the controller 8 to the servo mechanism 7 as in FIG. 15, and ケ is a signal line for vibration information from the vibration sensor 11 as in FIG.

【0066】図15において、駆動軸4に設けられたバ
ランサ6の駆動軸4からの距離は駆動軸4の回転方向の
慣性係数を決定するパラメータの一つであり、また駆動
軸4に設けられたバネ9の伸縮長は駆動軸4の回転方向
の弾性係数を決定するパラメータの一つであるため、前
記バランサ6を図16のごとく駆動軸4からの距離を変
化させ、またバネ9を図6のごとく伸縮長を変化させる
ことにより、光学機器2の駆動軸4の回転方向の運動方
程式においては、数11のごとく慣性項および弾性項が
変化することになる。そのため、駆動軸4の回転方向の
慣性係数は数5のごとく、また弾性係数は数9のごとく
変化する。ゆえに、駆動軸6の回転方向の固有振動数f
S3は数12のごとく変化する。駆動軸4の回転方向の固
有振動数fS3の大きさはサーボ機構7のゲイン調節で変
化させるが、通常飛行中はサーボ機構7のゲインを0に
しておき、光学機器2にかかる空力的振動の周波数fA
が数2に示すサーボ機構7のゲイン0での駆動軸4の回
転方向の振動数fS に近接する際に、コントローラ8は
信号線クを経由してサーボ機構7にゲインを変更する指
令を与え、光学機器2にかかる空力的振動の周波数fA
に対して数12に示す駆動軸4の回転方向の固有振動数
S3を十分離反させる。なお光学機器2にかかる空力的
振動の周波数fA に関しては、振動センサ11により光
学機器2にかかる空力的振動の周波数を実測し信号線ケ
を経由して得た検出値を用いるものとする。光学機器2
にかかる空力的振動の周波数fA から駆動軸4の回転方
向の固有振動数fS3を十分離反させることにより、両者
の間での構造的な共振が回避され、光学機器2の駆動モ
ータ5の制御系の周波数特性においては、図22に示さ
れた共振周波数オでのゲインのピーク値カがなくなり、
共振周波数オ付近での信号の発振がなくなる。
In FIG. 15, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotational direction. Since the length of expansion and contraction of the spring 9 is one of the parameters for determining the elastic modulus of the drive shaft 4 in the rotation direction, the distance between the balancer 6 and the drive shaft 4 is changed as shown in FIG. By changing the expansion and contraction length as shown in 6, in the equation of motion of the rotation direction of the drive shaft 4 of the optical device 2, the inertia term and the elasticity term are changed as shown in Expression 11. Therefore, the inertia coefficient in the rotation direction of the drive shaft 4 changes as shown in Equation 5, and the elastic coefficient changes as shown in Equation 9. Therefore, the natural frequency f in the rotation direction of the drive shaft 6
S3 changes as shown in Expression 12. The magnitude of the natural frequency f S3 in the rotation direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0, and the aerodynamic vibration applied to the optical device 2 is set. Frequency f A
Is approaching the frequency f S in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 shown in Equation 2, the controller 8 sends a command to the servo mechanism 7 to change the gain via the signal line C. The frequency f A of the aerodynamic vibration applied to the optical device 2
In contrast, the natural frequency f S3 in the rotational direction of the drive shaft 4 shown in Expression 12 is sufficiently separated. As for the frequency f A of the aerodynamic vibration applied to the optical device 2, a detection value obtained by actually measuring the frequency of the aerodynamic vibration applied to the optical device 2 by the vibration sensor 11 and passing through the signal line is used. Optical equipment 2
The natural frequency f S3 in the rotational direction of the drive shaft 4 is sufficiently deviated from the frequency f A of the aerodynamic vibration according to the above, whereby structural resonance between the two is avoided, and the drive motor 5 of the optical device 2 In the frequency characteristic of the control system, the peak value of the gain at the resonance frequency e shown in FIG.
Signal oscillation around the resonance frequency e is eliminated.

【0067】実施の形態9.図17はこの発明の実施の
形態9を示す構成図であり、図において1は航空機の一
部、2は前記航空機に搭載された光学機器、3は光学機
器2内部に設けられた光学センサ、4は光学センサ3の
光学的視野を変化させる駆動軸、5は駆動軸4の回転運
動を制御する駆動モータ、10はダンパー、7はダンパ
ー10の減衰力を変化させるサーボ機構、8はサーボ機
構7のゲイン調節を行なうコントローラ、11は光学機
器2の外壁面に設けられた振動センサであり、アは光学
機器2まわりの気流、イは気流アの剥離点後流にできる
カルマン渦対、クはコントローラ8からサーボ機構7へ
の指令信号線、ケは振動センサ11からの振動情報の信
号線である。図18はこの発明の実施の形態9を示す部
分構成図であり、図において1は図17と同じ航空機の
一部、2は図17と同じ光学機器、2は図17と同じ光
学センサ、3は図17と同じ回転機構、4は図17と同
じ駆動軸、5は図17と同じ駆動モータ、10は図17
と同じダンパー、7は図17と同じサーボ機構、8は図
17と同じコントローラであり、クは図17と同じコン
トローラ8からサーボ機構7への指令信号線、ケは図1
7と同じ振動センサ11からの振動情報の信号線であ
る。
Embodiment 9 FIG. 17 is a configuration diagram showing a ninth embodiment of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, Reference numeral 4 denotes a drive shaft for changing the optical field of view of the optical sensor 3, 5 a drive motor for controlling the rotational movement of the drive shaft 4, 10 a damper, 7 a servo mechanism for changing the damping force of the damper 10, and 8 a servo mechanism. 7 is a controller for adjusting the gain, 11 is a vibration sensor provided on the outer wall surface of the optical device 2, a is an airflow around the optical device 2, a is a Karman vortex pair formed downstream of the separation point of the airflow a, Is a command signal line from the controller 8 to the servo mechanism 7, and is a signal line for vibration information from the vibration sensor 11. FIG. 18 is a partial configuration diagram showing a ninth embodiment of the present invention, in which 1 is a part of the same aircraft as in FIG. 17, 2 is the same optical device as in FIG. 17, 2 is the same optical sensor as in FIG. 17 is the same rotation mechanism as in FIG. 17, 4 is the same drive shaft as in FIG. 17, 5 is the same drive motor as in FIG. 17, and 10 is FIG.
17 is the same servo mechanism as in FIG. 17, 8 is the same controller as in FIG. 17, 17 is a command signal line from the controller 8 to the servo mechanism 7 as in FIG.
7 is a signal line of vibration information from the same vibration sensor 11 as FIG.

