JP2000041678A - Soluble fused protein and gene encoding the same, and production of fused protein and its use - Google Patents

Soluble fused protein and gene encoding the same, and production of fused protein and its use

Info

Publication number
JP2000041678A
JP2000041678A JP10213212A JP21321298A JP2000041678A JP 2000041678 A JP2000041678 A JP 2000041678A JP 10213212 A JP10213212 A JP 10213212A JP 21321298 A JP21321298 A JP 21321298A JP 2000041678 A JP2000041678 A JP 2000041678A
Authority
JP
Japan
Prior art keywords
sequence
ala
dna
fusion protein
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10213212A
Other languages
Japanese (ja)
Inventor
Hideharu Shimizu
英晴 清水
Hiroyuki Ogawa
博之 小川
Hiroshi Kawaguchi
博 川口
Yoshiyuki Ishii
良之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10213212A priority Critical patent/JP2000041678A/en
Publication of JP2000041678A publication Critical patent/JP2000041678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new fused protein consisting at least part of major outer membrane proteins of Clamydia trachomatis, a hydrophilic polypeptide having no immune response to human serum and the connecting portion thereof and useful e.g. for the diagnosis of infection with the above bacterium. SOLUTION: This new fused protein consists of at least part of major outer membrane proteins of Clamydia trachomatis, at least one of hydrophilic polypeptide having no immune response to human serum and the connecting portion thereof and maintain its soluble state in the absence of any protein solubilizer, and be usable for Clamydia trachomatis antibody tests and useful e.g. for the diagnosis of infection with Clamydia trachomatis. This fused protein is obtained by infecting cells with the basic unit of Clamydia trachomatis to propagate it, extracting chromosomal DNA, cloning it through PCR technique using a primer consisting of its partial sequence, binding the resultant gene to a gene encoding an artificially designed hydrophilic polypeptide, followed by expression in an expression system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クラミジア・トラ
コマティス感染症の診断に使用される抗原とその製造
法、及びそれを用いた抗体検査方法に関し、詳しくは、
クラミジア・トラコマティス抗体検査に使用できる可溶
性融合蛋白質とそれをコードする遺伝子、並びにその融
合蛋白質の製造法、及びそれを用いた抗体検査方法、抗
体検査キットに関する。
The present invention relates to an antigen used for diagnosing Chlamydia trachomatis infection, a method for producing the same, and a method for testing an antibody using the same.
The present invention relates to a soluble fusion protein which can be used for Chlamydia trachomatis antibody testing, a gene encoding the same, a method for producing the fusion protein, an antibody testing method using the same, and an antibody testing kit.

【0002】[0002]

【従来の技術】クラミジア・トラコマティス(Chlamydia
Trachomatis)はクラミジア属に属する細菌で一般細菌
と異なり、増殖のために生きた宿主細胞が必要な偏性細
胞内寄生性病原体である。感染粒子である小型の基本小
体(Elementary Body: EBと略;直経0.3 μm)が貪食に
よって細胞内へ取り込まれ感染し、食空胞(Phagosome)
内で網様体(Reticulate body:RBと略;直径0.5 〜2.
0 μm)に変換して2分裂で増殖後、EBに再び成熟変換
して細胞外に放出され、次々に感染を起こすという独特
の増殖環を持っていると言われている。
2. Description of the Related Art Chlamydia
Trachomatis) is a bacterium belonging to the genus Chlamydia and, unlike general bacteria, is an obligate intracellular parasitic pathogen that requires live host cells for growth. Infectious particles, small elementary bodies (abbreviated as EB; straight line 0.3 μm) are taken up into cells by phagocytosis and infected, and phagosomes (Phagosome)
Within a reticulate body (abbreviated as RB; diameter 0.5 to 2.
It is said to have a unique growth cycle in which it is converted to 0 μm), proliferates in two divisions, matures again into EB, is released extracellularly, and causes infection one after another.

【0003】クラミジア・トラコマティスは主に目と泌
尿生殖器に感染し、トラコーマ及び封入体結膜炎、性感
染症(Sexually Transmitted Disease:STD と略、非淋菌
性尿道炎、子宮頸管炎、新生児肺炎)などを起こす。近
年、特に日本を含めた先進国でSTD の起因菌として感染
が広がっていることで注目されている[臨床検査,40
(6),655-658(1996)]。
Chlamydia trachomatis mainly infects the eyes and genitourinary tract, trachoma and inclusion body conjunctivitis, Sexually Transmitted Disease (STD), nongonococcal urethritis, cervicitis, neonatal pneumonia, etc. Cause In recent years, attention has been drawn to the spread of infection as a causative agent of STD especially in developed countries including Japan [Clinical testing, 40
(6), 655-658 (1996)].

【0004】クラミジア・トラコマティスには15種類の
血清型(A,B,Ba,C,D,E,F,G,H,I,J,K,L1,L2,L3)が存在す
る。これらは血清学的に3つのグループ、B-complex(B,
Ba,E,D,L1,L2)、C-complex(C,J,H,I,A)、中間型(G,F,
K,L3)に分類される[J.Infect.Dis.,152,791-800(198
5)]。
[0004] Chlamydia trachomatis has 15 serotypes (A, B, Ba, C, D, E, F, G, H, I, J, K, L1, L2, L3). These are serologically divided into three groups, B-complex (B,
Ba, E, D, L1, L2), C-complex (C, J, H, I, A), intermediate type (G, F,
K, L3) [J. Infect.Dis., 152, 791-800 (198
Five)].

