JP2000042721A - Composite casting method - Google Patents

Composite casting method

Info

Publication number
JP2000042721A
JP2000042721A JP10291443A JP29144398A JP2000042721A JP 2000042721 A JP2000042721 A JP 2000042721A JP 10291443 A JP10291443 A JP 10291443A JP 29144398 A JP29144398 A JP 29144398A JP 2000042721 A JP2000042721 A JP 2000042721A
Authority
JP
Japan
Prior art keywords
metal
molten metal
mold
casting method
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10291443A
Other languages
Japanese (ja)
Other versions
JP3151556B2 (en
Inventor
Yoshisada Michiura
吉貞 道浦
Kimio Nakamura
公生 中村
Shigenori Tanabe
重則 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP29144398A priority Critical patent/JP3151556B2/en
Publication of JP2000042721A publication Critical patent/JP2000042721A/en
Application granted granted Critical
Publication of JP3151556B2 publication Critical patent/JP3151556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance on the outer peripheral surface of a cast product most effectively produced by a pouring casting method into a mold. SOLUTION: Metallic powder A of Ni base alloy, stainless steel or ferrous alloy containing at least >=10 wt.% Cr and metallic powder B composed of Cu base with the m.p. adjusted to a value clearly lower than that of the metallic powder A by containing 5-12 wt.% P, are mixed and stuck to a target position and molten metal having higher m.p. than the m.p. of the metallic powder B. At the time of pouring the molten metal into the mold, firstly, the metallic powder B is melted and the molten metal is started to impregnate into the stuck layer by the static pressure of the molten metal, and a microscopic liquid phase sintering is started in the state of enclosing the metallic powder A having higher m.p. than the metallic powder B and intensely pushed to the inner surface of the mold with the molten metal pressure in this state, and the integrally strong composite phase is formed by cooling and solidifying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】金属の鋳造法において、特定
の性質を発揮するような金属又は合金を、全面又は部分
的に付加して機能性を高める、金属の鋳造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal casting method in which a metal or an alloy exhibiting specific properties is added to the entire surface or a part thereof to enhance the functionality in the metal casting method.

【0002】[0002]

【従来の技術】鋳造品の一部特定の箇所に、耐食性や耐
摩耗性を付与する方法として、鋳造品自体に溶射や部分
焼入れ浸炭窒化など、鋳造後に表面処理を加える方法も
あるが、作業工数が確実に増加する問題がある。そのた
め、鋳造前の鋳型の空隙表面の所望の部位に特定の物性
を付与する特定の金属を添着し、溶融金属を注湯し、そ
の熱で該添着金属層を溶着させ、凝固後に所望の部位に
硬化層を形成しようとする鋳造方法が種々提案されてき
た。
2. Description of the Related Art As a method of imparting corrosion resistance and wear resistance to a specific part of a cast product, there is a method of applying a surface treatment after casting, such as thermal spraying or partial quenching carbonitriding, to the cast product itself. There is a problem that the man-hour is definitely increased. Therefore, a specific metal that imparts specific physical properties is attached to a desired portion of the cavity surface of the mold before casting, a molten metal is poured, the attached metal layer is welded by the heat, and the desired portion is solidified after solidification. Various casting methods for forming a hardened layer have been proposed.

【0003】例えば特公平5−20184号公報による
従来技術では、Ni含有量が80重量%またはそれ以上
のNi合金から成る充填剤を粉末のままで金型内へ鋳込
直前に装入し、注湯して外周面に防食性層を形成するこ
とを要旨とし、合金元素としてホウ素、硅素、クロム、
銅より選び出し、融点が1300℃以下の充填剤とし
た。あるいは溶融鋳鉄の溶融点1150℃以下となるよ
うに選択する実施態様をも示している。
In the prior art disclosed in Japanese Patent Publication No. 5-20184, for example, a filler made of a Ni alloy having a Ni content of 80% by weight or more is charged as a powder into a mold immediately before casting, The main point is to form a corrosion-resistant layer on the outer peripheral surface by pouring, and boron, silicon, chromium,
The filler was selected from copper and had a melting point of 1300 ° C. or less. Alternatively, an embodiment in which the melting point of the molten cast iron is selected to be 1150 ° C. or lower is also shown.

【0004】特開平5−77019号公報に係る従来技
術では、ほぼ同じ目的で金型内へ凝固促進用の粉末層を
Ni、Cr、又はその合金とCa、Siとの混合粉末に
よって形成することを呈示した。この粉末層による注湯
時の断熱作用によって欠陥の防止と、鋳込まれた溶湯の
急速凝固によってピンホールの発生を防止すると謳って
いる。すなわちこの場合のCa、Siは一種の脱酸接種
効果と、混合粉末層の溶融点の低下作用を意としたもの
である。
According to the prior art disclosed in Japanese Patent Application Laid-Open No. 5-77019, a powder layer for accelerating solidification is formed in a mold with a mixed powder of Ni, Cr, or an alloy thereof and Ca or Si for almost the same purpose. Was presented. It states that this powder layer prevents defects by the heat insulating action at the time of pouring, and prevents pinholes from being generated by the rapid solidification of the cast molten metal. That is, Ca and Si in this case are intended to have a kind of deoxidizing inoculation effect and an effect of lowering the melting point of the mixed powder layer.