【0068】図17において、駆動軸4に設けられたダ
ンパー10の減衰力は駆動軸4の回転方向の減衰係数を
決定するパラメータの一つであるため、前記ダンパー1
0の減衰力を図18のごとく変化させることにより、光
学機器2の駆動軸4の回転方向の運動方程式において
は、数13のごとく減衰項が変化することになる。その
ため、駆動軸4の回転方向の減衰係数は数14のごとく
変化する。ゆえに、駆動軸4の回転方向の減衰比ζS4
数15のごとく変化する。駆動軸4の回転方向の減衰比
ζS4の大きさはサーボ機構7のゲイン調節で変化させる
が、通常飛行中はサーボ機構7のゲインを0にしてお
き、光学機器2にかかる空力的振動の周波数fA が数2
に示すサーボ機構7のゲイン0での駆動軸4の回転方向
の振動数fSに近接する際に、コントローラ8は信号線
クを経由してサーボ機構7にゲインを上げる指令を与え
減衰比ζS4を十分大きくする。なお光学機器2にかかる
空力的振動の周波数fA に関しては、振動センサ11に
より光学機器2にかかる空力的振動の周波数を実測し信
号線ケを経由して得た検出値を用いるものとする。駆動
軸4の回転方向の減衰比ζS4を十分大きくすることによ
り、駆動軸4の回転方向の固有振動数と光学機器2にか
かる空力的振動の周波数との間で生じる構造的な共振が
十分減衰され、光学機器2の駆動モータ5の制御系の周
波数特性においては、図22に示された共振周波数オで
のゲインのピーク値カが十分緩和され、共振周波数オ付
近での信号の発振がなくなる。
In FIG. 17, the damping force of the damper 10 provided on the drive shaft 4 is one of the parameters for determining the damping coefficient of the drive shaft 4 in the rotation direction.
By changing the damping force of 0 as shown in FIG. 18, in the equation of motion of the drive shaft 4 of the optical device 2 in the rotation direction, the damping term changes as shown in Expression 13. Therefore, the damping coefficient of the drive shaft 4 in the rotation direction changes as shown in Expression 14. Thus, the rotation direction of the damping ratio zeta S4 of the drive shaft 4 is changed as the number 15 of. The magnitude of the damping ratio ζ S4 in the rotational direction of the drive shaft 4 is changed by adjusting the gain of the servo mechanism 7, but during normal flight, the gain of the servo mechanism 7 is set to 0 to reduce the aerodynamic vibration applied to the optical device 2. Frequency f A is Equation 2
When approaching the frequency f S in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 as shown in the following, the controller 8 gives a command to increase the gain to the servo mechanism 7 via a signal line 減 衰 and the damping ratio ζ Make S4 large enough. As for the frequency f A of the aerodynamic vibration applied to the optical device 2, a detection value obtained by actually measuring the frequency of the aerodynamic vibration applied to the optical device 2 by the vibration sensor 11 and passing through the signal line is used. By sufficiently increasing the rotational direction of the damping ratio zeta S4 of the drive shaft 4, structural resonance occurring between the frequency of the aerodynamic vibrations according to the rotational direction of the natural frequency and the optics 2 of the drive shaft 4 is sufficiently In the frequency characteristic of the control system of the drive motor 5 of the optical device 2, the peak value of the gain at the resonance frequency e shown in FIG. 22 is sufficiently relaxed, and the oscillation of the signal near the resonance frequency e is reduced. Disappears.

【0069】実施の形態10.図19はこの発明の実施
の形態10を示す構成図であり、図において1は航空機
の一部、2は前記航空機に搭載された光学機器、3は光
学機器2内部に設けられた光学センサ、4は光学センサ
3の光学的視野を変化させる駆動軸、5は駆動軸4の回
転運動を制御する駆動モータ、6はバランサ、9はバ
ネ、10はダンパー、7はバランサ6の駆動軸4からの
距離とバネ9の伸縮長とダンパー10の減衰力を変化さ
せるサーボ機構、8はサーボ機構7のゲイン調節を行な
うコントローラ、11は光学機器2の外壁面に設けられ
た振動センサであり、アは光学機器2まわりの気流、イ
は気流アの剥離点後流にできるカルマン渦対、クはコン
トローラ8からサーボ機構7への指令信号線、ケは振動
センサ11からの振動情報の信号線である。図20はこ
の発明の実施の形態10を示す部分構成図であり、図に
おいて1は図19と同じ航空機の一部、2は図19と同
じ光学機器、3は図19と同じ光学センサ、3は図19
と同じ回転機構、4は図19と同じ駆動軸、5は図19
と同じ駆動モータ、6は図19と同じバランサ、9は図
19と同じバネ、10は図19と同じダンパー、7は図
19と同じサーボ機構、8は図19と同じコントローラ
であり、クは図19と同じコントローラ8からサーボ機
構7への指令信号線、ケは図19と同じ振動センサ11
からの振動情報の信号線である。
Embodiment 10 FIG. FIG. 19 is a configuration diagram showing Embodiment 10 of the present invention, in which 1 is a part of an aircraft, 2 is an optical device mounted on the aircraft, 3 is an optical sensor provided inside the optical device 2, 4 is a drive shaft for changing the optical field of view of the optical sensor 3, 5 is a drive motor for controlling the rotational movement of the drive shaft 4, 6 is a balancer, 9 is a spring, 10 is a damper, and 7 is a drive shaft 4 of the balancer 6. Is a servo mechanism for changing the distance of the spring 9, the expansion and contraction length of the spring 9, and the damping force of the damper 10, 8 is a controller for adjusting the gain of the servo mechanism 7, and 11 is a vibration sensor provided on the outer wall surface of the optical device 2. Is a pair of Karman vortices that can be generated downstream of the separation point of the air flow a, A is a command signal line from the controller 8 to the servo mechanism 7, and D is a signal line of vibration information from the vibration sensor 11. is there. 20 is a partial configuration diagram showing Embodiment 10 of the present invention, in which 1 is a part of the same aircraft as in FIG. 19, 2 is the same optical device as in FIG. 19, 3 is the same optical sensor as in FIG. Is FIG.
19 is the same drive shaft as in FIG. 19, and 5 is the same drive shaft as in FIG.
19, the same balancer as FIG. 19, 9 the same spring as FIG. 19, 10 the same damper as FIG. 19, 7 the same servo mechanism as FIG. 19, and 8 the same controller as FIG. Command signal lines from the controller 8 to the servo mechanism 7 are the same as those in FIG.
This is a signal line for the vibration information from.

