JP2000045183A - Deodorant agent for fiber treatment and deodorant fiber - Google Patents
Deodorant agent for fiber treatment and deodorant fiberInfo
- Publication number
- JP2000045183A JP2000045183A JP10244348A JP24434898A JP2000045183A JP 2000045183 A JP2000045183 A JP 2000045183A JP 10244348 A JP10244348 A JP 10244348A JP 24434898 A JP24434898 A JP 24434898A JP 2000045183 A JP2000045183 A JP 2000045183A
- Authority
- JP
- Japan
- Prior art keywords
- deodorant
- fiber
- odor
- water
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【発明の属する技術分野】本発明は、悪臭、香水、煙草
の煙、線香など臭気がある分子やエアロゾルが付着・吸
収・収着・吸着(以下これらをまとめて吸着と略記す
る。)しても、臭気の再揮散を著しく低下又は遅延させ
ることにより、嗅覚的な臭気強度を著しく低下できる繊
維処理用の制臭剤と、これにより得られる制臭性繊維を
提供する。制臭性繊維の素材は、天然及び合成繊維の1
種類以上からなる衣料、寝具、家具、家屋・船舶・車両
などのインテリア資材、衣料用、介護用、産業資材など
に用いる編織物及び不織布、その他の形状の繊維などで
ある。BACKGROUND OF THE INVENTION The present invention relates to a method of adhering, absorbing, sorbing, and adsorbing molecules or aerosols having odors such as malodor, perfume, cigarette smoke, and incense sticks (hereinafter collectively referred to as adsorption). In addition, the present invention provides a fiber treatment deodorant which can significantly reduce the odor intensity of odor by remarkably reducing or delaying the re-evaporation of odor, and a deodorant fiber obtained thereby. The material of deodorant fiber is one of natural and synthetic fiber
Examples include clothing, bedding, furniture, interior materials such as houses, ships, and vehicles, knitted and nonwoven fabrics used for clothing, nursing care, industrial materials, and other shapes of fibers, and fibers of other shapes.
【従来の技術】〈類似製品である消臭繊維と防臭繊維〉
現時点で主要データーベースから、類似技術である消臭
繊維や防臭繊維やこれらに使用される薬剤に関する多く
の日本特許公開公報、多くの公刊物、新聞・雑誌記事、
総説論文などが検索される。例えば雑誌「機能材料」の
Vol.16、No.9、29〜36頁の総説論文「消
臭素材の開発」には、本発明の制臭繊維の目的と性能が
全く異なるが、繊維への臭気の化学的・物理的吸着性や
分解能力を増大させることができ、既に上市されている
7種類の消臭繊維と処理薬剤が記述されている。またこ
の総説論文には臭気の化学吸着性を低減する「生地に臭
いが付かない」繊維(以下防臭繊維と記す。)開発の必
要性も提唱されている。しかし本発明者らは、繊維素繊
維の場合にはこの開発を可能視しているが、羊毛や絹な
どタンパク繊維の場合は、酸性と塩基性の臭気を同時
に、大量・急速に化学反応により吸着するので、これら
繊維の風合いなど商業的価値を維持した上で、防臭性能
を付与することは、技術的に極めて困難と判断してい
る。 〈本発明の繊維の制臭性と消臭性や防臭性との差異〉本
発明でいう制臭性とは、被処理繊維固有の臭気の吸着量
をほとんど増減しないが、処理後に吸着した臭気の再揮
散量を顕著に低下及び/又は遅延させることにより、処
理繊維の嗅覚的な臭気強度を著しく低下させ、これが定
性的にも定量的にも証明できる性能と定義する。このよ
うな制臭性を得る薬剤や繊維は、本発明者らの調査では
まだ公開されていない。[Prior art] <Similar products: deodorant fiber and deodorant fiber>
At present, from the main database, many Japanese patent publications, many publications, newspapers and magazine articles on similar technologies such as deodorant fibers and deodorant fibers and the drugs used in them.
Review articles are searched. For example, Vol. 16, No. The review article "Development of deodorizing materials" on pages 9, 29-36 states that although the purpose and performance of the deodorant fiber of the present invention are completely different, the chemical and physical adsorption and decomposability of the odor to the fiber are considered. Seven deodorant fibers and treatment agents that can be increased and are already on the market are described. This review article also suggests the need for the development of fibers that "do not smell the fabric" (hereinafter referred to as deodorant fibers) to reduce odor chemisorption. However, the present inventors consider this development possible in the case of fibrous fibers, but in the case of protein fibers such as wool and silk, acidic and basic odors are simultaneously produced in large quantities and rapidly by chemical reaction. Since it is adsorbed, it is considered to be technically extremely difficult to impart deodorant performance while maintaining commercial value such as the texture of these fibers. <Difference between deodorant property and deodorant property and deodorant property of fiber of the present invention> The deodorant property referred to in the present invention means that the amount of adsorption of the odor inherent in the fiber to be treated hardly increases or decreases, but the odor adsorbed after the treatment. By significantly reducing and / or delaying the amount of re-evaporation, the olfactory odor intensity of the treated fiber is significantly reduced, which is defined as performance that can be proved qualitatively and quantitatively. Drugs and fibers that obtain such an odor control have not yet been disclosed in the investigations of the present inventors.
【発明が解決しようとする課題】a)使用中に臭気(腐
敗臭などの悪臭の他に、香水臭や線香臭などの芳香も、
個人差で不快に感じることもあるので、これらをまとめ
て本発明が制臭の対象とする臭気に含める。)を制臭繊
維が吸着しても、未処理繊維と比較して臭気の再揮散量
を著しく低下させることにより、臭気の種類にもよる
が、処理繊維の可使用期間を2〜3倍程度延長し、しか
も処理繊維の制臭効果を、水洗、洗濯やドライクリーニ
ングにより再生可能とすること。 b)他の方法のように、消臭性合成繊維と通常繊維との
混紡、交織、交編など繁雑な方法によらず、ほとんど全
ての繊維素材に適用でき、極めて低固型分の水性薬剤で
含浸・乾燥、場合により軽度のキュアリングと水洗を行
うだけの簡便な方法で処理が完了すること。 c)別の他の方法のように、無機・有機系の消臭剤を繊
維に練り込んだり、バインダーを併用して、繊維に塗布
する方法とは異なり、本発明は単に繊維表面に極めて薄
い連続皮膜を形成させる方法であるため、被処理繊維固
有の風合いをほぼ完全に維持し、物性にも悪影響を及ぼ
さないようにすること。 d)いずれも高温での、アイロンがけ、成型プレス、ベ
ーキング、加圧処理、ヒートセット、常圧や減圧下での
高圧蒸気処理(デカタイジング)、水洗、繰り返し洗濯
・ドライクリニング、織物の機械的収縮処理(例えばサ
ンホライズ加工)などを行っても処理繊維の初期制臭性
能を維持すること。 e)煙草の煙中の物質数は、化学分析で同定済み分だけ
でも4,000以上とされている。多くの他の天然悪臭
の場合も、同様に複雑な組成よりなっているので、本発
明の性能の定量的測定には、環境庁が採用し、正常な嗅
覚の6人のパネルと臭気判定士により実施する臭気測定
法、通称、三点比較式ニオイ袋法を用いる以外には実際
上不可能であった。この方法を採用する場合は、環境悪
臭測定の場合よりも、試験法が非常に複雑となる欠点が
あった。そこで本発明者らは、本出願人開発の特願平9
−284225号に詳記した「空気汚染ガスの濃度測定
装置と測定方法」(以下エスポ式センサ法と記す。)の
測定結果が三点比較式ニオイ袋法による結果と優れた相
関性を示し、かつこの方法による臭気濃度とこのセンサ
測定値間に一次比例関係があることを確認済みであるの
で、エスポ式センサ法により測定した場合、処理繊維が
未処理繊維と比較して、臭気の再揮散量が例えば50%
かそれ以下となるような高度の制臭効果が得られる処理
薬剤の選択・処方及び繊維の処理条件などを決定しよう
とすることなどである。A) In use, in addition to odors such as odors such as putrefaction odors, and fragrances such as perfume odors and incense odors during use,
Since it may be uncomfortable due to individual differences, these are collectively included in the odor to be controlled by the present invention. ), Even if the deodorant fiber is adsorbed, the amount of odor re-evaporation is significantly reduced as compared with the untreated fiber, so that the usable life of the treated fiber is about 2-3 times, depending on the type of odor. To be prolonged and to be able to regenerate the deodorant effect of the treated fiber by washing with water, washing or dry cleaning. b) As in other methods, it can be applied to almost all fiber materials regardless of a complicated method such as blending, mixing, weaving and knitting of deodorant synthetic fibers and ordinary fibers, and is an aqueous agent having an extremely low solid content. The treatment is completed by a simple method of merely impregnating and drying, and optionally performing light curing and washing. c) Unlike other methods in which an inorganic / organic deodorant is kneaded into fibers or combined with a binder and applied to the fibers, the present invention merely provides an extremely thin surface on the fibers. Since it is a method of forming a continuous film, the texture inherent in the fiber to be treated is almost completely maintained so that physical properties are not adversely affected. d) Ironing, molding press, baking, pressure treatment, heat setting, high pressure steam treatment under normal pressure or reduced pressure (decatizing), washing with water, repeated washing / dry cleaning, mechanical shrinkage of fabric at all high temperatures Maintaining the initial odor control performance of the treated fiber even after treatment (for example, sun holiz treatment). e) The number of substances in the smoke of cigarettes is determined to be 4,000 or more even for the substances identified by chemical analysis. Many other natural malodors are similarly complex in composition, so a quantitative measurement of the performance of the present invention was taken by the Environment Agency and included a panel of 6 normal olfactory and an odor judge. Was practically impossible except by using the odor measurement method, commonly known as the three-point comparison type odor bag method. When this method is employed, there is a drawback that the test method becomes very complicated as compared with the case of measuring the environmental odor. Accordingly, the present inventors have proposed a Japanese Patent Application No.