【0005】[0005]

【発明が解決しようとする課題】鋳型への鋳造におい
て、製品の所望の箇所に耐食性や耐摩耗性にすぐれた金
属層を形成するため、鋳型内へ所望する物性を付与する
金属の粉末を塗布又は散布すること自体は、既に公知で
あり、先に引用した2件の従来技術もその範畴に属す
る。しかしその主旨は例えば耐食性の場合では、あくま
で該耐食性金属の溶融点を低温側へ移すように、成分コ
ントロールする点に焦点が絞られ、被覆する外周面保護
層自体の強化レベルについては、なお万全とは云えない
のではないか。
In casting into a mold, in order to form a metal layer having excellent corrosion resistance and abrasion resistance at a desired portion of a product, a metal powder imparting desired properties is applied into the mold. Or, the spraying itself is already known, and the two prior arts cited above also belong to that category. However, the gist of this is, for example, in the case of corrosion resistance, the focus is on the control of components so as to shift the melting point of the corrosion-resistant metal to the lower temperature side, and the reinforcement level of the outer peripheral surface protective layer itself to be coated is still thorough Maybe not.

【0006】強化層の溶融点を低温化することを第一義
的に求めれば、一種の金属鑞の態様を踏襲することに他
ならず、もし溶融点が低すぎれば、注湯された溶融金属
内へ拡散して表面の成分濃度が大巾に失われることを意
味し、又、溶融点が高きに失すれば母材金属との一体溶
着に疑問が残る。
[0006] If it is primarily desired to lower the melting point of the reinforcing layer, it must follow the form of a kind of metal brazing. It means that the metal is diffused into the metal and the concentration of the components on the surface is largely lost, and if the melting point is lost at a high level, there is a doubt about the integral welding with the base metal.

【0007】先に本願発明の出願人は特公平5−201
87号公報において、主として耐摩耗鋼の局部的強化を
目指した、まったく新しい液相焼結による複合一体化を
開示した。即ち鋳型空隙部に溶融金属を注入して、凝固
後所望の形状をなす鋳造法でAに特定の物性を付与する
特定の金属粉末又は合金粉末Bとして前記Aを構成する
金属より明確に低融点を有する金属の粉末を使用し、適
当量の有機系結合材Cの3者を練り合わせて所望の位置
に取り付け、該空隙部にBを構成する金属よりは融解点
が高い溶融金属を注入する鋳造法であり、この様な構成
にすることによって、まず注入した溶融金属の保有熱に
より低融点のBの金属粉末を融解し、A、B及び注入金
属の3者を液相焼結により一体化し、続いて注入した金
属と層表面を通じて拡散溶着する。
[0007] The applicant of the present invention previously filed Japanese Patent Publication No. Hei 5-201.
No. 87 discloses a completely new composite integration by liquid phase sintering mainly aimed at locally strengthening wear-resistant steel. That is, a molten metal is injected into a mold cavity, and a specific metal powder or an alloy powder B that imparts specific physical properties to A by a casting method having a desired shape after solidification has a lower melting point than the metal constituting A. Using a metal powder having the following formula: kneading an appropriate amount of the organic binder C and attaching it to a desired position, and injecting a molten metal having a higher melting point than the metal constituting B into the void portion By adopting such a configuration, first, the low melting point metal powder B is melted by the retained heat of the injected molten metal, and the three components A, B and the injected metal are integrated by liquid phase sintering. Then, diffusion welding is performed through the layer surface with the injected metal.

【0008】耐摩耗材は強固であると共に時間の経過に
伴って外面から消耗していくから、ある程度の強化層の
厚さを必要とし、又、具体的にはAとしてFe−Cr粉
末、BとしてNi−Cr−Si−Fe粉末、Cとしてポ
リビニルアセテート等で形成して、母材となる鋳鉄溶湯
を注湯して、耐摩耗鋳鉄部品のうち特に摩耗面を局部的
に強化した実績を示した。
[0008] Since the wear-resistant material is strong and is consumed from the outer surface with the passage of time, a certain thickness of a reinforcing layer is required. Ni-Cr-Si-Fe powder, formed of polyvinyl acetate or the like as C, poured molten cast iron as a base material, and demonstrated the results of locally strengthening particularly the wear surface of wear-resistant cast iron parts. .

【0009】これに反し耐食性材に関しては外表面の強
化層の厚み自体が主題ではなく、母材と一体的に溶着し
た保護層が如何に緻密で堅牢な複合層を形成出来るかの
一点に尽きる。たとえば母材金属の表面上へ溶着した別
種の金属皮膜がNi系金属やステンレス鋼の場合には、
結晶粒度にバラツキがあったり、組織的に異なる部分や
粗密の差があるとき、粒界と粒内、格子欠陥と正常な格
子構造、微粒と粗粒など、形成する結晶条件に差があれ
ば、この間に腐食電池を形成して電位差を生じる特性が
強く、保護層の厚さに拘らず分極、点食、孔食、粒界腐
食などNi系合金やオーステナイト系ステンレス鋼独自
の腐食の進行が甚だしく、本来は優れた耐食性を具えて
いるにも拘らず、局部的な腐食が集中して母材の一部が
早々に機能を喪失することは周知の事実である。本発明
は以上の耐食性部材、特に鋳型への置注ぎ鋳造法による
鋳造品の外周面を最も効果的に耐食性を向上させる方法
の提供を目的とする。
On the other hand, regarding the corrosion-resistant material, the thickness itself of the reinforcing layer on the outer surface is not the main subject, and it is only one point how the protective layer integrally welded to the base material can form a dense and robust composite layer. . For example, if another type of metal film deposited on the surface of the base metal is Ni-based metal or stainless steel,
When there is a difference in the crystal conditions to be formed, such as a variation in the crystal grain size, a structurally different part or a difference in density, if there is a difference between the grain boundary and the grain, a lattice defect and a normal lattice structure, a fine grain and a coarse grain, etc. During this period, the corrosion battery is formed and the characteristic of generating a potential difference is strong. Regardless of the thickness of the protective layer, the progress of corrosion unique to Ni-based alloys and austenitic stainless steel such as polarization, pitting, pitting, grain boundary corrosion, etc. It is a well-known fact that, despite its inherently excellent corrosion resistance, localized corrosion is concentrated and some of the base material quickly loses its function. An object of the present invention is to provide a method for most effectively improving the corrosion resistance of the outer peripheral surface of the above-mentioned corrosion-resistant member, particularly a cast product obtained by casting into a mold.