【0070】図19において、駆動軸4に設けられたバ
ランサ6の駆動軸4からの距離は駆動軸4の回転方向の
慣性係数を決定するパラメータの一つであり、また駆動
軸4に設けられたバネ9の伸縮長は駆動軸4の回転方向
の弾性係数を決定するパラメータの一つであり、駆動軸
4に設けられたダンパー10の減衰力は駆動軸4の回転
方向の減衰係数を決定するパラメータの一つであるた
め、前記バランサ6を図20のごとく駆動軸4からの距
離を変化させ、またバネ9を図20のごとく伸縮長を変
化させ、更にダンパー10の減衰力を図20のごとく変
化させることにより、光学機器2の駆動軸4の回転方向
の運動方程式においては、数16のごとく慣性項と弾性
項及び減衰項が変化することになる。そのため、駆動軸
4の回転方向の慣性係数は数17のごとく、また弾性係
数は数18のごとく、また減衰係数は数14のごとく変
化する。ゆえに、駆動軸6の回転方向の減衰比ζS5は数
19のごとく変化する。駆動軸4の回転方向の減衰比ζ
S4の大きさはサーボ機構7のゲイン調節で変化させる
が、通常飛行中はサーボ機構7のゲインを0にしてお
き、光学機器2にかかる空力的振動の周波数fA が数2
に示すサーボ機構7のゲイン0での駆動軸4の回転方向
の振動数fS に近接する際に、コントローラ8は信号線
クを経由してサーボ機構7にゲインを上げる指令を与え
減衰比ζS4を十分大きくする。なお光学機器2にかかる
空力的振動の周波数fA に関しては、振動センサ11に
より光学機器2にかかる空力的振動の周波数を実測し信
号線ケを経由して得た検出値を用いるものとする。駆動
軸4の回転方向の減衰比ζS5を十分大きくすることによ
り、駆動軸4の回転方向の固有振動数と光学機器2にか
かる空力的振動の周波数との間で生じる構造的な共振が
十分減衰され、光学機器2の駆動モータ5の制御系の周
波数特性においては、図22に示された共振周波数オで
のゲインのピーク値カが十分緩和され、共振周波数オ付
近での信号の発振がなくなる。
In FIG. 19, the distance of the balancer 6 provided on the drive shaft 4 from the drive shaft 4 is one of the parameters for determining the inertia coefficient of the drive shaft 4 in the rotation direction. The expansion and contraction length of the spring 9 is one of the parameters for determining the elastic modulus of the drive shaft 4 in the rotation direction, and the damping force of the damper 10 provided on the drive shaft 4 determines the damping coefficient of the drive shaft 4 in the rotation direction. 20, the distance between the balancer 6 and the drive shaft 4 is changed as shown in FIG. 20, the length of the spring 9 is changed as shown in FIG. 20, and the damping force of the damper 10 is reduced as shown in FIG. Thus, in the equation of motion of the optical device 2 in the rotational direction of the drive shaft 4, the inertia term, the elasticity term, and the damping term change as shown in Expression 16. Therefore, the inertia coefficient of the drive shaft 4 in the rotational direction changes as shown in Equation 17, the elastic coefficient changes as shown in Equation 18, and the damping coefficient changes as shown in Equation 14. Thus, the rotation direction of the damping ratio zeta S5 of the drive shaft 6 is changed as in Equation 19. Damping ratio in the rotation direction of the drive shaft 4 ζ
The size of the S4, vary the gain adjustment of the servo mechanism 7, but during normal flight leave the gain of the servo mechanism 7 to 0, the frequency f A of the aerodynamic vibrations according to the optical device 2 Number 2
When approaching the frequency f S in the rotational direction of the drive shaft 4 at a gain of 0 of the servo mechanism 7 as shown in the following, the controller 8 gives a command to increase the gain to the servo mechanism 7 via a signal line 減 衰 and the damping ratio ζ Make S4 large enough. As for the frequency f A of the aerodynamic vibration applied to the optical device 2, a detection value obtained by actually measuring the frequency of the aerodynamic vibration applied to the optical device 2 by the vibration sensor 11 and passing through the signal line is used. By sufficiently increasing the rotational direction of the damping ratio zeta S5 of the drive shaft 4, structural resonance occurring between the frequency of the aerodynamic vibrations according to the rotational direction of the natural frequency and the optics 2 of the drive shaft 4 is sufficiently In the frequency characteristic of the control system of the drive motor 5 of the optical device 2, the peak value of the gain at the resonance frequency e shown in FIG. 22 is sufficiently relaxed, and the oscillation of the signal near the resonance frequency e is reduced. Disappears.