The measurement results of the “air pollutant gas concentration measurement device and measurement method” (hereinafter referred to as “espo-type sensor method”) described in −284225 show excellent correlation with the results obtained by the three-point comparison type odor bag method, In addition, since it has been confirmed that there is a first-order proportional relationship between the odor concentration by this method and the measured value of this sensor, when measured by the Espo sensor method, the treated fiber is compared with the untreated fiber, and the odor is re-evaporated. For example, 50%
The purpose is to determine the selection and prescription of a treatment agent capable of obtaining a high degree of deodorizing effect or a treatment condition of the fiber.
【課題を解決するための手段】本発明は、(1)(A)
極限粘度法で測定した分子量が1.2×107以上、好
ましくは、1.8×107以上のアニオン基のみ、又は
アニオン基とカチオン基とを同時に含む両性荷電のアク
リルアミド及び/又はメタアクリリアミドの共重合体
{以下これらをポリ(メタ)アクリルアミドと略記す
る。)及び/又は例えばそのアルカリ塩や第4級アンモ
ニア塩構造などの誘導体、(B)ヒアルロン酸及び/又
は例えばそのアルカリ塩などの誘導体、好ましくは極限
粘度法で測定した分子量が106以上のもの、(C)水
溶性及び/又は水分散性のポリエポキシ化合物(以下こ
れらをエポキシ樹脂と記す。)を必須成分とする繊維処
理用の制臭剤、(2)エポキシ樹脂の分子量が103以
上のものを使用することを特徴とする上記(1)項記載
の制臭剤、(3)ポリエステルをポリイソシアネートと
反応させたポリウレタンの未反応水酸基をアルカリ金属
基で中和して水溶性及び/又は水分散性とした構造のイ
オノマー(以下これらを水性ポリウレタンイオノマーと
記す。)を含むことを特徴とする上記(1)項及び
(2)項記載の制臭剤、(4)上記(1)項及び/又は
(2)項及び/又は(3)項記載の制臭剤を含む水溶性
及び/又は水分散液よりなる溶液で処理した制臭性繊維
であることなどにより達成される。The present invention provides (1) (A)
Amphoteric acrylamide and / or metaacyl containing only an anionic group having a molecular weight of at least 1.2 × 10 7 , preferably at least 1.8 × 10 7 , or an anionic group and a cationic group at the same time, as measured by an intrinsic viscosity method. Lilyamide copolymers. These are hereinafter abbreviated as poly (meth) acrylamide. And / or derivatives thereof such as, for example, an alkali salt or a quaternary ammonium salt structure thereof, and (B) hyaluronic acid and / or a derivative such as an alkali salt thereof, preferably those having a molecular weight of 106 or more measured by an intrinsic viscosity method. , (C) a water-soluble and / or water-dispersible poly epoxy compound deodorant agent (hereinafter these referred to as epoxy resin.) for fiber treatment to the essential components, (2) the molecular weight of the epoxy resin is 10 3 or more And (3) neutralizing the unreacted hydroxyl groups of the polyurethane obtained by reacting the polyester with the polyisocyanate with an alkali metal group to obtain a water-soluble and / or Or the deodorant according to the above (1) and (2), wherein the deodorant comprises an ionomer having a water-dispersible structure (hereinafter referred to as an aqueous polyurethane ionomer). 4) It is a deodorant fiber treated with a solution comprising a water-soluble and / or aqueous dispersion containing the deodorant according to the above (1) and / or (2) and / or (3). Is achieved by
【発明の実施の形態】本発明は、以上のように構成され
おり、上記の課題を解決するために使用する制臭剤に使
用する薬剤組成とこれらの作用、配合比率、繊維の処理
方法、制臭性能の評価方法などは次の通りである。 〈制臭剤に使用する4成分の組成とこれらの作用〉 A)上記荷電性ポリアクリルアミド類の範囲は広いが、
本発明の目的を達成するのに最も適している物質の例
は、(a)5〜15モル%のアクリル酸及び/又はメタ
アクリル酸{以下これらを(メタ)メタアクリル酸と記
すことがある。}を共重合し分子量が10×107のア
ニオン性ボリアクリルアミド及び/またはこれのカルボ
キシ基に対し当量以下のアルカリ金属及び/又はアルカ
リ土類金属で中和した塩類の水溶液、(b)更に優れた
結果が得られる物質の例は、(a)のカルボキシル基に
対し当量、更に好ましくはこの80〜95モル%のジメ
チルアミノメチル基をマンニッヒ反応により導入した両
性荷電の水溶液である。ここで、(メタ)アクリルアミ
ド、酸性と塩基性のモノマーを共重合して得られる両性
共重合物は、低分子量で乾燥物が水溶性であるため、本
発明の目的には適さない。(c)本発明では用いない
が、比較したカチオン性(メタ)ポリアクリルアミド
(c)の例は、分子量が1.8×107のポリ(メタ)
アクリルアミドを水溶液状で(b)と同様にジメチルア
ミノメチル基を導入したものである。ここで本発明に関
連する(a)(b)及び(c)の稀薄水溶液の主な性質
の次の通りであった。 1.分解温度である約200℃以下で乾燥して得た
(a)と(c)の皮膜は、大量の水で完全に再溶解する
が、(b)のみは分子内・分子間製塩結合の生成により
水膨潤性を示すが不溶性であった。ただし(a)の場合
には、水性ポリエポキシ化合物を加えて乾燥すると、架
橋結合の生成により(b)と同様に水膨潤性を示すが不
溶性となった。 2.いずれも湿潤下において、(a)の乾燥皮膜はカチ
オン性の臭気をよく吸着し、非オン性の悪臭も若干吸着
するが、アニオン性臭気はほとんど吸着しなかった。ま
た(c)の乾燥皮膜は、アニオン性臭気をよく吸着し、
非イオン性臭気も若干吸着したが、カチオン性臭気はほ
とんど吸着しなかった。しかし、(b)の乾燥皮膜はど
のイオン性の臭気もよく吸着し、通常のガスクロマトグ
ラフィーで化学的にこれれらの臭気吸着性が認められ
た。 3.しかし、(a)、(b)及び(c)の各0.003
%の水溶液を、水平なセロファンに一定量を均一に流
し、乾燥して得た皮膜は、絶乾状態に近い5%RHでも
よく密着し、かつ化学分析的にはどのような臭気も吸着
しないことが確かめられるが、例えば、煙草の煙のエア
ロゾルは、このような低湿度でも膜表面によく付着する
ことと、60%RHでは、(b)の皮膜が吸着した臭気
強度が(a)や(c)の場合の40%程度であること
が、下記の簡易嗅覚法及びエスポ式センサ法で確認でき
た。 4.しかし、それぞれ0.005%の(a)、(b)及
び(c)の水溶液を含浸・乾燥し、蒸釜の中で5分間常
圧でスチーム処理後に3.と同様の比較を行った場合
は、三者間の差がなくなった。この原因は、水蒸気によ
りジメチルアミノメチル基が、かなり加水分解して揮散
し、織物上の(b)のカチオン性が低下し、アニオン性
が増加したためと推定された。 5.代表的合成繊維のポリエチレンテレフタレート(以
下PETと略記する。)ポリプロピレン(以下PPと略
記する。)、6ナイロン(以下NYと略記する。)、ポ
リアクリルニトリル(以下ANと略記する。)の代わ
り、にこれらのフィルムを用い、上記3.と同様に
(a)、(b)及び(c)の水溶液を流し皮膜を形成し
ようとしたが、均一な濡れが起こらず、いずれの乾個物
もフィィルムに対する密着性がなく、指で軽く押すと容
易に剥離した。また各水溶液に表面張力低下作用の大き
い種々の浸透剤を添加しても密着性の改善はできなかっ
た。従って、これらの水溶液は、各合成繊維やこれらを
を含む繊維素材の制臭剤として、そのままでは使用でき
ないと判断した。 B)本発明で使用するヒアルロン酸及び/又はその塩の
水溶液(以下これらをヒアルロン酸と記す場合があ
る。)は、ムコ多糖類の一種で、β−D−グルクロピラ
ノシルウロン酸−(1→3)−2−アセタミド−2−デ
オキシ−D−グルコピラノースの繰り返し構成単位より
なっており、種々の重合度のものがあるが、好ましくは
分子量が106以上のものが、本発明では好結果を得
た。次にこの化合物の作用は次の通りである。 1.臭気と吸着性や反応性のある物質を繊維が含有する
と、消臭性繊維となる。例えは、繊維が酸性基や酸性物
質を含むと塩基性の臭気の消臭を、塩基性基や塩基性物
質を含むとこの逆の消臭が起こる。また緩衝性の塩を含
む場合にも、イオン化度の強い方の酸性基や塩基性基が
それぞれ、イオン化度の弱い酸性臭気及び塩基性臭気を
複分解し選択的に吸収・消臭することがある。これらの
消臭反応は、通常の温・湿度下では可逆的である場合が
多いため、化学分析的に高い消臭率が証明できても、処
理繊維から再揮散する臭気は正確な化学分析が困難なほ
ど低濃度な場合でも、嗅覚的には非常に強い悪臭を感知
する場合が多い。ヒアルロン酸と荷電性ポリ(メタ)ア
クリルアミドは、いずれも消臭繊維から、微量でも嗅覚
的に非常に強い臭気の再揮散を防止する効果を有する
が、単独で比較する場合は、前者の方が後者よりもこの
防止効果は低い。しかし、両者を混合して使用する場合
は、いずれの単独使用の場合よりも高くなることが実験
的に証明できる。 2.この相乗効果が生じる理由は、まず両水溶液が任意
の割合で混合でき、乾燥により透明連続皮膜を形成する
こと、即ち相溶性がよいことと、ヒアルロン酸水溶液の
pHが、おおよそ5〜10の範囲で非常に安定であるこ
と、即ち強い緩衝性により荷電性ポリ(メタ)アクリル
アミドも有する緩衝性を更に増大・補強することなどが
挙げられる。 3.また例えばヒアルロン酸ナトリウムの水溶液はナト
リウムイオンと、ヒアルロン酸の極めて高酸価イオンと
に解離する。また両性荷電のポリ(メタ)アクリルアミ
ド単独の水溶液は、制臭加工や二次加工時に、130〜
200℃の範囲の乾熱や蒸熱に触れてジメチルアミノメ
チル基、更にこれが分解して生成するジメチルアミンと
ホルムアルデヒドが系外に揮散するため悪臭を発生し、
カチオン性が減少するが、ヒアルロン酸高酸価イオンの
共存により、これら分解生成物の系外への揮散を防止
し、乾燥後は制臭繊維上のアニオン基/カチオン基比の
大きな変化を防止できることも相乗効果が生じる有力な
理由として挙げられる。 4.ヒアルロン酸とその塩の水溶液は単独でも、荷電性
ポリ(メタ)アクリルアミドの水溶液と併用した場合で
も、上記した親水性の天然繊維類との接着性はすぐれて
いるが、上記した疎水性合成繊維類との接着性は全くな
い。 C)本発明で用いる水性ポリウレタンイオノマーは、ま
ず上記荷電性ポリアクリルアミド類とヒアルロン酸の各
水溶液と均一混和でき、かつ透明乾燥皮膜を形成する。
また重合体自体がアニオン性で、重合体多価アニオン基
のアルカリ塩となっているため、0.1μm以下の微粒
子になるよう水に可溶化又は分散可能である。本発明に
は、乾燥皮膜の100%モジュラスは150〜250k
g/cm2の範囲が好ましい。このような水性ポリウレ
タンイオノマーは、種々の組成が有り得るが、例えば、
炭素数4〜6の脂肪族2塩基酸ジオールやその2ナトリ
ウム塩とイソフタル酸やテレフタル酸から得られるポリ
エステルにジイソシアネート類を反応させた分子量が1
04〜2×104のものを水に溶解又は分散して得られ
る。 1.この水性ポリウレタンイオノマーで繊維を処理して
もほとんど制臭性を向上しないが、これを使用する理由
は、界面活性剤を含まないため、ほとんどの合成繊維に
対しすぐれた接着性を有し、かつ上記の荷電性ポリアク
リルアミド類とヒアルロン酸との混合物の有するすぐれ
た繊維に対する制臭効果を阻害することなく、これらの
合成繊維に対するアンカー剤として作用し、洗濯、ドラ
イクリニングや摩擦による脱落を効率的に防止できるた
めである。 2.これら3種類の高分子化合物の混合水溶液は、合成
繊維や天然繊維と合成繊維とが混合された編織物、不織
布などの制臭剤の増膜成分としてすぐれた効果を与える
が、天然繊維単独の場合にも使用できる。 D)本発明で使用する水性ポリエポキシ樹脂は、1分子
中のオキシラン環(エポキシ基)数が2以上のもので、
主に水酸基数が2〜4のポリオール類にエピクロルヒド
リンを反応させて製造される。本発明に適した化合物の
例は、ソルビトール テトラグリシジルエーテル、ポリ
グリセロール ポリグリシジルエーテル、ペンタエリス
リトール テトラグリシジルエーテル、ジグリセロール
トリ(及びジ)グリシジルエーテル、トリメチロールプ
