JP2000046503A - Displacement sensor - Google Patents

Displacement sensor

Info

Publication number
JP2000046503A
JP2000046503A JP11206767A JP20676799A JP2000046503A JP 2000046503 A JP2000046503 A JP 2000046503A JP 11206767 A JP11206767 A JP 11206767A JP 20676799 A JP20676799 A JP 20676799A JP 2000046503 A JP2000046503 A JP 2000046503A
Authority
JP
Japan
Prior art keywords
full
core
coil
bobbin
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11206767A
Other languages
Japanese (ja)
Inventor
Senu Ri
宣雨 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2000046503A publication Critical patent/JP2000046503A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2216Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect displacement of an apparatus to be detected highly accurately while preventing unnecessary power consumption by disposing a bobbin on the outside of a core of magnetic substance interlocked with the apparatus and detecting positional variation of the core based on the voltages being induced in two coils wound around the core. SOLUTION: A bobbin is disposed on the outside of a core 10 of magnetic substance interlocked with an apparatus to be located. Coils 12, 13 are wound symmetrically around the upper and lower parts of the bobbin and positional variation of the core 10 is detected at a signal processing section 20 based on the voltages being induced in the coils 12, 13. The voltages induced in the coils 12, 13 are full-wave rectified 21, 22 at the signal processing section 20 and the differential voltage is amplified at a differential amplifying section 23. High frequency components of an output signal from the differential amplifying section 23 are removed at a filter section 24 and the maximum and minimum values of the output signal are detected at a pick sensing section 25 and inputted to a microcomputer 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変位センサに係
り、より詳しくは、位置を検出しようとする機具の位置
を検出する変位センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement sensor, and more particularly, to a displacement sensor for detecting a position of a device whose position is to be detected.

【0002】[0002]

【従来の技術】図1は、従来技術による変位センサの概
略構造図であって、従来技術による変位センサは、ボビ
ン(1)に2つのコイル(2、3)が巻線されており、
前記ボビン(1)の内側に位置を検出しようとする機具
に連動されて動作する磁性体物質のコア(4)が位置さ
れる。図2は、従来技術による変位センサの回路図であ
って、抵抗(R1)と抵抗(R2)はその抵抗値が同一
であり、コイル(2、3)のインダクタンス(Z1、Z
2)の変化のために外部から交流電源(AC)が印加さ
れる。
2. Description of the Related Art FIG. 1 is a schematic structural view of a conventional displacement sensor. The conventional displacement sensor has a bobbin (1) wound with two coils (2, 3).
Inside the bobbin (1), a core (4) of a magnetic substance that operates in conjunction with a device whose position is to be detected is located. FIG. 2 is a circuit diagram of a displacement sensor according to the prior art, in which the resistance (R1) and the resistance (R2) have the same resistance value, and the inductances (Z1, Z2) of the coils (2, 3).
An AC power supply (AC) is externally applied for the change in 2).

【0003】つまり、位置を検出しようとする機具によ
ってコア(4)の位置が変動すると、該コア(4)の位
置変動に比例する出力電圧(eo)を出力し、前記コア
(4)がボビン(1)の中心に位置されると、二つのコ
イル(2、3)のインダクタンス(Z1、Z2)が同一
になって出力電圧(eo)が零(0)になるため、機具
の位置変位を検出できるようになる。
[0003] That is, when the position of the core (4) is changed by a device whose position is to be detected, an output voltage (e o ) proportional to the position change of the core (4) is output, and the core (4) is output. When it is located at the center of the bobbin (1), the inductance (Z1, Z2) of the two coils (2, 3) becomes the same, and the output voltage (e o ) becomes zero (0). The displacement can be detected.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のごと
き従来技術による変位センサは、同一な抵抗値をもつ抵
抗を2つ使用すべきであるが、負荷端のインピーダンス
が低いと極めて小さい抵抗値をもつ抵抗を使用しなけれ
ばならないし、前記抵抗の抵抗値によって零(0)点が
変動するため、抵抗値の正確度の高い抵抗を使用しなけ
ればならないという問題点があった。さらに、高精度の
変位センサを作るためには、高電圧の交流電源が必要で
あるが、かような場合に抵抗の発熱損失が極めて大きく
なって不要な電力消耗が発生するという問題点があっ
た。
In the displacement sensor according to the prior art as described above, two resistors having the same resistance value should be used. However, if the impedance at the load end is low, an extremely small resistance value is required. Therefore, there is a problem that a resistor having a high degree of accuracy in the resistance value must be used because the zero (0) point varies depending on the resistance value of the resistor. Furthermore, in order to produce a high-precision displacement sensor, a high-voltage AC power supply is necessary. However, in such a case, there is a problem that heat generation of the resistor becomes extremely large and unnecessary power consumption occurs. Was.