【0071】[0071]

【発明の効果】第1の発明によれば、航空機に搭載する
光学機器2において、前記光学機器2の駆動軸4の回転
方向の慣性係数を変えることにより、駆動軸4の回転方
向の固有振動数を光学機器2にかかる空力的振動の周波
数から十分離反させ、両者の間での構造的な共振を抑制
することができる。
According to the first aspect of the invention, in the optical device 2 mounted on an aircraft, the natural vibration of the drive shaft 4 in the rotational direction is changed by changing the inertia coefficient of the drive shaft 4 of the optical device 2 in the rotational direction. The number can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0072】また、第2の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の弾性係数を変えることにより、駆動軸4の回
転方向の固有振動数を光学機器2にかかる空力的振動の
周波数から十分離反させ、両者の間での構造的な共振を
抑制することができる。
According to the second aspect, in the optical device 2 mounted on an aircraft, the natural vibration of the drive shaft 4 in the rotational direction is changed by changing the elastic coefficient of the drive shaft 4 of the optical device 2 in the rotational direction. The number can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0073】また、第3の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の慣性係数及び弾性係数を変えることにより、
駆動軸4の回転方向の固有振動数を光学機器2にかかる
空力的振動の周波数から十分離反させ、両者の間での構
造的な共振を抑制することができる。
According to the third aspect of the present invention, in the optical device 2 mounted on an aircraft, the inertia coefficient and the elastic coefficient in the rotation direction of the drive shaft 4 of the optical device 2 are changed.
The natural frequency in the rotation direction of the drive shaft 4 can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0074】また、第4の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の減衰係数を変えることにより、駆動軸4の回
転方向の減衰比を増大させ、駆動軸4の回転方向の固有
振動数と光学機器2にかかる空力的振動の周波数との両
者の間で生じる構造的な共振を十分減衰することができ
る。
According to the fourth aspect of the present invention, in the optical device 2 mounted on an aircraft, the damping coefficient in the rotation direction of the drive shaft 4 of the optical device 2 is changed to thereby provide the attenuation ratio of the drive shaft 4 in the rotation direction. And the structural resonance occurring between the natural frequency of the drive shaft 4 in the rotation direction and the frequency of the aerodynamic vibration applied to the optical device 2 can be sufficiently attenuated.

【0075】また、第5の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の慣性係数と弾性係数及び減衰係数を変えるこ
とにより、駆動軸4の回転方向の減衰比を増大させ、駆
動軸4の回転方向の固有振動数と光学機器2にかかる空
力的振動の周波数との両者の間で生じる構造的な共振を
十分減衰することができる。
According to the fifth aspect, in the optical device 2 mounted on an aircraft, the inertia coefficient, the elastic coefficient, and the damping coefficient of the optical device 2 in the rotation direction of the drive shaft 4 are changed, so that the drive shaft 4 , The structural resonance occurring between the natural frequency of the drive shaft 4 in the rotational direction and the frequency of the aerodynamic vibration applied to the optical device 2 can be sufficiently attenuated.

【0076】また、第6の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の慣性係数を変えることにより、駆動軸4の回
転方向の固有振動数を光学機器2にかかる空力的振動の
周波数から十分離反させ、両者の間での構造的な共振を
抑制することができる。
According to the sixth aspect of the present invention, in the optical device 2 mounted on an aircraft, the natural vibration of the drive shaft 4 in the rotational direction is changed by changing the inertia coefficient in the rotational direction of the drive shaft 4 of the optical device 2. The number can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0077】また、第7の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の弾性係数を変えることにより、駆動軸4の回
転方向の固有振動数を光学機器2にかかる空力的振動の
周波数から十分離反させ、両者の間での構造的な共振を
抑制することができる。
According to the seventh aspect, in the optical device 2 mounted on an aircraft, the natural vibration of the drive shaft 4 in the rotational direction is changed by changing the elastic coefficient of the drive shaft 4 of the optical device 2 in the rotational direction. The number can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0078】また、第8の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の慣性係数及び弾性係数を変えることにより、
駆動軸4の回転方向の固有振動数を光学機器2にかかる
空力的振動の周波数から十分離反させ、両者の間での構
造的な共振を抑制することができる。
According to the eighth aspect of the present invention, in the optical device 2 mounted on an aircraft, the inertia coefficient and the elastic coefficient in the rotation direction of the drive shaft 4 of the optical device 2 are changed.
The natural frequency in the rotation direction of the drive shaft 4 can be sufficiently deviated from the frequency of the aerodynamic vibration applied to the optical device 2, and the structural resonance between the two can be suppressed.

【0079】また、第9の発明によれば、航空機に搭載
する光学機器2において、前記光学機器2の駆動軸4の
回転方向の減衰係数を変えることにより、駆動軸4の回
転方向の減衰比を増大させ、駆動軸4の回転方向の固有
振動数と光学機器2にかかる空力的振動の周波数との両
者の間で生じる構造的な共振を十分減衰することができ
る。
According to the ninth aspect of the present invention, in the optical device 2 mounted on an aircraft, the damping coefficient in the rotational direction of the drive shaft 4 of the optical device 2 is changed by changing the attenuation coefficient in the rotational direction of the drive shaft 4. And the structural resonance occurring between the natural frequency of the drive shaft 4 in the rotation direction and the frequency of the aerodynamic vibration applied to the optical device 2 can be sufficiently attenuated.