ロパン トリ(及びジ)グリシジルエーテル、ポリテト
ラメチレングリコール ジグリシジルエーテル、エチレ
ングリコール ジグリシジルエーテル、ポリエチレング
リコール ジグリシジルエーテル、プロピレングリコー
ル ジグリシジルエーテル、ポリプロピレングリコール
ジグリシジルエーテル、ビスフェノールA型エポキシ
樹脂のO/W型エマルジョンやこれらの混合物である。 1.これら水性ポリエポキシ樹脂は、上記2又は3種類
の混合高分子化合物の架橋剤として使用する。実験によ
り決める適度の架橋生成により、実施例に示したように
耐水性、耐洗濯性、耐熱性、耐蒸熱性、耐ドライクリニ
ング性、摩擦性及び制臭効果が著しく向上した。 2.架橋剤として、水溶性メラミン樹脂などアミノ樹脂
を使用することも考えられたが、このメチレン付加型の
架橋反応には、アミン臭やホルムアルデヒド臭が発生し
易くなる高温でのキュアリングと、塩基性悪臭と結合し
易い酸触媒の使用が必要で、更に本発明で使用する2又
は3種類の水溶性高分子化合物を加工中に凝集させる場
合もあり、本発明には適さないので除外した。 3.本発明の繊維処理用制臭剤に使用する2又は3種類
の高分子化合物は、繊維の種類に関係なく、処理時に繊
維の微細構造に浸透しない。また上記したような合成繊
維は、いずれも結晶化度が大きいため、比較的低分子の
水性エポキシ樹脂も含め薬剤の繊維微細構造への浸透が
ほとんど起こらず、繊維表面で制臭剤の皮膜が形成され
る。従って使用する水性エポキシ樹脂の分子量の影響を
受けにくい。 4.しかし、親水性のタンパク繊維、再生タンパク繊
維、繊維素繊維、再生繊維素繊維及びこれらと合成繊維
とが混合された繊維素材は、使用する水性エポキシ樹脂
の分子量が大きい程繊維の非結晶領域への浸透率が低下
するので、できるだけ分子量の大きい化合物を選択する
必要がある。分子量が103以上の化合物を使用する
と、繊維の微細構造への不必要な内部浸透が軽減できる
ので、処理繊維の抗張力低下、風合いの劣化、制臭効果
の耐洗濯性などの低下がいずれも低減できた。 E)本発明の制臭剤に添加する助剤類は、制臭剤溶液の
防腐剤、それぞれ制臭繊維の制菌剤、防黴剤、帯電防止
剤、柔軟剤、殺ダニ剤、昆虫忌避剤、柔軟剤などが挙げ
られる。これら助剤類に必要な性質は、水やドライクリ
ニング溶剤に不溶性、水分の存在下で、カチオン性、ア
ニオン性、両性でないもの、臭気物質と化学的及び/又
は物理的な吸着性や反応性を示さないもの、予め微粒子
に分散されており、制臭剤の各高分子化合物に凝集を起
こさないよう予め均一な微細な粒子に分散されているも
の、本発明の制臭性能を阻害しないものなどであり、こ
れらは予め予備試験で検討しておく必要がある。 〈制臭剤の配合比率と繊維に対する制臭処理方法〉 1.本発明の繊維制臭剤水溶液の固形分濃度は、多くの
織物に対して0.001〜0.01%の範囲で良好な制
臭効果を示すことが、下記の評価方法で認められたが、
妥当な濃度は0.002〜0.01%の範囲である。し
かし最適濃度は処理する繊維素材ごとに実験を行い決定
する必要がある。 2.本発明制臭剤は、3成分で効果を発揮する場合と4
成分が必要な場合があるので、これを(表1)に示し
た。 (表1) 3.それぞれ3成分の場合と4成分の場合の本発明制臭
剤の最適配合比は、処理する繊維ごとに試験を行って決
定する必要があるが、次のような固形分換算の比率で試
験を行った繊維素材にすぐれた制臭効果を与えた。 (3成分処方の場合) 荷電性ポリアクリルアミド:ヒアルロン酸及び/又はそ
の塩:水性エポキシ樹脂=45%:15%:40% (4成分処方の場合) 荷電性ポリアクリルアミド:ヒアルロン酸及び/又はそ
の塩:水性ポリウレタンイオノマー:水性エポキシ樹脂
=30%:10%:40%:20% 4.本発明の制臭剤による制臭処理法の主な注意事項は
下記の通りである。 a)加工する繊維素材に洗剤、柔軟剤、塩類、酸、塩基
など水中でイオン化する物質が残留していると、これら
が逆電荷の悪臭に対して消臭剤として作用し可逆的な吸
着を起こすので、事前に十分湯洗いし除去しておく必要
がある。 b)制臭剤水溶液のpHを、5.0〜7.5の範囲に調
節しておくと、主要配合成分の高分子化合物が長時間の
運転中も安定性が維持できる。タンパク繊維の場合は、
微量のクエン酸などを添加して、処理液のpHを被処理
繊維の等電点に近くなるように調節すると、起こり得る
薬剤の選択吸着が減少する。 c)各繊維素材への含浸・乾燥は、素材の形態に適した
通常の方法を適用する。例えば編織物や不織布の場合
は、マングルロールによる圧搾後ステンターによる乾
燥、先染糸、靴下、太番手の編糸などの場合は含浸・遠
心脱水後に熱風乾燥、厚地不織布やカーペットの場合
は、含浸・遠心脱水後に熱風乾燥するか、原料繊維段階
での処理などによればよいが、これら以外の方法でもよ
い。また、自動車の内装用繊維や、既に敷き詰められて
いるカーペットの処理は、スプレイ方式、雑巾がけ、モ
ップによる拭き取りなどの後、自然乾燥や温風乾燥方式
による処理も可能である。 d)100%合成繊維素材を含浸する場合は、その全表
面が本発明の制臭処理剤水溶液で完全に濡れることが、
高度の制臭効果を得る条件であり、工程中の処理液の固
形分濃度の実質的な変化が起こらないので、容易に品質
管理できる。これに対して、親水性繊維やこれと合成繊
維との混合素材の場合には、制臭剤の高分子成分が繊維
表面に全量止まり、繊維の非結晶領域に浸透しないた
め、水性ポリエポキシ樹脂と水分のみが親水性繊維の非
結晶領域内に選択的に浸透し、工程中に処理液の濃度が
変動する可能性が大きい。この防止策として、処理液の
濃度が一定に保てるような繊維素材の含水率を実験的に
決め、湿った状態の繊維素材をマングルロールによる1
回の圧搾などの方法で処理すれば、高度の濃度管理がで
きる。 e)処理液含浸は、室温乾燥、100℃以下での温風乾
燥、最高でも130℃の以下のオーブン中で恒量になる
まで乾燥すれば、本発明の制臭剤は完全に架橋反応が完
結する。加工後、温水洗を行っても制臭性は低下せず、
むしろ向上する傾向を確認した。 〈制臭性能の評価方法〉 1.本発明の制臭効果の定量的評価は、上記の三点比較
式ニオイ袋法で非常に正確に行えるが、実験が容易で、
臭気に対するセンサの感度との間に一次比例関係がある
ことを確認しているので、両法とも評価結果の信頼性は
高い。 2.エスポ式センサ法による試験では、供試臭気に主と
して煙草の煙臭を使用した。この方法は、まず人工喫煙
装置で煙草の煙エアロゾルをポリ袋内に封入し、煙が消
え袋内にヤニが沈着してから、この袋内の臭気を別のポ
リ袋に採取して原臭とし、これを新鮮で低湿度の空気で
稀釈して試験臭気とした。未処理と制臭処理した各繊維
試料に試験臭気を一定の条件で吸収させてから、各試料
を別々のポリ袋に移し、低湿度の新鮮な空気を一定量送
入し、一定時間後各試料から発生した臭気をセンサで測
定した。未処理試料と制臭処理した試料から揮散する臭
気を測定(センサの指示値の単位はHz)し、未処理試
料の臭気残臭率を100%とした時の各制臭処理した試
料の臭気を百分率に換算して比較した。 3.また、このセンサ法に並行して、本発明者らが考案
した簡易嗅覚試験も採用した。この試験は揮発速度が遅
く、組成が複雑な混合臭気、例えば香水のエタノール溶
液、線香の煙臭のエタノール/水=80/20の混合溶
剤溶液、煙草のヤニのエタノール/水=90/10の混
合溶剤溶液、ニンニク抽出液などを試験臭気源とし、そ
れぞれ制臭処理を行った繊維素材の上から一定量滴下し
た後、これに一定条件でヘアドライヤーの熱風や冷風を
当ててから、これら試料を三人一組の嗅覚の正常なパネ
ル三組みにより残臭強度の順位を嗅ぎ分けさせる方法で
ある。同一目的の試験で、この簡易嗅覚試験の結果とセ
ンサ法による結果とを繰り返し比較したところ、90%
以上の正解率であったので、この試験法は本発明完成の
ために非常に貢献した。 4.着衣などの繊維素材が通常の生活・作業空間で接触
する臭気は、単一臭気の場合は希で、ほとんどが複雑な
組成の混合臭気であるため、制臭繊維の単一臭気に対す
るガス検知管法やガスクロマトグラフィーなどによる消
臭効果の測定は、実用面で価値が少ないため採用しなか
ったが、本発明では、化学的分析を、制臭性と消臭性の
差異を明確に把握するために行ない、結果の一部を実施
例4と参考例11に記した。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is constituted as described above, and has a composition of a deodorant used for solving the above-mentioned problems, its action, a mixing ratio, a method of treating fibers, The evaluation method of the odor control performance is as follows. <Composition of Four Components Used in Deodorant and Their Action> A) Although the range of the chargeable polyacrylamides is wide,
Examples of substances most suitable for achieving the objects of the present invention include (a) 5 to 15 mol% of acrylic acid and / or methacrylic acid (hereinafter sometimes referred to as (meth) methacrylic acid) . Aqueous solution of an anionic polyacrylamide having a molecular weight of 10 × 10 7 and neutralized with an alkali metal and / or alkaline earth metal having an equivalent weight or less relative to the carboxy group thereof, and (b) more excellent An example of a substance which can obtain the above results is an amphoteric charged aqueous solution into which a dimethylaminomethyl group equivalent to the carboxyl group of (a), more preferably 80 to 95 mol%, is introduced by a Mannich reaction. Here, (meth) acrylamide and an amphoteric copolymer obtained by copolymerizing an acidic and a basic monomer are not suitable for the purpose of the present invention because the dried product is low in molecular weight and water-soluble. (C) Although not used in the present invention, an example of the compared cationic (meth) polyacrylamide (c) is poly (meth) having a molecular weight of 1.8 × 10 7
Acrylamide is obtained by introducing a dimethylaminomethyl group in the form of an aqueous solution in the same manner as in (b). Here, the main properties of the diluted aqueous solutions of (a), (b) and (c) related to the present invention were as follows. 1. The films (a) and (c) obtained by drying at a decomposition temperature of about 200 ° C. or less are completely redissolved with a large amount of water, but only (b) forms intra- and inter-molecular salt bonds. Showed water swelling but was insoluble. However, in the case of (a), when the aqueous polyepoxy compound was added and dried, cross-linking was formed to show water swellability as in (b) but became insoluble. 2. In all cases, the dried film (a) adsorbed the cationic odor well and slightly adsorbed the non-odorous odor under the wet condition, but hardly adsorbed the anionic odor. The dried film (c) adsorbs anionic odor well,
Some nonionic odors were also adsorbed, but almost no cationic odors were adsorbed. However, the dried film of (b) adsorbed any ionic odor well, and these odor-adsorbing properties were recognized chemically by ordinary gas chromatography. 3. However, each of (a), (b) and (c) 0.003