【0010】[0010]

【課題を解決するための手段】本発明にかかる複合鋳造
法は所望の形状を転写した空隙を具えた鋳型内へ溶融金
属を注湯する鋳造法のうち、特定の物性を鋳造品の所望
の位置へ付与する為に該鋳型内面の該当する位置へ特定
の金属をあらかじめ添着する複合鋳造法において、Ni
またはNi系合金、Ni及び/又はCrを含むステンレ
ス鋼もしくはCrを少くとも10重量%以上含む鉄系合
金の中から選ばれた1又は複数の金属粉末Aと、Pを5
〜12重量%含むことにより該金属粉末Aより明確に低
温の溶融点に調整したCu系合金よりなる金属粉末Bと
を混合して前記の位置へ添着し、金属粉末Bの溶融点よ
りは高い溶融点よりなる溶融金属を注湯し、溶融点の相
互関係によって発現する液相焼結と、溶融金属の静圧に
よって製品の所望の位置に強固で緻密な焼結層を一体的
に形成することによって前記の課題を解決した。
SUMMARY OF THE INVENTION A composite casting method according to the present invention is a casting method in which a molten metal is poured into a mold having a cavity in which a desired shape has been transferred. In a composite casting method in which a specific metal is pre-attached to a corresponding position on the inner surface of the mold in order to apply the
Alternatively, one or a plurality of metal powders A selected from a Ni-based alloy, stainless steel containing Ni and / or Cr, or an iron-based alloy containing at least 10% by weight or more of Cr, and P
By mixing with a metal powder B made of a Cu-based alloy whose melting point has been clearly adjusted to a lower temperature than that of the metal powder A by mixing and adhering to the above position, and being higher than the melting point of the metal powder B. Pouring a molten metal consisting of a melting point and integrally forming a strong and dense sintered layer at a desired position of the product by liquid phase sintering developed by the correlation of the melting points and static pressure of the molten metal This has solved the above-mentioned problem.

【0011】前記の構成において金属粉末Aと金属粉末
Bに適量の有機系結合材Cを加え、三者をスラリー状に
混和して鋳型表面の所望の箇所に所望の厚さだけ添着す
る形態が望ましい。さらに前記のAとBとの混和割合
が、A/B=40/60〜90/10、とすることが望
ましい。
In the above-described configuration, a mode in which an appropriate amount of an organic binder C is added to the metal powder A and the metal powder B, and the three are mixed in a slurry form and adhered to a desired location on the mold surface to a desired thickness. desirable. Further, it is desirable that the mixing ratio of A and B is A / B = 40/60 to 90/10.

【0012】鋳型に装入されたAおよびBは溶融金属に
接すると、溶湯の保有する熱により、まず、低融点の金
属粉末Bが融解しそこに注入された溶解金属が溶け込ん
で、この液層部を介して金属粉末Aが液相焼結を起こ
し、表層に耐食性の優れた金属粉末Aの豊富な層が形成
される。この際、一部固相拡散も起こり、母材と強固に
接合され、したがって鋳造体表面には金属粉末A、B、
に一部母材鋳鉄が溶け込んだ耐食性に優れた層が形成さ
れる。
When A and B charged in the mold come into contact with the molten metal, the low melting point metal powder B is first melted by the heat of the molten metal, and the molten metal injected therein is melted. The metal powder A undergoes liquid phase sintering via the layer portion, and a rich layer of the metal powder A having excellent corrosion resistance is formed on the surface layer. At this time, solid-phase diffusion also partially occurs and is firmly joined to the base material, so that the metal powders A, B,
In this case, a layer having excellent corrosion resistance in which a part of the base material cast iron is melted is formed.