【0080】また、第10の発明によれば、航空機に搭
載する光学機器2において、前記光学機器2の駆動軸4
の回転方向の慣性係数と弾性係数及び減衰係数を変える
ことにより、駆動軸4の回転方向の減衰比を増大させ、
駆動軸4の回転方向の固有振動数と光学機器2にかかる
空力的振動の周波数との両者の間で生じる構造的な共振
を十分減衰することができる。
According to the tenth aspect, in the optical device 2 mounted on an aircraft, the drive shaft 4 of the optical device 2
By changing the inertia coefficient, the elastic coefficient and the damping coefficient in the rotational direction of the drive shaft 4, the damping ratio in the rotational direction of the drive shaft 4 is increased,
It is possible to sufficiently attenuate the structural resonance occurring between the natural frequency in the rotation direction of the drive shaft 4 and the frequency of the aerodynamic vibration applied to the optical device 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 この発明の実施の形態1を示す部分構成図で
ある。
FIG. 2 is a partial configuration diagram showing the first embodiment of the present invention.

【図3】 この発明の実施の形態2を示す構成図であ
る。
FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】 この発明の実施の形態2を示す部分構成図で
ある。
FIG. 4 is a partial configuration diagram showing a second embodiment of the present invention.

【図5】 この発明の実施の形態3を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】 この発明の実施の形態3を示す部分構成図で
ある。
FIG. 6 is a partial configuration diagram showing a third embodiment of the present invention.

【図7】 この発明の実施の形態4を示す構成図であ
る。
FIG. 7 is a configuration diagram showing a fourth embodiment of the present invention.

【図8】 この発明の実施の形態4を示す部分構成図で
ある。
FIG. 8 is a partial configuration diagram showing a fourth embodiment of the present invention.

【図9】 この発明の実施の形態5を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a fifth embodiment of the present invention.

【図10】 この発明の実施の形態5を示す部分構成図
である。
FIG. 10 is a partial configuration diagram showing a fifth embodiment of the present invention.

【図11】 この発明の実施の形態6を示す構成図であ
る。
FIG. 11 is a configuration diagram showing a sixth embodiment of the present invention.

【図12】 この発明の実施の形態6を示す部分構成図
である。
FIG. 12 is a partial configuration diagram showing a sixth embodiment of the present invention.

【図13】 この発明の実施の形態7を示す構成図であ
る。
FIG. 13 is a configuration diagram showing a seventh embodiment of the present invention.

【図14】 この発明の実施の形態7を示す部分構成図
である。
FIG. 14 is a partial configuration diagram showing Embodiment 7 of the present invention.

【図15】 この発明の実施の形態8を示す構成図であ
る。
FIG. 15 is a configuration diagram showing an eighth embodiment of the present invention.

【図16】 この発明の実施の形態8を示す部分構成図
である。
FIG. 16 is a partial configuration diagram showing Embodiment 8 of the present invention.

【図17】 この発明の実施の形態9を示す構成図であ
る。
FIG. 17 is a configuration diagram showing a ninth embodiment of the present invention.

【図18】 この発明の実施の形態9を示す部分構成図
である。
FIG. 18 is a partial configuration diagram showing a ninth embodiment of the present invention.

【図19】 この発明の実施の形態10を示す構成図で
ある。
FIG. 19 is a configuration diagram showing a tenth embodiment of the present invention.

【図20】 この発明の実施の形態10を示す部分構成
図である。
FIG. 20 is a partial configuration diagram showing Embodiment 10 of the present invention.

【図21】 従来の航空機搭載用の光学機器の外形図で
ある。
FIG. 21 is an external view of a conventional optical device mounted on an aircraft.

【図22】 従来の航空機搭載用の光学機器2の駆動モ
ータ5の制御系の周波数特性のグラフである。
FIG. 22 is a graph showing frequency characteristics of a control system of a drive motor 5 of a conventional optical device 2 mounted on an aircraft.

【符号の説明】[Explanation of symbols]