% Aqueous solution is evenly poured in a horizontal cellophane and dried. The film obtained by drying is well adhered even at 5% RH, which is almost dry, and does not chemically adsorb any odor. For example, the aerosol of cigarette smoke adheres well to the membrane surface even at such low humidity, and at 60% RH, the odor intensity of the adsorbed film of (b) is (a) or About 40% of the case of (c) could be confirmed by the following simple olfactory method and the espo-type sensor method. 4. However, each was impregnated with 0.005% aqueous solution of (a), (b) and (c) and dried, and steamed at normal pressure for 5 minutes in a steamer. When the same comparison was made, there was no difference between the three. This was presumed to be due to the fact that the dimethylaminomethyl group was considerably hydrolyzed and vaporized by water vapor, and the cationicity of (b) on the fabric was reduced and the anionicity was increased. 5. Instead of typical synthetic fibers, polyethylene terephthalate (hereinafter abbreviated as PET), polypropylene (hereinafter abbreviated as PP), 6 nylon (hereinafter abbreviated as NY), and polyacrylnitrile (hereinafter abbreviated as AN), These films were used for the above 3. (A), (b) and (c) were flowed in the same manner as above to form a film. However, uniform wetting did not occur, and none of the dry items had any adhesion to the film, and was lightly pressed with a finger. And easily peeled off. Even if various penetrants having a large surface tension lowering effect were added to each aqueous solution, the adhesion could not be improved. Therefore, it was determined that these aqueous solutions could not be used as such as deodorants for synthetic fibers and fiber materials containing them. B) The aqueous solution of hyaluronic acid and / or its salt used in the present invention (hereinafter sometimes referred to as hyaluronic acid) is a kind of mucopolysaccharide and is β-D-glucropyranosyluronic acid- The present invention comprises repeating structural units of (1 → 3) -2-acetamido-2-deoxy-D-glucopyranose, and has various degrees of polymerization, and preferably has a molecular weight of 106 or more. Now we have good results. Next, the action of this compound is as follows. 1. When the fiber contains a substance that is adsorbable or reactive with odor, the fiber becomes a deodorant fiber. For example, deodorization of a basic odor occurs when the fiber contains an acidic group or an acidic substance, and vice versa when the fiber contains a basic group or a basic substance. In addition, even when a buffering salt is contained, the acidic group and the basic group having a higher ionization degree may respectively decompose an acidic odor and a basic odor having a lower ionization degree and selectively absorb and deodorize. . Since these deodorizing reactions are often reversible under normal temperature and humidity, even if a high deodorizing rate can be proved by chemical analysis, the odor re-evaporated from the treated fiber cannot be accurately analyzed. Even when the concentration is so low as to be difficult, an odor is often perceived as a very strong odor. Both hyaluronic acid and charged poly (meth) acrylamide have the effect of preventing the re-evaporation of a very strong odor from the deodorant fiber, even in trace amounts, but when compared alone, the former is better. This prevention effect is lower than the latter. However, it can be experimentally proved that when both are used in combination, the results are higher than when either is used alone. 2. The reason for this synergistic effect is that both aqueous solutions can be mixed at an arbitrary ratio and a transparent continuous film is formed by drying, that is, the compatibility is good, and the pH of the hyaluronic acid aqueous solution is in the range of approximately 5 to 10. In other words, it is possible to further increase and reinforce the buffering property of the charged poly (meth) acrylamide due to the strong buffering property. 3. For example, an aqueous solution of sodium hyaluronate dissociates into sodium ions and extremely high acid ions of hyaluronic acid. In addition, an aqueous solution of amphoteric charged poly (meth) acrylamide alone can be used for anti-odor processing and secondary processing at 130-130.
When exposed to dry heat or steam heat in the range of 200 ° C, dimethylaminomethyl groups, and dimethylamine and formaldehyde generated by decomposition of the dimethylaminomethyl groups, evaporate out of the system, generating a bad smell,
Although the cationicity decreases, the coexistence of hyaluronic acid and high acid valence ions prevents these decomposition products from volatilizing outside the system, and prevents a large change in the anion group / cation group ratio on the deodorant fiber after drying. What can be done is also a major reason for the synergistic effect. 4. Although the aqueous solution of hyaluronic acid and a salt thereof is used alone or in combination with an aqueous solution of charged poly (meth) acrylamide, the adhesiveness to the above-mentioned hydrophilic natural fibers is excellent, but the above-mentioned hydrophobic synthetic fiber There is no adhesiveness with any kind. C) The aqueous polyurethane ionomer used in the present invention can be uniformly mixed with the aqueous solution of the above-mentioned charged polyacrylamides and hyaluronic acid, and forms a transparent dry film.
Further, since the polymer itself is anionic and is an alkali salt of a polyvalent anion group of the polymer, it can be solubilized or dispersed in water so as to be fine particles of 0.1 μm or less. According to the present invention, the 100% modulus of the dried film is 150-250k.
g / cm 2 is preferred. Such aqueous polyurethane ionomers can have various compositions, for example,
When a diisocyanate is reacted with a polyester obtained from an aliphatic dibasic acid diol having 4 to 6 carbon atoms or a disodium salt thereof and isophthalic acid or terephthalic acid, the molecular weight is 1
Those 0 4 ~2 × 10 4 obtained by dissolving or dispersing in water. 1. Treating fibers with this aqueous polyurethane ionomer hardly improves odor control, but it is used because it contains no surfactant, so it has excellent adhesion to most synthetic fibers, and Acts as an anchoring agent for these synthetic fibers without inhibiting the excellent odor control effect on the excellent fibers possessed by the mixture of the above-mentioned charged polyacrylamides and hyaluronic acid, and efficiently removes by washing, dry cleaning and friction. This is because it can be prevented. 2. A mixed aqueous solution of these three types of polymer compounds provides an excellent effect as a film-enhancing component of a deodorant such as a knitted woven fabric or a nonwoven fabric in which a synthetic fiber or a natural fiber is mixed with a synthetic fiber. Can also be used in cases. D) The aqueous polyepoxy resin used in the present invention has an oxirane ring (epoxy group) number of 2 or more in one molecule,