【0013】最も重要な作用の特徴はこの耐食層がスト
レートに形成されるのではなく、低融点の金属粉末Bが
まず溶湯の熱を受けて溶解し、金属粉末Aを強固に抱込
んで、溶解金属と協力して溶着する、いわゆる液相焼結
を起こす点である。したがって後の実施例で示されるよ
うに、反応層は物性を支配する金属粉末Aを抱込んで金
属粉末Bと溶解金属母材と結合し、金属粉末A成分はあ
らかじめ計画した鋳造方案通り、所定の深度にわたり母
材に拡散接合している。
The most important feature of the function is that the corrosion-resistant layer is not formed straight, but the low melting point metal powder B is first melted by the heat of the molten metal, and the metal powder A is firmly contained. This is the point of causing so-called liquid phase sintering, which is performed in cooperation with the molten metal. Therefore, as will be shown in a later example, the reaction layer embraces the metal powder A governing the physical properties and combines with the metal powder B and the molten metal base material. Diffusion bonding to the base material over a depth of

【0014】したがって金属粉末A,Bの溶融点の差、
および配合する比率が良好な液相焼結を進行させる上で
大事なポイントとなる。図6はCu−Pの二元状態図で
あり、横軸上欄の重量%と縦軸の温度℃との相関から読
み取れるように、Pは約8重量%付近に共晶点があり共
晶温度は約720℃付近にある。Cu−P合金はこの共
晶点で最低の溶融温度を形成し、この前後へ離れると共
に急カーブで高温側へ移行する。したがって実用的にP
がCuにどの範囲まで溶け込むことができるかというこ
とが重要な要件を定めるが、状態図の読み取りと実地テ
ストの結果を衝き合せると、Pを5〜12重量%に限定
し、溶融温度を900℃以下に設定することによって実
用上、最も優れた液相焼結を得るという臨界的意義を確
定することができた。A,B両金属粉末の配合について
は、溶融点の高い金属粉末Aだけでは溶解金属の溶融熱
による焼結は困難であり、さらに金属粉末Aが40%以
下では耐食性が不十分であるので、A/Bが40/60
より大きいことが焼結進行の下限の配合条件となる。一
方、低溶融点の金属粉末Bだけでは溶解金属の注湯と共
にその溶解熱のために完全に溶融して溶解金属中に拡散
してしまい表面に耐食性の優れた層を形成するという目
的が達成できないし、金属粉末Bの配合比率が10%よ
り少ないと金属粉末Aの焼結作用を補完する働きが不十
分であって堅牢緻密な液相焼結層の形成という本来の目
的を果たせないので、A/Bが90/10より小さいこ
とが焼結進行の上限の配合条件となる。
Therefore, the difference between the melting points of the metal powders A and B,
In addition, the mixing ratio is an important point in promoting favorable liquid phase sintering. FIG. 6 is a binary phase diagram of Cu-P. As can be read from the correlation between the weight% in the upper column of the horizontal axis and the temperature ° C. in the vertical axis, P has a eutectic point at about 8% by weight and has a eutectic point. The temperature is around 720 ° C. The Cu-P alloy forms the lowest melting temperature at this eutectic point, moves away from this eutectic point, and moves to a high temperature side in a sharp curve. Therefore, P
It is important to determine the extent to which P can dissolve in Cu. However, when the phase diagram reading and the results of the field test are performed, P is limited to 5 to 12% by weight, and the melting temperature is set to 900%. The critical significance of obtaining the best liquid phase sintering for practical use could be determined by setting the temperature below ℃. Regarding the blending of the metal powders A and B, it is difficult to sinter the molten metal by the heat of fusion only with the metal powder A having a high melting point. Further, when the metal powder A is 40% or less, the corrosion resistance is insufficient. A / B is 40/60
A larger value is the lower limit of the sintering process. On the other hand, only the metal powder B having a low melting point is completely melted due to the heat of melting together with the pouring of the molten metal and diffused into the molten metal, thereby achieving the purpose of forming a layer having excellent corrosion resistance on the surface. If the mixing ratio of the metal powder B is less than 10%, the function of complementing the sintering action of the metal powder A is insufficient, and the original purpose of forming a robust and dense liquid phase sintered layer cannot be achieved. , A / B smaller than 90/10 is the upper limit of the sintering process.

【0015】本発明の対象は後述の実施形態でも明示す
るようにダクタイル鋳鉄鋳物の外面の耐食性向上を主た
る目的とする。具体的にこの場合の作用を説明すると、
鋳型内へダクタイル鋳鉄の溶湯(溶融点約1150℃)
を注湯するとまず金属粉末B(たとえばCu−P、溶融
点約720℃〜約900℃に限定)が溶解し、製品部自
体や押湯からの溶湯の静圧によって鋳鉄溶湯が添着層内
へ含浸をはじめ、金属粉末Bより溶融点の高い粉末金属
A(例えばニッケル、溶融点1450℃)を包み込む状
態でミクロ的な液相焼結が始まる。溶湯圧によってこの
状態で相互に保持しあったまま強力に鋳型内面に押し付
けられ、冷却されて一体的に堅牢な複合相を形成する。
凝固後の組織は例えば鋳鉄溶湯の熱容量が大きい場合、
鋳鉄溶湯からのFe,C等の浸入が多く、共にオーステ
ナイト生成成分であるNiとCu濃度の高い基地がオ−
ステナイト化したニ−レジストに類似する組織が得ら
れ、また鋳鉄溶湯の溶け込みが少ない場合表層部ではF
e、C等の拡散が少なく、Ni,Cu濃度のさらに高い
(具体的にはCu+Niが20重量%以上)オ−ステナ
イト組織が得られ耐食性外層部を形成する。
The main object of the present invention is to improve the corrosion resistance of the outer surface of a ductile iron casting, as will be clearly described in the embodiments described later. Specifically, the operation in this case will be described.
Melt of ductile cast iron into mold (melting point about 1150 ℃)
First, the metal powder B (for example, Cu-P, melting point limited to about 720 ° C. to about 900 ° C.) is melted, and the molten cast iron enters the adhering layer by the static pressure of the molten metal from the product part itself or the riser. Starting with impregnation, micro-phase liquid phase sintering starts in a state in which powder metal A (eg, nickel, melting point 1450 ° C.) having a melting point higher than that of metal powder B is wrapped. In this state, they are strongly pressed against the inner surface of the mold while being held together by the pressure of the molten metal, and are cooled to form a solid composite phase integrally.
The structure after solidification is, for example, when the heat capacity of the molten cast iron is large,
A large amount of Fe, C, and the like infiltrated from the molten cast iron, and a matrix having a high concentration of Ni and Cu, which are austenite-forming components, was found to be too high.
When a structure similar to a stained niresist is obtained, and when the molten cast iron is less molten, F
An austenite structure in which the diffusion of e, C, etc. is small and the concentration of Ni and Cu is higher (specifically, Cu + Ni is 20% by weight or more) is obtained, and a corrosion-resistant outer layer portion is formed.