【0005】そこで、この発明は上記種々の問題点を解
決するためになされたものであって、この発明の目的
は、抵抗を使用せずに機具の変位を検出することによ
り、不要な電力消耗を防止できるばかりか、別途の信号
処理装置を使用しなくても検出された変位が線形をもつ
ようにして機具の変位を高精度に検出できる変位センサ
を提供することにある。
Accordingly, the present invention has been made to solve the above-mentioned various problems, and an object of the present invention is to detect unnecessary displacement of a device without using a resistor, thereby achieving unnecessary power consumption. It is another object of the present invention to provide a displacement sensor that not only can prevent the displacement, but also can detect the displacement of the device with high accuracy by making the detected displacement linear without using a separate signal processing device.

【0006】[0006]

【課題を解決するための手段】上記のような目的を達成
するためになされたこの発明による変位センサは、位置
を検出しようとする機具に連動されて動作をする磁性体
物質のコアと、該コアの外側に設けられたボビンと、該
ボビンに巻線された第1のコイルおよび第2のコイル
と、該第1のコイルと第2のコイルに誘導される電圧に
よってコアの位置変化を検出して出力する信号処理部を
含んで構成されることを特徴とする。
A displacement sensor according to the present invention, which has been made to achieve the above object, has a core made of a magnetic substance that operates in conjunction with a device whose position is to be detected. A bobbin provided outside the core, a first coil and a second coil wound on the bobbin, and a change in the position of the core detected by voltages induced in the first and second coils. It is characterized by including a signal processing unit for outputting the signal.

【0007】[0007]

【発明の実施の形態】以下、この発明による一実施形態
につき添付図面に沿って詳述する。図3は、この発明に
よる変位センサの概略構造図、図4はこの発明による変
位センサの回路であって、この発明による変位センサ
は、位置を検出しようとする機具に連動されて動作する
磁性体物質のコア(10)と、該コア(10)の外側に
設けられたボビン(11)と、該ボビン(11)の上下
部に対称となるように巻線された第1のコイル(12)
および第2のコイル(13)と、該第1のコイル(1
2)と第2のコイル(13)に誘導される電圧によって
コア(10)の位置変化を検出して出力する信号処理部
(20)とを含んで構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 3 is a schematic structural view of a displacement sensor according to the present invention, and FIG. 4 is a circuit of the displacement sensor according to the present invention. The displacement sensor according to the present invention operates in conjunction with a device whose position is to be detected. A material core (10), a bobbin (11) provided outside the core (10), and a first coil (12) wound symmetrically above and below the bobbin (11).
And the second coil (13) and the first coil (1
2) and a signal processing unit (20) for detecting and outputting a change in the position of the core (10) based on a voltage induced in the second coil (13).

【0008】前記信号処理部(20)は、前記第1のコ
イル(12)に誘導される電圧を全波整流する第1の全
波整流部(21)と、前記第2のコイル(13)に誘導
される電圧を全波整流する第2の全波整流部(22)
と、前記第1の全波整流部(21)および第2の全波整
流部(22)によって全波整流された電圧差を増幅する
差動増幅部(23)と、該差動増幅部(23)から出力
された信号の高周波成分を除去するフィルタ部(24)
と、該フィルタ部(24)から出力された信号の最大値
と最小値を検出してマイコン(30)に入力するピック
感知部(25)とを含んで構成されている。
The signal processing section (20) includes a first full-wave rectification section (21) for performing full-wave rectification of a voltage induced in the first coil (12), and the second coil (13). Full-wave rectifier (22) for full-wave rectification of the voltage induced in the circuit
A differential amplifier (23) for amplifying the voltage difference that has been full-wave rectified by the first full-wave rectifier (21) and the second full-wave rectifier (22); A filter section (24) for removing a high-frequency component of the signal output from the section (23);
And a pick sensing unit (25) for detecting the maximum value and the minimum value of the signal output from the filter unit (24) and inputting the detected value to the microcomputer (30).