It is mainly produced by reacting epichlorohydrin with polyols having 2 to 4 hydroxyl groups. Examples of compounds suitable for the present invention are sorbitol tetraglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol tetraglycidyl ether, diglycerol tri (and di) glycidyl ether, trimethylolpropane tri (and di) glycidyl ether, polytetra O / W emulsions of methylene glycol diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, bisphenol A epoxy resin, and mixtures thereof. 1. These aqueous polyepoxy resins are used as a cross-linking agent for the above two or three kinds of mixed polymer compounds. The moderate cross-linking determined by the experiment significantly improved the water resistance, washing resistance, heat resistance, steam heat resistance, dry cleaning resistance, frictional properties and odor control effect as shown in the examples. 2. The use of an amino resin, such as a water-soluble melamine resin, as a cross-linking agent was also considered, but this methylene addition-type cross-linking reaction involves curing at a high temperature where amine odor and formaldehyde odor are likely to occur, and basic It is necessary to use an acid catalyst that easily binds to the offensive odor, and furthermore, two or three types of water-soluble polymer compounds used in the present invention may be aggregated during processing, and are excluded because they are not suitable for the present invention. 3. The two or three types of high molecular compounds used in the fiber treating deodorant of the present invention do not penetrate into the fine structure of the fiber during the processing, regardless of the type of the fiber. In addition, since the above synthetic fibers have a high degree of crystallinity, the penetration of the drug including the relatively low molecular weight aqueous epoxy resin into the fiber microstructure hardly occurs, and the deodorant film is formed on the fiber surface. It is formed. Therefore, it is hardly affected by the molecular weight of the aqueous epoxy resin used. 4. However, the hydrophilic protein fiber, the regenerated protein fiber, the fibrous fiber, the regenerated fibrous fiber, and the fiber material in which these are mixed with the synthetic fiber, the larger the molecular weight of the water-based epoxy resin used, the more the amorphous region of the fiber Therefore, it is necessary to select a compound having as large a molecular weight as possible. When a compound having a molecular weight of 10 3 or more is used, unnecessary internal penetration into the fine structure of the fiber can be reduced, so that the treated fiber has a reduced tensile strength, a deteriorated texture, and a reduced anti-odor effect such as washing resistance. Could be reduced. E) The auxiliaries to be added to the deodorant of the present invention include a preservative for the deodorant solution, a bacteriostat for the deodorant fiber, a fungicide, an antistatic agent, a softener, an acaricide, and an insect repellent. Agents, softeners and the like. The properties required for these auxiliaries are insolubility in water and dry cleaning solvents, non-cationic, anionic and amphoteric in the presence of water, chemical and / or physical adsorption and reactivity with odorants No, no pre-dispersed in fine particles, pre-dispersed in uniform fine particles so as not to cause aggregation in each polymer compound of the deodorant, one that does not hinder the deodorant performance of the present invention These need to be considered in advance in preliminary tests. <Compounding ratio of deodorant and deodorizing treatment method for fiber> The solid content concentration of the aqueous solution of the fiber deodorant of the present invention was found to exhibit a good deodorant effect in the range of 0.001 to 0.01% with respect to many fabrics by the following evaluation method. ,
Reasonable concentrations range from 0.002 to 0.01%. However, the optimum concentration needs to be determined by conducting experiments for each fiber material to be treated. 2. The deodorant of the present invention has three components,
This is shown in (Table 1) since components may be required. (Table 1) 3. It is necessary to determine the optimum blending ratio of the deodorant of the present invention in the case of three components and in the case of four components, respectively, by performing a test for each fiber to be treated. An excellent deodorant effect was given to the fiber material that was used. (In the case of a three-component formulation) Chargeable polyacrylamide: hyaluronic acid and / or its salt: aqueous epoxy resin = 45%: 15%: 40% (In the case of a four-component formulation) Chargeable polyacrylamide: hyaluronic acid and / or its 3. Salt: aqueous polyurethane ionomer: aqueous epoxy resin = 30%: 10%: 40%: 20% The main precautions of the deodorant treatment method using the deodorant of the present invention are as follows. a) If substances that ionize in water such as detergents, softeners, salts, acids, and bases remain in the textile material to be processed, these act as deodorants against the malodor of the opposite charge, resulting in reversible adsorption. It is necessary to wash and remove it beforehand. b) If the pH of the deodorant aqueous solution is adjusted to the range of 5.0 to 7.5, the stability of the polymer compound of the main compounding component can be maintained even during long-time operation. For protein fiber,
If a small amount of citric acid or the like is added to adjust the pH of the treatment solution to be close to the isoelectric point of the fiber to be treated, possible selective adsorption of the drug is reduced. c) For impregnation and drying of each fiber material, an ordinary method suitable for the form of the material is applied. For example, in the case of knitted fabrics and nonwoven fabrics, squeeze by mangle rolls and then dry with a stenter; in the case of dyed yarns, socks, and knitted yarns, impregnate and centrifugally dehydrate and then dry with hot air. Drying with hot air after centrifugal dehydration or treatment at the raw fiber stage may be used, but other methods may be used. In addition, the treatment of the interior fiber of the automobile and the carpet already laid can be performed by spraying, wiping with a mop, wiping with a mop, or the like, followed by natural drying or hot air drying. d) When impregnated with 100% synthetic fiber material, the entire surface is completely wetted with the deodorant aqueous solution of the present invention.