【0016】添着層が前記A,B,C3者をスラリー状
に混和して鋳物表面の所望の部位に所望の厚さだけ添着
することにより形状厚さを自由に変えて耐食性の優れた
部位を製作することができる。この手法は鋳造品の肉厚
に変動があるときや、耐食性を求められる鋳肌面が平面
ではなくて不均等な曲面からなり、有効な添着層を鋳型
内に設定することが難しい場合などに特に優れた対応の
仕方であり、複雑な形状に対して簡単に耐食性の設定を
実施する利点が大きい。また、簡単な形状に対しても添
着層が前記A,B,Cを混練したのち薄板状に成型し、
鋳型鋳肌表面の所望の部位に所望の厚さの薄板として添
着することにより、大量生産の場合、一定の厚さ持たせ
た製品を製作する利点を受ける場合も屡々認められる。
金属粉末BのP重量%を5〜12の範囲内で適宜選択し
て溶融点を720〜900℃間の最適の温度に調整する
ことや、AとBとの混合割合を、A/B=40/60〜
90/10、の範囲内で適宜変更することによって最適
の液相焼結を形成させ、製品の使用目的や対象となる腐
食性雰囲気の差に順応した性能の違った耐食性を付加す
ることもでき、臨機応変の措置によって本発明の実施に
よるメリットをさらに高めることも看過できない。ま
た、単なる耐食性だけでなくアグレッシブな摩耗作用に
も直面する場合には、脆性を避けるために比較的低いP
側、たとえばP:5〜10重量%に制限することが望ま
しい結果に繋がることがある。
The adhering layer mixes the above A, B, and C into a slurry state and adheres it to a desired portion on the surface of the casting to a desired thickness, thereby freely changing the shape thickness, thereby forming a portion having excellent corrosion resistance. Can be manufactured. This method is used when the thickness of the casting varies, or when it is difficult to set an effective impregnated layer in the mold, where the casting surface requiring corrosion resistance is not a flat surface but an uneven curved surface. This is a particularly excellent method of handling, and has a great advantage that the corrosion resistance can be easily set for a complicated shape. Further, even for a simple shape, the adhering layer is formed into a thin plate after kneading A, B and C,
By adhering as a thin plate of a desired thickness to a desired portion of the mold casting surface, it is often recognized that in mass production, the advantage of producing a product having a certain thickness is obtained.
The melting point is adjusted to an optimum temperature of 720 to 900 ° C. by appropriately selecting the P weight% of the metal powder B within the range of 5 to 12, or the mixing ratio of A and B is set to A / B = 40/60 ~
By making appropriate changes within the range of 90/10, it is possible to form the optimal liquid phase sintering, and to add corrosion resistance with different performance according to the purpose of use of the product and the difference in the corrosive atmosphere to be used. It cannot be overlooked that the merit of the implementation of the present invention is further enhanced by flexible measures. Also, when facing not only corrosion resistance but also aggressive wear action, a relatively low P is used to avoid brittleness.
Side, for example, P: Limiting to 5-10% by weight may lead to desirable results.

【0017】[0017]

【発明の実施の形態】本発明の耐食性を立証するために
次の形態で実施した。使用した鋳型は図2に、その上
型、下型の分割面(見切面)を俯瞰した状態で示すよう
に、フランジ部11、円筒部12、形成する主型1と、
中空部21、両巾木22,23より成る中子2を嵌め合
わせ、垂直の湯口3、湯道4、堰5、及び押湯6、を主
要な部分とし、全体をフラン系の自硬性砂で成形した。
押湯には発熱スリーブを適用し、呼び径150のフラン
ジ短管(内径170mm、外径190mm、鋳込み重量
は約30Kg、材質はダクタイル鋳鉄、鋳込温度は13
50℃)を鋳造した。鋳込み後型ばらし、ショットブラ
スト後テストピースを切り出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to prove the corrosion resistance of the present invention, the present invention was carried out in the following modes. The used mold is shown in FIG. 2 with a flange 11, a cylindrical part 12, a main mold 1 to be formed, as shown in a state where the divided surfaces (parting surfaces) of the upper mold and the lower mold are overlooked.
A hollow 2 and a core 2 composed of both baseboards 22 and 23 are fitted to each other, and a vertical gate 3, a runner 4, a weir 5, and a riser 6 are used as main parts, and the whole is furan-based self-hardening sand. Molded.
A heating sleeve is applied to the feeder, a flanged short tube with a nominal diameter of 150 (inner diameter 170 mm, outer diameter 190 mm, casting weight is about 30 kg, material is ductile cast iron, casting temperature is 13
50 ° C.). After casting, the mold was separated, and a test piece was cut out after shot blasting.