【0009】前記第1の全波整流部(21)および第2
の全波整流部(22)は、図5に示すように、複数の抵
抗(R1〜R7)と、ダイオード(D1、D2)と、キ
ャパシタ(C1)および演算増幅器(U1、U2)とを
含んで構成されており、前記差動増幅部(23)は図6
に示すように、複数の抵抗(R8〜R11)と演算増幅
器(U3)とを含んで構成されている。さらに、前記フ
ィルタ部(24)は、図7に示すように、複数の抵抗
(R12〜R14)と、キャパシタ(C2)および演算
増幅器(U3)とを含んで構成されており、前記ピック
感知部(25)はダイオード(D3、D4)と、キャパ
シタ(C3、C4)とを含んで構成されている。
The first full-wave rectifier (21) and the second full-wave rectifier (21)
As shown in FIG. 5, the full-wave rectifier (22) includes a plurality of resistors (R1 to R7), diodes (D1, D2), a capacitor (C1), and operational amplifiers (U1, U2). And the differential amplifier (23) is configured as shown in FIG.
As shown in the figure, the circuit includes a plurality of resistors (R8 to R11) and an operational amplifier (U3). Further, as shown in FIG. 7, the filter unit (24) includes a plurality of resistors (R12 to R14), a capacitor (C2), and an operational amplifier (U3). (25) is configured to include diodes (D3, D4) and capacitors (C3, C4).

【0010】上記のごとく構成されたこの発明による変
位センサの作用および效果について詳述する。外部から
2kHzの周波数をもつ交流電源(AC)が第1のコイ
ル(12)および第2のコイル(13)に印加される状
態で位置を検出しようとする機具の位置変動によってコ
ア(10)の位置が変動すると、該コア(10)の位置
変動に比例する電圧が第1のコイル(12)および第2
のコイル(13)に誘導され、第1の全波整流部(2
1)および第2の全波整流部(22)は前記第1のコイ
ル(12)および第2のコイル(13)にそれぞれ誘導
された電圧を全波整流して差動増幅部(23)に出力す
る。
The operation and effect of the displacement sensor according to the present invention configured as described above will be described in detail. When an AC power source (AC) having a frequency of 2 kHz is applied from the outside to the first coil (12) and the second coil (13), the position of the device for detecting the position is changed by the position fluctuation of the device. When the position changes, a voltage proportional to the position change of the core (10) is applied to the first coil (12) and the second coil.
Of the first full-wave rectifier (2)
1) and a second full-wave rectifier (22) perform full-wave rectification on the voltages induced in the first coil (12) and the second coil (13), respectively, and apply the resulting voltage to the differential amplifier (23). Output.

【0011】さらに、前記差動増幅部(23)は、前記
第1の全波整流部(21)および第2の全波整流部(2
2)によって全波整流された電圧差を増幅してフィルタ
部(24)に出力する。このように、前記差動増幅部
(23)から出力される信号は、コア(10)の位置変
動につれて振幅が変動するようになるが、コア(10)
がボビン(11)の中心に位置されると、零(0)Vが
出力され、コア(10)がボビン(11)の上方に位置
されると、+Vが出力され、コア(10)がボビン(1
1)の下方に位置されると、−Vが出力される。
Further, the differential amplifier (23) includes a first full-wave rectifier (21) and a second full-wave rectifier (2).
The voltage difference subjected to full-wave rectification by 2) is amplified and output to the filter section (24). As described above, the amplitude of the signal output from the differential amplifying unit (23) varies with the position of the core (10).
Is located at the center of the bobbin (11), zero (0) V is output, and when the core (10) is positioned above the bobbin (11), + V is output, and the core (10) is (1
When positioned below 1), -V is output.

【0012】さらに、前記フィルタ部(24)は、前記
差動増幅部(23)から出力された信号から高周波成分
を除去し増幅してピック感知部(25)に出力する。つ
まり、上記のごとく差動増幅部(23)から出力される
信号で機具の位置変位をマイコン(30)が感知するた
めには、前記差動増幅部(25)から出力された信号で
高周波成分を除去しなければならない。したがって、上
記のごとくフィルタ部(24)から出力された信号は、
機具の位置に比例する電圧信号が出力されるが、図7に
示すように、前記フィルタ部(24)から出力される電
圧信号は極めて広範囲で線形特性をもつことがわかる。
Further, the filter section (24) removes high frequency components from the signal output from the differential amplifier section (23), amplifies the signal, and outputs the amplified signal to the pick sensing section (25). In other words, as described above, in order for the microcomputer (30) to detect the displacement of the device by the signal output from the differential amplifier (23), the signal output from the differential amplifier (25) requires a high-frequency component. Must be removed. Therefore, the signal output from the filter unit (24) as described above is
Although a voltage signal proportional to the position of the tool is output, as shown in FIG. 7, it can be seen that the voltage signal output from the filter section (24) has a very wide range of linear characteristics.