1 航空機の一部、2 光学機器、3 光学センサ、4
駆動軸、5 駆動モータ、6 バランサ、7 サーボ
機構、8 コントローラ、9 バネ、10 ダンパー、
11 振動センサ、ア 光学機器2まわりの気流、イ
カルマン渦対、ウ 共振しない場合の駆動モータ5の周
波数特性、エ 共振する場合の駆動モータ5の周波数特
性、オ 共振周波数、カ 共振周波数オでのゲインのピ
ーク値、キ 速度情報の信号線、ク サーボ機構7への
指令信号線、ケ 振動情報の信号線。
1 part of aircraft, 2 optical devices, 3 optical sensors, 4
Drive shaft, 5 drive motor, 6 balancer, 7 servo mechanism, 8 controller, 9 spring, 10 damper,
11 Vibration sensor, a. Air flow around optical device 2, b.
Karman vortex pair, (c) frequency characteristics of the drive motor 5 when it does not resonate, (d) frequency characteristics of the drive motor 5 when it resonates, (e) resonance frequency, (f) peak value of the gain at the resonance frequency (e), H Command signal line to servo mechanism 7, signal line for vibration information.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸からの距離が変化するバラン
サと、バランサの駆動軸からの距離を変化させて駆動軸
の回転方向の慣性係数を変化させ駆動軸の回転方向の固
有振動数を変化させるサーボ機構と、光学機器内部に設
けられ、駆動軸の回転方向の固有振動数が航空機からの
速度情報をもとに推定計算した光学機器にかかる空力的
振動の周波数に近接しないようにサーボ機構のゲイン調
節を行なうコントローラとを備えたことを特徴とする振
動抑制装置。
1. An optical device mounted on an aircraft, wherein a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational movement of the drive shaft, A balancer whose distance from the drive shaft changes, a servo mechanism that changes the inertia coefficient of the drive shaft in the rotation direction by changing the distance of the balancer from the drive shaft, and an optical mechanism that changes the natural frequency of the drive shaft in the rotation direction. A controller that is provided inside the device and that adjusts the gain of the servo mechanism so that the natural frequency in the rotational direction of the drive shaft does not approach the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on speed information from the aircraft. And a vibration suppressing device.
【請求項2】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸の回転方向にトルクを負荷す
るバネと、バネの伸縮長を変化させて駆動軸の回転方向
の弾性係数を変化させ駆動軸の回転方向の固有振動数を
変化させるサーボ機構と、光学機器内部に設けられ、駆
動軸の回転方向の固有振動数が航空機からの速度情報を
もとに推定計算した光学機器にかかる空力的振動の周波
数に近接しないようにサーボ機構のゲイン調節を行なう
コントローラとを備えたことを特徴とする振動抑制装
置。
2. An optical device mounted on an aircraft, wherein a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational movement of the drive shaft, A spring that applies torque in the rotation direction of the drive shaft, a servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and changes the natural frequency of the drive shaft in the rotation direction; A controller for adjusting the gain of the servo mechanism so that the natural frequency in the rotation direction of the drive shaft is not close to the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft. A vibration suppressing device comprising:
【請求項3】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸からの距離が変化するバラン
サと、バランサの駆動軸からの距離を変化させて駆動軸
の回転方向の慣性係数を変化させ駆動軸まわりの固有振
動数を変化させるサーボ機構と、駆動軸の回転方向にト
ルクを負荷するバネと、バネの伸縮長を変化させて駆動
軸の回転方向の弾性係数を変化させ駆動軸の回転方向の
固有振動数を変化させるサーボ機構と、光学機器内部に
設けられ、駆動軸の回転方向の固有振動数が航空機から
の速度情報をもとに推定計算した光学機器にかかる空力
的振動の周波数に近接しないように各サーボ機構のゲイ
ン調節を行なうコントローラとを備えたことを特徴とす
る振動抑制装置。
3. An optical device mounted on an aircraft, wherein a drive shaft provided inside the optical device and changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational movement of the drive shaft, A balancer whose distance from the drive shaft changes, a servo mechanism that changes the inertia coefficient in the rotational direction of the drive shaft by changing the distance of the balancer from the drive shaft and changes the natural frequency around the drive shaft, A spring that applies torque in the rotation direction, a servo mechanism that changes the elastic modulus in the rotation direction of the drive shaft by changing the expansion and contraction length of the spring, and changes the natural frequency in the rotation direction of the drive shaft, and is provided inside the optical device The gain of each servo mechanism is adjusted so that the natural frequency in the rotational direction of the drive shaft does not approach the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft. A vibration suppressing device comprising a roller.
【請求項4】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸の回転方向に減衰力を負荷す
るダンパーと、ダンパーの減衰力を調節して駆動軸の回
転方向の減衰係数を変化させ駆動軸の回転方向の減衰比
を変化させるサーボ機構と、光学機器内部に設けられ、
駆動軸の回転方向の固有振動数が航空機からの速度情報
をもとに推定計算した光学機器にかかる空力的振動の周
波数に近接するときにサーボ機構のゲイン調節を行ない
駆動軸の回転方向の減衰比を増大させるコントローラと
を備えたことを特徴とする振動抑制装置。
4. An optical device mounted on an aircraft, wherein: a drive shaft provided inside the optical device for changing an optical field of view; a drive motor provided on the drive shaft for controlling a rotational movement of the drive shaft; A damper for applying a damping force in the rotation direction of the drive shaft, a servo mechanism for adjusting the damping force of the damper to change the damping coefficient in the rotation direction of the drive shaft to change the damping ratio in the rotation direction of the drive shaft, and an optical device Provided inside,
When the natural frequency in the rotational direction of the drive shaft is close to the frequency of the aerodynamic vibration on the optical device estimated and calculated based on the speed information from the aircraft, the gain of the servo mechanism is adjusted to attenuate the rotational direction of the drive shaft. A vibration suppression device comprising a controller for increasing a ratio.
【請求項5】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸からの距離が変化するバラン
サと、バランサの駆動軸からの距離を変化させて駆動軸
の回転方向の慣性係数を変化させ駆動軸の回転方向の固
有振動数を変化させるサーボ機構と、駆動軸の回転方向
にトルクを負荷するバネと、バネの伸縮長を変化させて
駆動軸の回転方向の弾性係数を変化させ駆動軸の回転方
向の固有振動数を変化させるサーボ機構と、駆動軸の回
転方向に減衰力を負荷するダンパーと、ダンパーの減衰
力を調節して駆動軸の回転方向の減衰係数を変化させ駆
動軸の回転方向の減衰比を変化させるサーボ機構と、光
学機器内部に設けられ、駆動軸の回転方向の固有振動数
が航空機からの速度情報をもとに推定計算した光学機器
にかかる空力的振動の周波数に近接するときに各サーボ
機構のゲイン調節を行ない駆動軸の回転方向の減衰比を
増大させるコントローラとを備えたことを特徴とする振
動抑制装置。
5. An optical device mounted on an aircraft, wherein: a drive shaft provided inside the optical device for changing an optical field of view; a drive motor provided on the drive shaft for controlling a rotational movement of the drive shaft; A balancer whose distance from the drive shaft changes, a servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance of the balancer from the drive shaft and changes the natural frequency in the rotation direction of the drive shaft, A spring that applies torque in the rotation direction of the shaft, a servo mechanism that changes the elastic modulus in the rotation direction of the drive shaft by changing the expansion and contraction length of the spring, and changes the natural frequency in the rotation direction of the drive shaft; A damper that applies damping force in the rotation direction, a servo mechanism that adjusts the damping force of the damper to change the damping coefficient in the rotation direction of the drive shaft and changes the damping ratio in the rotation direction of the drive shaft, and installed inside the optical device La When the natural frequency in the rotational direction of the drive shaft approaches the frequency of the aerodynamic vibration applied to the optical device estimated and calculated based on the speed information from the aircraft, the gain of each servo mechanism is adjusted to rotate the drive shaft. A controller for increasing a damping ratio in a direction.
【請求項6】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸からの距離が変化するバラン
サと、バランサの駆動軸からの距離を変化させて駆動軸
の回転方向の慣性係数を変化させ駆動軸の回転方向の固
有振動数を変化させるサーボ機構と、光学機器の外壁面
に設けられ、光学機器にかかる空力的振動の周波数を検
出する振動センサと、光学機器内部に設けられ、駆動軸
の回転方向の固有振動数が振動センサで検出された光学
機器にかかる空力的振動の周波数に近接しないようにサ
ーボ機構のゲイン調節を行なうコントローラとを備えた
ことを特徴とする振動抑制装置。