【0018】この鋳造品が特に必要な耐食性の範囲は、
図2の円筒部12の外周面の全長に対して求められた。
この目的の為に図の様に特に耐食性にすぐれた金属群か
ら選択した3種粉末材料を練り合わせたペースト状の添
着層7を円筒部12の外周面に添着した。実績確認のた
めの添着層はA,B,C3種類の混合体を混練して、鋳
型の表面に成形添着したもので、厚さ約500ミクロン
である。表1は実施例のA,B,Cの成分と配合比を示
す。バインダーCはポリビニルアセテート(PVAC)
を使用した。
[0018] The range of corrosion resistance that is particularly necessary for this casting is:
It was determined for the entire length of the outer peripheral surface of the cylindrical portion 12 in FIG.
For this purpose, as shown in the figure, a paste-like attachment layer 7 made by kneading three kinds of powder materials selected from a group of metals having particularly excellent corrosion resistance was attached to the outer peripheral surface of the cylindrical portion 12. The adhering layer for confirming the results is obtained by kneading a mixture of three types of A, B, and C and applying the mixture on the surface of the mold, and has a thickness of about 500 microns. Table 1 shows the components of A, B, and C and the mixing ratio in the examples. Binder C is polyvinyl acetate (PVAC)
It was used.

【0019】[0019]

【表1】 注)バインダーCはA+B=100に対して5とした。
粉末を混練し、塗布厚みは500ミクロンになるように
した。また、実施例(5)のみ鋳込み温度は1450℃
である。なお表2は表1の粉末層を形成する為に使用し
た各種材料の化学組成の一覧表である。粉末は200ミ
クロン以下、好ましくは150ミクロン以下、さらには
50ミクロン以下が理想的である。
[Table 1] Note) Binder C was set to 5 for A + B = 100.
The powder was kneaded to a coating thickness of 500 microns. In addition, only in Example (5), the casting temperature was 1450 ° C.
It is. Table 2 is a list of chemical compositions of various materials used for forming the powder layer of Table 1. Ideally the powder is less than 200 microns, preferably less than 150 microns, and even less than 50 microns.

【0020】[0020]

【表2】 [Table 2]

【0021】鋳造したテストピースは適当な大きさに加
工し、次に述べる試験を行なった。 A、顕微鏡による金属組織観察、条件は次の様なもので
ある。 倍率 :100倍 B、EPMAによる定量分析(表面近傍に含まれる元素
の化学組成比を測定)。 すなわち、Ni,Cuを主体とした添加成分の濃度の変
動を知って表面からの耐食性の有効深度を見極める点に
意義がある。 C、耐食性試験 JIS K 5400に記載された方法により、JIS
Z 2371に規定された装置を使用し、35℃の雰
囲気で5%NaClaqの塩水噴霧試験を行なった。テ
ストピースは45mm×45mm×10mmtの大きさ
で被覆層が形成された面を暴露し、その他の面はシール
を施した。
The test piece thus cast was processed into an appropriate size, and the following test was performed. A. The observation of the metal structure under a microscope and the conditions are as follows. Magnification: 100 times B, quantitative analysis by EPMA (measures the chemical composition ratio of elements contained near the surface). That is, it is significant to know the fluctuation of the concentration of the additive component mainly composed of Ni and Cu to determine the effective depth of corrosion resistance from the surface. C, Corrosion resistance test According to the method described in JIS K 5400, JIS
A salt spray test of 5% NaClaq was performed at 35 ° C. using an apparatus specified in Z2371. The test piece had a size of 45 mm × 45 mm × 10 mmt, exposing the surface on which the coating layer was formed, and sealing the other surface.

【0022】顕微鏡による金属組織観察の結果を図5
(A)(B)に示す。すなわち(A)はNiベースの実
施例(1)、(B)はSUS304Lベースの実施例
(4)をそれぞれ示し、液相焼結によって完全に一体的
な溶着によって形成された高耐食性の複合層の緻密さと
欠陥のない溶着境界部付近の堅牢な組織を裏付けるデー
タとして有効である。
FIG. 5 shows the result of observation of the metallographic structure using a microscope.
(A) and (B) show. That is, (A) shows the Ni-based embodiment (1) and (B) shows the SUS304L-based embodiment (4), respectively, and a high corrosion resistant composite layer formed by completely integrated welding by liquid phase sintering. This is effective as data supporting the dense structure and the robust structure near the weld boundary without defects.

【0023】試験の結果について図表とともに簡単な説
明を加えると、図3、図4は鋳造品の表面からの距離
(μm)を横軸にとり、縦軸にEPMA(X線マイクロ
アラナイザー)によって得られたFe、Ni、Cu各成
分の定量分析値をプロットし相互の関係を示したもので
ある。両図ではそれぞれNiおよびCuが表面から50
0〜600μmの深さまで認められ、Niと同様に鉄の
オーステナイト化促進成分であるCuが共存することに
よって高耐食性の緻密な複合相を形成し、ニーレジスト
ダクタイル鋳鉄の組織に類似した球状黒鉛化オーステナ
イト相が確認された図5(A)(B)の検鏡組織とよく
整合する。
3 and 4, the horizontal axis represents the distance (μm) from the surface of the casting, and the vertical axis represents the results obtained by EPMA (X-ray micro-analyzer). The quantitative analysis values of the obtained Fe, Ni and Cu components are plotted to show the mutual relationship. In both figures, Ni and Cu are 50
It is recognized to a depth of 0 to 600 μm, and forms a dense composite phase with high corrosion resistance due to the coexistence of Cu, which is an austenitizing component of iron, like Ni, and is a spherical graphitized structure similar to the structure of knee resist ductile cast iron. The austenitic phase is well matched with the microscopic structure of FIGS.