【0013】さらに、各種の応用分野では、機具の中間
位置よりも最高位置および最低位置だけを必要とする場
合があり、これによって所望の値のみを改めて検出する
必要がある。したがって、ピック感知部(25)が前記
フィルタ部(24)から出力された信号の最大値と最小
値を検出するマイコン(30)に入力することによっ
て、上記のごとき要求を充足させることができる。つま
り、前記ピック感知部(25)は、実際の機具の位置が
変動されるとしても、前記最大値と最小値を維持するた
め、マイコン(30)から必要な時間に前記最大値と最
小値を読出して使用することができる。
Further, in various application fields, only the highest position and the lowest position may be required rather than the intermediate position of the tool, so that only the desired value needs to be detected again. Therefore, the above requirement can be satisfied by the pick sensing unit (25) inputting to the microcomputer (30) which detects the maximum value and the minimum value of the signal output from the filter unit (24). That is, even if the actual position of the device is changed, the pick sensing unit (25) maintains the maximum value and the minimum value so that the microcomputer (30) determines the maximum value and the minimum value at a necessary time. Can be read and used.

【0014】[0014]

【発明の効果】上述のように、この発明によれば、抵抗
を使用せずに機具の変位を検出することによって、不要
な電力消耗が防止でき、かつ、別途の信号処理装置を使
用しなくても検出された変位が線形特性をもつようにし
て、機具の変位を高精度に検出できる効果がある。
As described above, according to the present invention, unnecessary power consumption can be prevented by detecting displacement of a tool without using a resistor, and the need for a separate signal processing device can be eliminated. Even so, there is an effect that the displacement of the device can be detected with high accuracy by making the detected displacement have a linear characteristic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来技術による変位センサの概略構造図であ
る。
FIG. 1 is a schematic structural view of a conventional displacement sensor.

【図2】 従来技術による変位センサの回路図である。FIG. 2 is a circuit diagram of a conventional displacement sensor.

【図3】 この発明による変位センサの概略構造図であ
る。
FIG. 3 is a schematic structural view of a displacement sensor according to the present invention.

【図4】 この発明による変位センサの回路図である。FIG. 4 is a circuit diagram of a displacement sensor according to the present invention.

【図5】 図4に示す全波整流部の回路図である。5 is a circuit diagram of the full-wave rectifier shown in FIG.

【図6】 図4に示す差動増幅部の回路図である。6 is a circuit diagram of the differential amplifier shown in FIG.

【図7】 図4に示すフィルタ部およびピック感知部の
回路図である。
FIG. 7 is a circuit diagram of a filter unit and a pick sensing unit shown in FIG. 4;

【図8】 この発明による変位センサの変位検出結果を
示すグラフである。
FIG. 8 is a graph showing a displacement detection result of the displacement sensor according to the present invention.

【符号の説明】[Explanation of symbols]

10…コア 11…ボビン 12…第1のコイル 13…第2のコイル 20…信号処理部 21…第1の全波整流部 22…第2の全波整流部 23…差動増幅部 24…フィルタ部 25…ピック感知部 30…マイコン DESCRIPTION OF SYMBOLS 10 ... Core 11 ... Bobbin 12 ... 1st coil 13 ... 2nd coil 20 ... Signal processing part 21 ... 1st full-wave rectification part 22 ... 2nd full-wave rectification part 23 ... Differential amplification part 24 ... Filter Unit 25: Pick sensing unit 30: Microcomputer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 位置を検出しようとする機具に連動され
て動作をする磁性体物質のコアと、該コアの外側に設け
られたボビンと、該ボビンに巻線された第1のコイルお
よび第2のコイルと、該第1のコイルと第2のコイルに
誘導される電圧によってコアの位置変化を検出して出力
する信号処理部を含んで構成された変位センサ。
1. A core made of a magnetic substance that operates in conjunction with a device whose position is to be detected, a bobbin provided outside the core, a first coil wound around the bobbin, and a first coil. A displacement sensor comprising: a second coil; and a signal processing unit that detects and outputs a change in the position of the core based on voltages induced in the first coil and the second coil.
【請求項2】 前記信号処理部は、前記第1のコイルに
誘導される電圧を全波整流する第1の全波整流部と、前
記第2のコイルに誘導される電圧を全波整流する第2の
全波整流部と、前記第1の全波整流部および第2の全波
整流部によって全波整流された電圧差を増幅する差動増
幅部と、前記差動増幅部から出力された信号の高周波成
分を除去するフィルタ部を含んで構成されたことを特徴
とする請求項1に記載の変位センサ。
2. The signal processing unit includes: a first full-wave rectifier that performs full-wave rectification of a voltage induced in the first coil; and a full-wave rectification of a voltage induced in the second coil. A second full-wave rectifier, a differential amplifier that amplifies a voltage difference that has been full-wave rectified by the first full-wave rectifier and the second full-wave rectifier, and a differential amplifier that is output from the differential amplifier. The displacement sensor according to claim 1, further comprising a filter unit that removes a high-frequency component of the signal.
【請求項3】 前記フィルタ部から出力された信号の最
大値と最小値を検出するピック感知部をさらに含んで構
成されたことを特徴とする請求項2に記載の変位セン
サ。
3. The displacement sensor according to claim 2, further comprising a pick sensing unit for detecting a maximum value and a minimum value of the signal output from the filter unit.
JP11206767A 1998-07-22 1999-07-21 Displacement sensor Pending JP2000046503A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980029503A KR20000009229A (en) 1998-07-22 1998-07-22 Displacement sensor
KR199829503 1998-07-22