6. An optical device mounted on an aircraft, comprising: a drive shaft provided inside the optical device for changing an optical field of view; a drive motor provided on the drive shaft for controlling rotational movement of the drive shaft; A balancer whose distance from the drive shaft changes, a servo mechanism that changes the inertia coefficient of the drive shaft in the rotation direction by changing the distance of the balancer from the drive shaft, and an optical mechanism that changes the natural frequency of the drive shaft in the rotation direction. A vibration sensor provided on the outer wall surface of the device and detecting the frequency of aerodynamic vibration applied to the optical device, and an optical device provided inside the optical device and the natural frequency of the rotation direction of the drive shaft is detected by the vibration sensor A vibration suppression device comprising: a controller for adjusting a gain of a servo mechanism so as not to approach the frequency of the aerodynamic vibration.
【請求項7】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸の回転方向にトルクを負荷す
るバネと、バネの伸縮長を変化させて駆動軸の回転方向
の弾性係数を変化させ駆動軸の回転方向の固有振動数を
変化させるサーボ機構と、光学機器の外壁面に設けら
れ、光学機器にかかる空力的振動の周波数を検出する振
動センサと、光学機器内部に設けられ、駆動軸の回転方
向の固有振動数が振動センサで検出された光学機器にか
かる空力的振動の周波数に近接しないようにサーボ機構
のゲイン調節を行なうコントローラとを備えたことを特
徴とする振動抑制装置。
7. An optical device mounted on an aircraft, wherein: a drive shaft provided inside the optical device for changing an optical field of view; a drive motor provided on the drive shaft for controlling a rotational motion of the drive shaft; A spring that applies torque in the rotation direction of the drive shaft, a servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and changes the natural frequency of the drive shaft in the rotation direction; A vibration sensor that is provided on the outer wall surface of the optical device and detects the frequency of aerodynamic vibration applied to the optical device; and an optical device that is provided inside the optical device and has a natural frequency in the rotation direction of the drive shaft detected by the vibration sensor. A vibration suppression device, comprising: a controller for adjusting a gain of a servo mechanism so as not to approach a frequency of aerodynamic vibration.
【請求項8】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸からの距離が変化するバラン
サと、バランサの駆動軸からの距離を変化させて駆動軸
の回転方向の慣性係数を変化させ駆動軸まわりの固有振
動数を変化させるサーボ機構と、駆動軸の回転方向にト
ルクを負荷するバネと、バネの伸縮長を変化させて駆動
軸の回転方向の弾性係数を変化させ駆動軸の回転方向の
固有振動数を変化させるサーボ機構と、光学機器の外壁
面に設けられ、光学機器にかかる空力的振動の周波数を
検出する振動センサと、光学機器内部に設けられ、駆動
軸の回転方向の固有振動数が振動センサで検出された光
学機器にかかる空力的振動の周波数に近接しないように
各サーボ機構のゲイン調節を行なうコントローラとを備
えたことを特徴とする振動抑制装置。
8. An optical device mounted on an aircraft, wherein a drive shaft provided inside the optical device for changing an optical field of view, a drive motor provided on the drive shaft and controlling a rotational movement of the drive shaft, A balancer whose distance from the drive shaft changes, a servo mechanism that changes the inertia coefficient in the rotational direction of the drive shaft by changing the distance of the balancer from the drive shaft and changes the natural frequency around the drive shaft, A spring that applies torque in the rotation direction, a servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the spring, and changes the natural frequency of the drive shaft in the rotation direction, and the outer wall surface of the optical device And a vibration sensor that detects the frequency of aerodynamic vibration applied to the optical device, and an aerodynamic force that is provided inside the optical device and whose natural frequency in the rotation direction of the drive shaft is detected by the vibration sensor. And a controller for adjusting the gain of each servo mechanism so as not to approach the frequency of dynamic vibration.
【請求項9】 航空機に搭載する光学機器において、前
記光学機器の内部に設けられ、光学的視野を変化させる
駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制御
する駆動モータと、駆動軸の回転方向に減衰力を負荷す
るダンパーと、ダンパーの減衰力を調節して駆動軸の回
転方向の減衰係数を変化させ駆動軸の回転方向の減衰比
を変化させるサーボ機構と、光学機器の外壁面に設けら
れ、光学機器にかかる空力的振動の周波数を検出する振
動センサと、光学機器内部に設けられ、駆動軸の回転方
向の固有振動数が振動センサで検出された光学機器にか
かる空力的振動の周波数に近接するときにサーボ機構の
ゲイン調節を行ない駆動軸の回転方向の減衰比を増大さ
せるコントローラとを備えたことを特徴とする振動抑制
装置。
9. An optical device mounted on an aircraft, wherein: a drive shaft provided inside the optical device for changing an optical field of view; a drive motor provided on the drive shaft for controlling a rotational movement of the drive shaft; A damper for applying a damping force in the rotation direction of the drive shaft, a servo mechanism for adjusting the damping force of the damper to change the damping coefficient in the rotation direction of the drive shaft to change the damping ratio in the rotation direction of the drive shaft, and an optical device A vibration sensor that is provided on the outer wall surface of the optical device and detects the frequency of aerodynamic vibration applied to the optical device; and an optical device that is provided inside the optical device and has a natural frequency in the rotation direction of the drive shaft detected by the vibration sensor. A vibration suppression device, comprising: a controller that adjusts a gain of a servo mechanism when the frequency approaches an aerodynamic vibration and increases a damping ratio in a rotation direction of a drive shaft.
【請求項10】 航空機に搭載する光学機器において、
前記光学機器の内部に設けられ、光学的視野を変化させ
る駆動軸と、駆動軸に設けられ、駆動軸の回転運動を制
御する駆動モータと、駆動軸からの距離が変化するバラ
ンサと、バランサの駆動軸からの距離を変化させて駆動
軸の回転方向の慣性係数を変化させ駆動軸の回転方向の
固有振動数を変化させるサーボ機構と、駆動軸の回転方
向にトルクを負荷するバネと、バネの伸縮長を変化させ
て駆動軸の回転方向の弾性係数を変化させ駆動軸の回転
方向の固有振動数を変化させるサーボ機構と、駆動軸の
回転方向に減衰力を負荷するダンパーと、ダンパーの減
衰力を調節して駆動軸の回転方向の減衰係数を変化させ
駆動軸の回転方向の減衰比を変化させるサーボ機構と、
光学機器の外壁面に設けられ、光学機器にかかる空力的
振動の周波数を検出する振動センサと、光学機器内部に
設けられ、駆動軸の回転方向の固有振動数が振動センサ
で検出された光学機器にかかる空力的振動の周波数に近
接するときに各サーボ機構のゲイン調節を行ない駆動軸
の回転方向の減衰比を増大させるコントローラとを備え
たことを特徴とする振動抑制装置。
10. An optical device mounted on an aircraft,
A drive shaft that is provided inside the optical device and changes the optical field of view, a drive motor that is provided on the drive shaft and controls the rotational movement of the drive shaft, a balancer that changes the distance from the drive shaft, and a balancer A servo mechanism that changes the inertia coefficient in the rotation direction of the drive shaft by changing the distance from the drive shaft to change the natural frequency in the rotation direction of the drive shaft, a spring that applies torque in the rotation direction of the drive shaft, and a spring A servo mechanism that changes the elastic modulus of the drive shaft in the rotation direction by changing the expansion and contraction length of the drive shaft and changes the natural frequency of the drive shaft in the rotation direction; a damper that applies a damping force in the rotation direction of the drive shaft; A servo mechanism for adjusting a damping force to change a damping coefficient in a rotation direction of the drive shaft to change a damping ratio in a rotation direction of the drive shaft;
A vibration sensor provided on the outer wall surface of the optical device for detecting a frequency of aerodynamic vibration applied to the optical device, and an optical device provided inside the optical device and having a natural frequency in a rotation direction of the drive shaft detected by the vibration sensor A controller that adjusts the gain of each servo mechanism when the frequency is close to the frequency of the aerodynamic vibration to increase the damping ratio in the rotational direction of the drive shaft.
JP10213978A 1998-07-29 1998-07-29 Vibration-suppressing device Pending JP2000046977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213978A JP2000046977A (en) 1998-07-29 1998-07-29 Vibration-suppressing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213978A JP2000046977A (en) 1998-07-29 1998-07-29 Vibration-suppressing device