【0024】耐食性試験においては表3のように異なる
金属粉末AとCu−Pを50/50の割合で混合して試
験日数の経過と共に進行する各試料の重量減を検量して
その耐食性を指標化した。
In the corrosion resistance test, as shown in Table 3, different metal powders A and Cu-P were mixed at a ratio of 50/50, and the weight loss of each sample which progressed with the lapse of the test days was weighed to indicate the corrosion resistance. It has become.

【0025】[0025]

【表3】 [Table 3]

【0026】図1は前記各試料を塩水(5%NaCl
aq)噴霧試験によってその腐食減量(mg/cm2 )
と浸漬期間(day)との関係を示したもので、この図
表からうかがえることは従来のダクタイル鋳鉄(FC
D)に対して時間の経過とともに腐蝕減量の差が比例的
にひろがり、特にNi/Cu−Pの実施例(2)は従来
のFCDに比べると約9倍、SUS304L/Cu−P
の実施例(4)もほぼこれに準じ、SUS430L/C
u−Pの実施例(5)でも4倍程度の耐食性があること
を立証している。この差は期間の経過と共に格段に拡大
することはこの図からも明らかである。
FIG. 1 shows that each of the samples was treated with saline (5% NaCl).
aq) Its corrosion loss by spray test (mg / cm2)
And the immersion period (day). This chart shows that the conventional ductile cast iron (FC)
The difference in corrosion weight loss spreads proportionally with time with respect to D). In particular, the Ni / Cu-P embodiment (2) is about 9 times as large as the conventional FCD, and SUS304L / Cu-P
Example (4) of SUS430L / C
Example (5) of u-P also proves that it has about four times the corrosion resistance. It is clear from this figure that this difference significantly increases with the passage of time.

【0027】[0027]

【発明の効果】本発明に係る複合鋳造法は、ほぼ同じ目
的で計画され実施された従来技術の耐食被覆層が単一な
被膜を主体とし背後の母材金属の溶着性や層自体の物性
に対する配慮に若干の懸念を否定せざるを得なかったの
に対し、本発明の複合層は液相焼結という独創的な発想
を原点として抜群の耐食性を具えた緻密で堅牢な複合層
を一体的に溶着させ形成したものであるから、使用後の
耐久性でははるかに優越する効果がある。
According to the composite casting method of the present invention, the corrosion-resistant coating layer of the prior art, which is planned and implemented for almost the same purpose, is mainly composed of a single coating, and has the welding property of the base metal behind and the physical properties of the layer itself. The composite layer of the present invention is based on the original idea of liquid phase sintering, while the dense and robust composite layer with outstanding corrosion resistance is integrated. Since it is formed by fusion welding, there is a far superior effect on durability after use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の効果のうち塩水噴霧試験による
耐食性を比較表示した図表である。
FIG. 1 is a chart showing a comparative display of corrosion resistance by a salt spray test among the effects of the present invention.

【図2】本発明の実施に使用した遠心鋳造金型の一部断
面正面図である。
FIG. 2 is a partial cross-sectional front view of a centrifugal casting mold used for carrying out the present invention.

【図3】実施例(1)の表面からの深度と成分の関係を
示す図表である。
FIG. 3 is a table showing a relationship between a depth and a component from the surface in Example (1).

【図4】実施例(4)の表面からの深度と成分の関係を
示す図表である。
FIG. 4 is a table showing a relationship between a depth and a component from the surface in Example (4).

【図5】(A)(B)によって2種類の実施例における
顕微鏡による金属組織写真を示す。
5 (A) and 5 (B) show metallographic photographs by microscope in two examples.

【図6】Cu−Pの二元状態図である。FIG. 6 is a binary phase diagram of Cu-P.

【符号の説明】[Explanation of symbols]

1 主型 2 中子 3 湯口 4 湯道 5 堰 6 押湯 7 添着層 11 フランジ部 12 円筒部 DESCRIPTION OF SYMBOLS 1 Main mold 2 Core 3 Gate 4 Runner 5 Weir 6 Feeder 7 Adhesion layer 11 Flange part 12 Cylindrical part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 公生 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (72)発明者 田辺 重則 大阪府大阪狭山市西山台2丁目15番3号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kimio Nakamura 1-112-19 Kitahorie, Nishi-ku, Osaka-shi, Osaka Inside Kurimoto Ironworks Co., Ltd. (72) Inventor Shigenori Tanabe 2--15 Nishiyamadai, Osaka Sayama-shi, Osaka No. 3