Publications (1)

Publication Number Publication Date
JP2000046503A true JP2000046503A (en) 2000-02-18

Family

ID=19544873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11206767A Pending JP2000046503A (en) 1998-07-22 1999-07-21 Displacement sensor

Country Status (2)

Country Link
JP (1) JP2000046503A (en)
KR (1) KR20000009229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019732A (en) * 2014-06-16 2014-09-03 国家电网公司 Performance measuring device of thread structure component
CN104019735A (en) * 2014-06-12 2014-09-03 国家电网公司 Thread structure component measuring device
CN106441065A (en) * 2016-11-24 2017-02-22 张红卫 Displacement sensor for measuring movement of coil moveable magnetic core
CN111707175A (en) * 2019-03-18 2020-09-25 Tdk株式会社 Signal processing circuit, position detection device, and magnetic sensor system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164959A (en) * 2000-11-27 2002-06-07 Yamaha Corp Mobile phone
KR101158812B1 (en) * 2010-03-02 2012-06-26 주식회사 디엔엠 테크놀로지 Displacement sensor and magnetic bearing system using the same
KR20190088350A (en) 2018-01-18 2019-07-26 김상곤 Displacement Sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019735A (en) * 2014-06-12 2014-09-03 国家电网公司 Thread structure component measuring device
CN104019732A (en) * 2014-06-16 2014-09-03 国家电网公司 Performance measuring device of thread structure component
CN106441065A (en) * 2016-11-24 2017-02-22 张红卫 Displacement sensor for measuring movement of coil moveable magnetic core
CN106441065B (en) * 2016-11-24 2018-12-14 嘉兴学院 A kind of displacement sensor moved for measuring coil movable magnetic core
CN111707175A (en) * 2019-03-18 2020-09-25 Tdk株式会社 Signal processing circuit, position detection device, and magnetic sensor system

Also Published As

Publication number Publication date
KR20000009229A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP3212985B2 (en) Magnetic sensor device and current sensor device
JP4357841B2 (en) Magnetoelastic torque sensor
US4723446A (en) Device for measuring displacement
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
JP2000046503A (en) Displacement sensor
JP2816175B2 (en) DC current measuring device
JP2890650B2 (en) Current sensor
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
US5038110A (en) Circuit arrangement for signal recovery in a capacitive difference sensor
CN216115843U (en) Inductance type displacement detection device based on differential signal
CN116106610A (en) TMR current sensor and design method
Han et al. Performance of a high-voltage DC amplifier for electrostatic levitation applications
Perry et al. Collocated Electric and Magnetic Field Sensor and Amplifier Design for Non-Invasive Food Scanning System
JP2001330405A (en) Electromagnetic induction type displacement detecting device
KR20050044155A (en) Magnetometer having fluxgate-type magnetic sensor and signal processing method for measurement of ultra low magnetic field
CN1243240A (en) Displacement sensor
JPS61170627A (en) Load detector
JP2691410B2 (en) Output amplifier circuit of differential transformer
Banjevic et al. Open-loop CMOS current transducer with low temperature cross-sensitivity
JPH02201101A (en) Displacement sensor for magnetic bearing
JPH09113543A (en) Direct current detecting device
JPH1194659A (en) Magnetically differential type torque sensor
JP2005241433A (en) Signal processing circuit for torque sensors
JP2535503B2 (en) Geomagnetic direction sensor
RU2213934C2 (en) Displacement meter