Publications (1)

Publication Number Publication Date
JP2000046977A true JP2000046977A (en) 2000-02-18

Family

ID=16648228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213978A Pending JP2000046977A (en) 1998-07-29 1998-07-29 Vibration-suppressing device

Country Status (1)

Country Link
JP (1) JP2000046977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183676A (en) * 1998-12-29 2007-07-19 Vitec Group Plc Mounting for optical apparatus, and improvement in or relating to the mounting
JP2017508109A (en) * 2013-12-24 2017-03-23 ピーブイ ラボズ インク.Pv Labs Inc. Platform stabilization system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183676A (en) * 1998-12-29 2007-07-19 Vitec Group Plc Mounting for optical apparatus, and improvement in or relating to the mounting
JP2017508109A (en) * 2013-12-24 2017-03-23 ピーブイ ラボズ インク.Pv Labs Inc. Platform stabilization system

Similar Documents

Publication Publication Date Title
US6612166B2 (en) Variable viscosity damper for vane type angle of attack sensor
JP3166703B2 (en) Gyro device for remote control helicopter
JP5696464B2 (en) Friction compensation method, motor control method, friction compensation device, and motor control device
TWI576281B (en) Oscillation suppression device and ship
JPH06117482A (en) Vibration damping constitution and method by motor driving
JP2000046977A (en) Vibration-suppressing device
JPH11159191A (en) Damper
JPH04312211A (en) Bearing structure and vibration detecting device
JP2000039485A (en) Vibration suppressing apparatus
JP2000039486A (en) Vibration suppressing apparatus
JPH1183397A (en) Gimbal resonance controller for flying body
JPH11112224A (en) Gimbal resonance suppression device for flying body
CN117515033B (en) Speed increasing method, control device and system for crossing critical rotation speed of rotor
JPH05272259A (en) Damping device for structure
JP5235790B2 (en) Gimbal control device
JPH10122797A (en) Vortex excitation suppressor for steering wing
JPH08326833A (en) Control device for active damper
JP2000016395A (en) Helicopter
JPH10184780A (en) Anti-rolling device
JPH07127685A (en) Oscillation damping device
JPH02209619A (en) Bearing device for rotating shaft
JP2021143848A (en) Flow sensor
JP2001295842A (en) Magnetic bearing device
JP2556580Y2 (en) Damping force generator
JPH11236941A (en) Vibration damping force increasing method for liquid damper and forced swirl liquid damper