This is a condition for obtaining a high degree of odor control effect, and a substantial change in the solid content concentration of the processing solution during the process does not occur, so that the quality can be easily controlled. On the other hand, in the case of a hydrophilic fiber or a mixed material of a synthetic fiber and a hydrophilic fiber, the polymer component of the deodorant stays on the fiber surface in its entirety and does not penetrate into the non-crystalline region of the fiber. Only water and water selectively penetrate into the non-crystalline region of the hydrophilic fiber, and there is a high possibility that the concentration of the treatment liquid fluctuates during the process. As a measure to prevent this, the moisture content of the fiber material is determined experimentally so that the concentration of the treatment liquid can be kept constant.
A high degree of concentration control can be achieved if the treatment is performed by a method such as pressing twice. e) When the treatment liquid is impregnated, drying at room temperature, hot air drying at 100 ° C. or less, and drying in an oven at 130 ° C. or less until the weight becomes constant, the deodorant of the present invention completely completes the crosslinking reaction. I do. After processing, even if washed with warm water, the odor control does not decrease,
Rather, they confirmed the tendency to improve. <Evaluation method of odor control performance> The quantitative evaluation of the deodorant effect of the present invention can be performed very accurately by the three-point comparison odor bag method, but the experiment is easy,
Since it has been confirmed that there is a first-order proportional relationship between the sensor and the sensitivity to odor, the reliability of the evaluation results is high in both methods. 2. In the test by the espo sensor method, mainly the smoke odor of tobacco was used as the test odor. In this method, first, the smoke aerosol of cigarettes is sealed in a plastic bag with an artificial smoking device, the smoke disappears and the tar is deposited in the bag. This was diluted with fresh, low humidity air to give a test odor. After absorbing the test odor under a certain condition to each of the untreated and deodorized fiber samples, transfer each sample to a separate plastic bag and send a certain amount of low humidity fresh air. The odor generated from the sample was measured by a sensor. The odor emitted from the untreated sample and the deodorized sample is measured (the unit of the sensor reading is Hz), and the odor of each deodorized sample is defined assuming that the residual odor rate of the untreated sample is 100%. Was converted to a percentage and compared. 3. In parallel with this sensor method, a simple olfactory test devised by the present inventors was also employed. In this test, a mixed odor having a slow volatilization rate and a complex composition, for example, an ethanol solution of perfume, a mixed solvent solution of ethanol / water of incense fume odor of 80/20, and an ethanol / water of cigarette tar of 90/10 were obtained. A mixed solvent solution, garlic extract, etc. were used as test odor sources, and a certain amount was dropped onto each of the deodorized fiber materials.Then, apply hot air or cold air from a hair dryer under certain conditions to these samples. In this method, the order of the residual odor intensity is determined by three sets of normal olfactory panels of three persons. Repeated comparison between the results of this simple olfactory test and the results obtained by the sensor method in the test for the same purpose showed that 90%
Because of the above correct answer rate, this test method greatly contributed to the completion of the present invention. 4. The odor with which textile materials such as clothing come into contact in normal living and working spaces is rare in the case of a single odor, and is mostly a mixed odor with a complex composition. The measurement of the deodorant effect by the method or gas chromatography was not adopted because it is of little value in practical use, but in the present invention, the chemical analysis is used to clearly grasp the difference between the deodorant property and the deodorant property. Some of the results are described in Example 4 and Reference Example 11.
【実施例と参考例】以下本発明を実施例と参考例により
説明する。 (実施例1〜3と参考例1〜10)濃紺に染色され、3
回の湯洗いによりイオン性のある不純物を除去し、乾燥
しただけの170g/m2の100%羊毛平織服地(参
考例1)を、表2のように、それぞれ本発明の処方(実
施例1〜3)、それぞれ上記(発明の実施の形態)の各
項で記した本発明制臭剤の4種類の配合成分単独とこれ
らの混合水溶液(参考例2〜10)に含浸、ロールでピ
ックアップ60%に絞り、130℃で完全に乾燥してか
ら、実施例1と2及び参考例2のみの試料を10分間煮
沸後乾燥し、これに煙草の煙臭を試験臭に用いたものを
試料とし、エスポ式センサ法により各試料が吸着した後
に再揮散した臭気の強度を測定(制臭効果の測定)し
た。 (表2) (実施例4と参考例11)株式会社色染社より購入し
た、280g/m2の精練・漂白済み100%羊毛綾地
の標準原反(参考例11)と同じ織物に実施例3と同一
条件で制臭処理を行った織物(実施例4)から、それぞ
れ10cm×10cmの大きさの各4枚の試料を切り取
り、難透過性・内容量5リットル、ナイロン樹脂コート
型のポリエチレン袋に二方活栓を取り付けた後、各試料
を1枚ずつ入れ、それぞれの袋に(表3)に記したよう
に濃度の濃度既知の4種類の悪臭ガスを、ポンプで各5
リットルづつ送入してから、初期濃度と所定時間経過後
の各悪臭ガスの濃度を、北川式ガス検知管を用いて測定
した後、更に各試料を取り出してから、上記の簡易試験
法によりヘアドライアーを30cm上から垂直に各2分
間冷風を当て、残留臭気の強弱をパネルの嗅覚により比
較した。 (表3) 羊毛織物(参考例11)は、イオン性のある臭気を大量
に消臭するので、無処理織物でも優れた消臭繊維である
が、以上の結果は、着用者が吸着した悪臭の揮散に不快
感を感ずることをを示している。制臭処理織物(実施例
4)は、この分析精度の範囲では、消臭性の増減を示さ
ないが、吸収した臭気を再揮散させにくい性能があるこ
とを簡易嗅覚試験の結果は示した。ここで、繊維を入れ
ない袋中のアンモニアと酢酸の急速な濃度低下は、ポリ
エチレンフィルムのコーティング剤のナイロン樹脂が吸
着したことを別の試験で確認している。 (実施例5〜6と参考例12〜16)PET/羊毛の混
紡率70/30、190g/m2、精練、漂白、水洗ず
みの平織物を、(表4)の処方により実施例1〜3と同
一条件の処理を行った。但し加工後の煮沸試験の代わり
に、デカタイジングを想定した減圧下で30分間のスチ
ーミング処理を行った後、同じ方法で煙草の煙臭に対す
る制臭効果の測定試験をエスポ式センサ法で行った。 (表4) (実施例7と参考例17)実施例5と同じ制臭処理織物
(実施例7)と参考例12の未処理織物(参考例17)
を水平面におき、4倍量のエチルアルコールで稀釈した
香水(フランス製シャネルNo.5)を、それぞれピペ
ットで1ml滴下し、室温25℃で冷風のヘアドライヤ
ーの風を8分間あてた後、それぞれの試料を別個の二方
活栓を取り付けたポリエチレン製袋に入れ、10リット
ルの新鮮な空気を送入してから室温で24時間放置後、
二方活栓を開いて袋内の袋を押し出し、3人/組×3組
のパネルに臭気の強い方を嗅ぎ分けさせる方法で判定し
たところ、全員が制臭処理織物の袋中の香水の再揮散臭
の方が、未処理織物よりもかなり弱いと判定した。 (実施例8〜11と参考例18)無処理の70g/m2
PP製スパンボンド(参考例18)を、下記(表5)の
水性制臭剤にて、ピックアップ50%にロールで含浸
し、130℃のオーブン内で完全に乾燥・仕上げてから
(実施例8)取り出し、実施例1同様にこれらに煙草の
煙臭を吸収・付着させたものを試料とし、本出願人セン
サ法により各試料が空間に揮散した臭気強度を比較測定
した。(表5) (制臭剤で用いた処理剤) A−1.アニオン性、分子量2×107、アニオン含量
が10モル%のポリアクリルアミド共重合物のナトリウ
ム塩の水溶液 A−2.両性荷電、分子量2×107、カチオン基/ア
ニオン基比が0.91/1モル%で、カチオン基/アニ
オン基含有量が10モル%の、ポリアクリルアミドの共
重合物の水溶液 B. 分子量2×106のヒアルロン酸ナトリウムの
水溶液 C. 分子量が1.5×104の水性ポリウレタンイ
オノマーの水溶液 D. D)分子量計算値が248でエポキシ基数2の
グリセロールジグリシジルエーテルExamples and Reference Examples Hereinafter, the present invention will be described with reference to Examples and Reference Examples. (Examples 1-3 and Reference Examples 1-10)
As shown in Table 2, 170 g / m 2 of a 100% wool plain woven fabric (Reference Example 1), which had been dried to remove ionic impurities and was dried only once, was separately formulated according to the present invention (Example 1). To 3), impregnating the four types of the deodorant of the present invention alone and the mixed aqueous solution thereof (Reference Examples 2 to 10) described in each section of the above (Embodiments of the invention), and picking up with a roll 60 %, Completely dried at 130 ° C., and then boiled the samples of Examples 1 and 2 and Reference Example 2 for 10 minutes and dried. The sample was prepared by using the smoke of cigarette as the test smell. The intensity of the odor re-evaporated after each sample was adsorbed was measured by the Espo sensor method (measurement of the odor control effect). (Table 2) (Example 4 and Reference Example 11) Same fabric as in Example 3 on the same fabric as the standard raw material of 280 g / m 2 scoured and bleached 100% wool ayaji (Reference Example 11) purchased from Shimosen Co., Ltd. Four samples each having a size of 10 cm × 10 cm were cut out from the woven fabric (Example 4) that had been subjected to the odor control under the conditions described above and placed in a nylon bag coated with nylon having a low permeability and a capacity of 5 liters. After attaching the stopcock, each sample was placed one by one, and in each bag, four types of odorous gases having a known concentration as shown in (Table 3) were pumped into each bag for 5 times.