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所望の形状を転写した空隙を具えた鋳型
内へ、溶融金属を注湯する鋳造法のうち、特定の物性を
鋳造品の所望の位置へ付与する為に、該鋳型内面の該当
する位置へ特定の金属をあらかじめ添着する複合鋳造法
において、NiまたはNi系合金、Ni及び/又はCr
を含むステンレス鋼もしくはCrを少くとも10重量%
以上含む鉄系合金の中から選ばれた1又は複数の金属粉
末Aと、Pを5〜12重量%含むことにより該金属粉末
Aより明確に低温の溶融点に調整したCu系合金よりな
る金属粉末Bとを混合して前記の位置へ添着し、金属粉
末Bの溶融点よりは高い溶融点よりなる溶融金属を注湯
し、前記3溶融点の相互関係によって発現する液相焼結
と溶融金属の静圧によって、製品の所望の位置に強固で
緻密な焼結層を一体的に形成することを特徴とする複合
鋳造法。
1. A casting method of pouring a molten metal into a mold having a cavity in which a desired shape has been transferred, in order to impart specific physical properties to a desired position of the casting, In a composite casting method in which a specific metal is previously attached to a corresponding position, Ni or a Ni-based alloy, Ni and / or Cr
At least 10% by weight of stainless steel or Cr containing
One or more metal powders A selected from the above-mentioned iron-based alloys, and a metal made of a Cu-based alloy containing P in an amount of 5 to 12 wt. The powder B is mixed and adhered to the above position, a molten metal having a melting point higher than the melting point of the metal powder B is poured, and liquid phase sintering and melting expressed by the correlation between the three melting points are performed. A composite casting method wherein a strong and dense sintered layer is integrally formed at a desired position on a product by static pressure of a metal.
【請求項2】 金属粉末Aと金属粉末Bとの混合割合
が、A/B=40/60〜90/10である請求項1記
載の複合鋳造法。
2. The composite casting method according to claim 1, wherein the mixing ratio of the metal powder A and the metal powder B is A / B = 40/60 to 90/10.
【請求項3】 金属粉末Aと金属粉末Bに適当量の有機
系結合材Cを加えてスラリー状に混和して、鋳型表面の
所望の部位に所望の厚さだけ添着する請求項1または2
記載の複合鋳造法。
3. A metal powder A and a metal powder B, to which an appropriate amount of an organic binder C is added and mixed in a slurry form, and the resultant mixture is attached to a desired portion of a mold surface at a desired thickness.
The described composite casting method.
JP29144398A 1998-05-29 1998-09-28 Composite casting method Expired - Lifetime JP3151556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29144398A JP3151556B2 (en) 1998-05-29 1998-09-28 Composite casting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-166341 1998-05-29
JP16634198 1998-05-29
JP29144398A JP3151556B2 (en) 1998-05-29 1998-09-28 Composite casting method

Publications (2)

Publication Number Publication Date
JP2000042721A true JP2000042721A (en) 2000-02-15
JP3151556B2 JP3151556B2 (en) 2001-04-03

Family

ID=26490746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29144398A Expired - Lifetime JP3151556B2 (en) 1998-05-29 1998-09-28 Composite casting method

Country Status (1)

Country Link
JP (1) JP3151556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493139A (en) * 2015-01-05 2015-04-08 贵州鼎成熔鑫科技有限公司 Method for compounding two types of copper alloy on plunger pump cylinder blank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550857A (en) * 2015-01-22 2015-04-29 北京金煤创业进出口有限公司 Metal-based composite reinforcement phase casting technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493139A (en) * 2015-01-05 2015-04-08 贵州鼎成熔鑫科技有限公司 Method for compounding two types of copper alloy on plunger pump cylinder blank

Also Published As

Publication number Publication date
JP3151556B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
Zhang et al. Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics
JP2004204298A (en) Iron-base sintered compact superior in cast-in property by light metal alloy, and manufacturing method therefor
US4003715A (en) Copper-manganese-zinc brazing alloy
CN108570571A (en) Sliding material and its manufacturing method and sliding component and bearing arrangement
JP2010501044A (en) Steel material with high silicon content for the production of piston rings and cylinder liners
KR20030061340A (en) Valve and Manufacturing Method Thereof
Heidari et al. Ablation casting of thin-wall ductile iron
Akinribide et al. Corrosion behavior of ductile and austempered ductile cast iron in 0.01 M and 0.05 M NaCl Environments.
Ramadan et al. Influence of tinning material on interfacial microstructures and mechanical properties of Al12Sn4Si1Cu/carbon steel bimetallic castings for bearing applications
CN111020360A (en) Non-infiltration type ceramic particle reinforced steel-based composite material and preparation method thereof
JP3151556B2 (en) Composite casting method
US7143928B2 (en) Flux and method for joining dissimiliar metals
Hiremath et al. Effect of end chills, reinforcement content and carburization on the hardness of LM25-borosilicate glass particulate composite
JP2002194477A (en) Member for molten nonferrous metal
JP3283003B2 (en) Composite centrifugal casting method
JP4491758B2 (en) Cylinder for molding machine
JP3133273B2 (en) Composite centrifugal casting method
JP3077084B2 (en) Composite casting method
CN1039747A (en) A kind of method that improves thickness of cast cemented alloy layer
Szajnar et al. Manufacturing methods of alloy layers on casting surfaces
Watanabe et al. Nickel-Aluminides/Steel clad pipe fabricated by reactive centrifugal casting method from liquid aluminum and solid nickel
JP5383410B2 (en) Manufacturing method of cylindrical sliding member
JP2008246550A (en) Method for manufacturing preform, preform, and cast-in product using preform
JP2003225755A (en) Method of reforming casting surface
JP5550084B2 (en) Cylindrical sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term