After sending each liter, the initial concentration and the concentration of each offensive odor gas after a lapse of a predetermined time are measured using a Kitagawa gas detector tube, and then each sample is taken out. A cooler was applied to the dryer vertically from 30 cm above for 2 minutes each, and the intensity of residual odor was compared by the sense of smell of the panel. (Table 3) The wool fabric (Reference Example 11) is an excellent deodorant fiber even in an untreated fabric because it deodorizes a large amount of ionic odor, but the above results show that the wearer does not volatilize the odor adsorbed by the wearer. It indicates that the user feels pleasure. The results of the simple olfaction test showed that the deodorized fabric (Example 4) did not show any increase or decrease in deodorant properties within the range of the analysis accuracy, but had the property of hardly re-evaporating the absorbed odor. Here, another test confirms that the rapid decrease in the concentration of ammonia and acetic acid in the bag containing no fiber adsorbed the nylon resin as a coating agent for the polyethylene film. (Examples 5 to 6 and Reference Examples 12 to 16) A plain woven fabric having a PET / wool blend ratio of 70/30, 190 g / m 2 , scouring, bleaching, and water washing was prepared according to the formulation shown in Table 4 below. The process under the same conditions as in No. 3 was performed. However, instead of the boiling test after processing, after performing a steaming treatment for 30 minutes under reduced pressure assuming decatizing, a measurement test of the deodorant effect on the smoke odor of the cigarette was performed by the same method using the Espo sensor method. . (Table 4) (Example 7 and Reference Example 17) Same deodorizing treated fabric as in Example 5 (Example 7) and untreated fabric of Reference Example 12 (Reference Example 17)
Was placed on a horizontal surface, and 1 ml of a perfume (Chanel No. 5 made in France) diluted with 4 times the volume of ethyl alcohol was dropped dropwise with a pipette, and the hair was blown with a cool air hair dryer at room temperature of 25 ° C. for 8 minutes. Sample was placed in a polyethylene bag fitted with a separate two-way stopcock, 10 liters of fresh air was introduced, and then left at room temperature for 24 hours.
When the stopcock was opened and the bag in the bag was pushed out and the panel with 3 persons / set x 3 sets was used to make the panel with the stronger odor judge, all of the perfumes in the bag of the deodorant-treated fabric were re-used. The volatile odor was determined to be significantly weaker than the untreated fabric. (Examples 8 to 11 and Reference Example 18) Untreated 70 g / m 2
A roll of a spunbond made of PP (Reference Example 18) was impregnated with a 50% pickup with an aqueous deodorant shown in the following Table 5 and completely dried and finished in an oven at 130 ° C. (Example 8). ) Taking out and absorbing and adhering the smoke odor of cigarettes to these samples as in Example 1, the odor intensity of each sample volatilized into the space by the applicant's sensor method was compared and measured. (Table 5) (Treatment agent used in deodorant) A-1. Aqueous solution of sodium salt of polyacrylamide copolymer having anionic properties, molecular weight of 2 × 10 7 and anion content of 10 mol% A-2. A. Aqueous solution of polyacrylamide copolymer having amphoteric charge, molecular weight 2 × 10 7 , cation group / anion group ratio of 0.91 / 1 mol%, and cation group / anion group content of 10 mol% Aqueous solution of sodium hyaluronate having a molecular weight of 2 × 10 6 C.I. A. aqueous solution of an aqueous polyurethane ionomer having a molecular weight of 1.5 × 10 4 D) Glycerol diglycidyl ether having a calculated molecular weight of 248 and having 2 epoxy groups
【発明の効果】本発明は、以上のように構成されてお
り、下記のような効果を発揮する。 (1) 両性物質のタンパク繊維を含む素材は、多種類
の臭気との強い化学的吸着性を有する。また本来は中性
物質である種々の繊維素繊維は、過酷な化学処理を経て
製品化されるため、セルローズ高分子の側鎖にカルボキ
シル基を生じ、更に種々の仕上加工が行われるので、臭
気を吸着し易すくなることが判明している。又ほとんど
の合成繊維は疎水性であり、NY,AN、PET、PP
の順に疎水性度が強くなる。疎水性が最高のPPは、集
油剤として使用されるように、合成繊維は、疎水性及び
/又は煙草のヤニなど高粘着性臭気物質に対する高度の
吸着性がある。このように親水性、疎水性を問わず繊維
の臭気吸着性は大きく、かつ可逆的であるため、一旦繊
維が吸着した臭気は吸着平衡の移動で再揮散し、嗅覚的
に不快な臭気を発する。従って、仮に繊維素材に適当な
消臭処理を行い消臭性能を分析的に証明できても、処理
繊維からの煙草の煙臭のような強い混合臭気の嗅覚的感
知を著しく防止又は遅延することは不可能であった。本
発明は、ほとんどの繊維素材に対し臭気が吸着しても、
嗅覚的臭気感知の度合を未処理繊維の場合の少なくとも
50%以下に減少させ、これが定量的・定性的に確認可
能な技術を提供する。 (2) 消臭繊維の他に、「生地に臭いが付かない」繊
維開発の必要性が業界で指摘されている。ここで悪臭吸
着性のない繊維を「防臭繊維」と定義すると、本発明の
制臭繊維は、未処理繊維が化学分析的には臭気を付着・
収着・吸着するがこれを防止できないので、防臭繊維と
することはできない。しかし定量的嗅覚試験で評価する
と、明らかに臭気の再揮散量が低下するので、一種の防
臭繊維とも考えられるが、正確さを欠くので、「生地に
臭気が吸収しても匂いにくい」ような性能を与える本発
明の繊維を「制臭繊維」と定義し、このような実用価値
の高い繊維とこれの処理薬剤を得る技術を提供する。 (3) 加工がほとんどの繊維に適用でき、薬剤濃度が
極めて低濃度のため、加工による風合い、外観、柔軟
性、種々の物理的強度、耐水性、耐洗濯性、耐ドライク
リーニング性、耐蒸熱、悪臭発生などの低下や劣化がな
く、通常の繊維の加工設備で容易に加工できる繊維処理
用の制臭剤及び制臭繊維を提供する。The present invention is configured as described above and exhibits the following effects. (1) Materials containing amphoteric protein fibers have strong chemical adsorption to various types of odors. In addition, various fibrous fibers, which are essentially neutral substances, are produced through severe chemical treatment, so that carboxyl groups are generated on the side chains of the cellulose polymer, and various finishing processes are performed. Has been found to be easier to adsorb. Most synthetic fibers are hydrophobic, NY, AN, PET, PP
, The degree of hydrophobicity becomes stronger. Synthetic fibers are highly hydrophobic and / or highly adsorbent to highly sticky odorants, such as tobacco tar, just as PP with the highest hydrophobicity is used as an oil collector. As described above, the odor-absorbing property of the fiber is high regardless of hydrophilicity and hydrophobicity, and it is reversible, so that the odor once adsorbed by the fiber is re-evaporated by the movement of the adsorption equilibrium, and emits an odor that is unpleasant. . Therefore, even if appropriate deodorizing treatment can be performed on the fiber material and the deodorizing performance can be analytically proved, the olfactory perception of a strong mixed odor such as cigarette smoke from the treated fiber should be significantly prevented or delayed. Was impossible. The present invention, even if odor is adsorbed to most fiber materials,
The degree of olfactory odor sensing is reduced to at least 50% or less of that of the untreated fiber, which provides a technique that can be quantitatively and qualitatively confirmed. (2) In addition to deodorant fibers, the industry has pointed out the need to develop fibers that do not smell the fabric. Here, when the fiber having no bad odor adsorbing property is defined as “deodorant fiber”, the undeodorized fiber of the present invention has an untreated fiber that is chemically analyzed to have an odor.
Although it does not prevent sorption and adsorption, it cannot be made into deodorant fiber. However, when evaluated by a quantitative olfactory test, the amount of odor re-evaporation clearly decreases, so it can be considered as a kind of deodorant fiber.However, since it lacks accuracy, it is difficult to smell even if the odor is absorbed by the fabric. The fiber of the present invention which gives performance is defined as "anti-odor fiber", and a technique for obtaining such a fiber having a high practical value and a chemical for treating the fiber is provided. (3) Processing can be applied to most fibers and the drug concentration is extremely low, so the texture, appearance, flexibility, various physical strengths, water resistance, washing resistance, dry cleaning resistance, steaming resistance due to processing An object of the present invention is to provide a deodorant and a deodorant fiber for fiber treatment which can be easily processed by ordinary fiber processing equipment without causing deterioration or deterioration such as offensive odor.
Claims (4)
1.2×107以上でアニオン基のみ、又はアニオン基
とカチオン基とを同時に含むアクリルアミド及び/又は
メタアクリルアミドの共重合体及び/又はその誘導体、
(B)ヒアルロン酸及び/又はその誘導体、(C)水溶
性及び/又は水分散性のポリエポキシ化合物を必須成分
とする繊維処理用の制臭剤。(A) A copolymer of acrylamide and / or methacrylamide containing only an anionic group or an anionic group and a cationic group simultaneously and having a molecular weight of 1.2 × 10 7 or more as measured by an intrinsic viscosity method. Or a derivative thereof,
(B) a deodorant for treating fibers, comprising, as essential components, hyaluronic acid and / or a derivative thereof; and (C) a water-soluble and / or water-dispersible polyepoxy compound.
上のものであることを特徴とする請求項1記載の制臭
剤。2. The deodorant according to claim 1, wherein the polyepoxy compound has a molecular weight of 10 3 or more.
応させたポリウレタンの未反応水酸基をアルカリ金属で
中和して水溶性及び/又は水分散性とした構造のイオノ
マーを含むことを特徴とする請求項1及び2記載の制臭
剤。3. An ionomer having a structure in which an unreacted hydroxyl group of a polyurethane obtained by reacting a polyester with a polyisocyanate is neutralized with an alkali metal to make it water-soluble and / or water-dispersible. 2. The deodorant according to 2.
請求項3記載の制臭剤を含む水溶液及び/又は水分散液
で処理し、乾燥した制臭性繊維。4. A deodorant fiber which is treated with an aqueous solution and / or aqueous dispersion containing the deodorant according to claim 1 and / or 3, and dried.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10244348A JP2000045183A (en) | 1998-07-27 | 1998-07-27 | Deodorant agent for fiber treatment and deodorant fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10244348A JP2000045183A (en) | 1998-07-27 | 1998-07-27 | Deodorant agent for fiber treatment and deodorant fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000045183A true JP2000045183A (en) | 2000-02-15 |
Family
ID=17117374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10244348A Pending JP2000045183A (en) | 1998-07-27 | 1998-07-27 | Deodorant agent for fiber treatment and deodorant fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000045183A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163538A (en) * | 2006-12-04 | 2008-07-17 | Japan Vilene Co Ltd | Composite nonwoven fabric for patch |
JP2009512790A (en) * | 2005-10-24 | 2009-03-26 | マンリコ ソチエタ ペル アツィオニ | Method for producing cashmere yarn |
JP2012029992A (en) * | 2010-08-02 | 2012-02-16 | Nippon Filcon Co Ltd | Fiber-like absorbent for gathering odor components |
EP3040406A4 (en) * | 2013-07-31 | 2017-02-22 | Toyo Sugar Refining Co., Ltd. | Method for stabilizing scent component, fragrance composition, and deodorizing composition |
-
1998
- 1998-07-27 JP JP10244348A patent/JP2000045183A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009512790A (en) * | 2005-10-24 | 2009-03-26 | マンリコ ソチエタ ペル アツィオニ | Method for producing cashmere yarn |
JP2008163538A (en) * | 2006-12-04 | 2008-07-17 | Japan Vilene Co Ltd | Composite nonwoven fabric for patch |
JP2012029992A (en) * | 2010-08-02 | 2012-02-16 | Nippon Filcon Co Ltd | Fiber-like absorbent for gathering odor components |
EP3040406A4 (en) * | 2013-07-31 | 2017-02-22 | Toyo Sugar Refining Co., Ltd. | Method for stabilizing scent component, fragrance composition, and deodorizing composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Szejtli | Cyclodextrins in the textile industry | |
DE60010055T2 (en) | FIBERS WITH IMPROVED COMPLEXION AND CATION EXCHANGE PROPERTIES | |
US9254345B2 (en) | Moisture-absorbing and deodorizing fiber, method for manufacturing the same, and fiber structure containing the same | |
JP2008506865A (en) | Reloadable finishes for textile fibers and fabrics | |
JPH0928778A (en) | Deodorant and deodorant fiber and its production | |
JP2000045183A (en) | Deodorant agent for fiber treatment and deodorant fiber | |
US20040166753A1 (en) | Modification of fabric fibers | |
JP6309219B2 (en) | Deodorant fiber fabric | |
JP2002066315A (en) | Adsorbent material for harmful substance, harmful substance desorption process and method for quantitative determination of endocrine disruptor | |
KR100368476B1 (en) | Alkaline Gas Absorbent Textiles | |
JP3220782B2 (en) | Deodorant processing agent and deodorant fiber | |
JP3086170B2 (en) | Method for producing deodorant fiber | |
JP4092554B2 (en) | Deodorant fiber structure | |
JPH10226962A (en) | Deodorant molding product and its production | |
JP2002235280A (en) | Fiber structure having deodorizing property | |
JP3990028B2 (en) | Deodorizing fiber and method for deodorizing fiber | |
WO2002101140A1 (en) | Modification of fabric fibers | |
WO1997034040A1 (en) | Deororizing fiber, process for preparing the same, and deodorizing fiber product | |
CN1720365A (en) | Odor-absorbing cellulosic fibrous substrates | |
JP3387618B2 (en) | Method for producing modified polyester fiber material | |
JP2020007661A (en) | Deodorant fabric and clothing | |
Xu | Applications in the Textile Industry | |
JPH0361795B2 (en) | ||
JPH09256278A (en) | Hygroscopic fiber structure | |
JP2001254263A (en) | Cellulosic fiber-containing cloth |