【0005】クラミジア・トラコマティス感染症の検査
法には擦過により採取した患者材料中のクラミジア菌体
を対象とする抗原検査法と血清を検体とする抗体検査法
がある。以前から抗原検査法が採用されてきたが、患者
に苦痛を与えたり、抗原検査材料の採取が容易でないな
どの問題があった。最近では検体採取の容易な抗体検査
法が広く行われている。また感染リスクの高い人のスク
リーニング或いは疫学的調査にも抗体検査が繁用されて
いる。
[0005] Test methods for Chlamydia trachomatis infection include an antigen test method for chlamydia cells in patient materials collected by abrasion and an antibody test method using serum as a sample. Although the antigen test method has been employed for some time, there have been problems such as pain in patients and difficulty in collecting antigen test materials. Recently, antibody testing methods that facilitate sample collection have been widely used. Antibody tests are also commonly used for screening or epidemiological investigation of persons at high risk of infection.

【0006】抗体には現在、5種類のサブクラスが知ら
れているが細菌の感染の指標として重要なのはIgG 及び
IgM である。IgG は感染後、数カ月後に存在量が最大値
に達しそのレベルが長時間維持されるため、持続感染あ
るいは過去の感染歴の指標となる。IgM は感染初期にの
み産生され、初期感染の指標となる。さらにクラミジア
・トラコマティスの感染の場合はIgA が活動性感染の指
標として重要視されている[臨床検査,40(6),693-698(1
996)] 従って、クラミジア・トラコマティスの抗体検査ではこ
の3 種類の抗体をそれぞれ個別に測定できることが望ま
しい。
[0006] Five subclasses of antibodies are currently known, but IgG and IgG are important as indicators of bacterial infection.
IgM. A few months after infection, IgG reaches its maximum level and maintains its level for a long time, and is an indicator of persistent infection or a history of past infection. IgM is only produced early in infection and is an indicator of early infection. Furthermore, in the case of Chlamydia trachomatis infection, IgA is regarded as an important indicator of active infection [clinical examination, 40 (6), 693-698 (1
996)] Therefore, it is desirable that these three types of antibodies can be measured individually in the Chlamydia trachomatis antibody test.

【0007】クラミジア・トラコマティスの抗体検査に
使用する抗原としては、L2株の精製EB又はクラミジア
・トラコマティスに特異的な抗原(種特異的抗原) であ
るL2株由来の主要外膜蛋白質(Major Outer Membrene Pr
otein 、「以下、MOMPと略す」、MOMPは外膜蛋
白質の約60% を占めている) の部分精製品(外膜蛋白質
画分) が用いられているが、精製純度が低いためクラミ
ジア・トラコマティスと同属のクラミジア・ニューモニ
エやクラミジア・シタシの抗体による交差反応が起こ
る。そこで近年では大量に取得が可能で、交差反応を少
なくできる遺伝子組換え法によりMOMPを製造することが
試みられている。
[0007] Antigens used for the antibody test for Chlamydia trachomatis include purified EB of L2 strain or major outer membrane protein (Major) derived from L2 strain which is an antigen (species-specific antigen) specific to Chlamydia trachomatis. Outer Membrene Pr
otein, hereinafter abbreviated as MOMP, which uses about 60% of the outer membrane protein) is a partially purified product (outer membrane protein fraction). Cross-reaction occurs with antibodies from Chlamydia pneumoniae and Chlamydia sp. Therefore, in recent years, it has been attempted to produce MOMP by a genetic recombination method which can be obtained in large quantities and can reduce cross-reaction.

【0008】近年、酵素免疫測定法(EIA) による抗体検
査方法が開発されている。EIA は多検体を簡便且つ迅速
に測定できる利点を有している。IgG 及びIgA を測定す
るためのEIA ではマイクロプレート等に固相した抗原と
検査血清を反応させ、洗浄後に二次抗体としての標識抗
体と反応させる、いわゆる抗原固相法を用いるのが一般
的である。ところがIgM 検出に抗原固相法をそのまま用
いると、血清中にリウマチ因子が存在する場合、リウマ
チ因子を介してIgG を検出し擬陽性を生じてしまうこと
がある。リウマチ因子は自己免疫疾患の患者だけでなく
正常人の血清中にも認められることがあり、これにより
特異性が大幅に低下してしまうという問題が生じる。さ
らにIgG の存在による感度の低下も問題となる。そこで
検査血清にあらかじめIgG の吸収剤を添加しIgG を除去
する処理が行われている。
[0008] In recent years, antibody testing methods by enzyme immunoassay (EIA) have been developed. EIA has the advantage that multiple samples can be measured easily and quickly. In the EIA for measuring IgG and IgA, it is common to use a so-called antigen solid phase method in which an antigen immobilized on a microplate or the like is reacted with a test serum, and after washing, the antibody is reacted with a labeled antibody as a secondary antibody. is there. However, when the antigen solid phase method is used as it is for IgM detection, when a rheumatoid factor is present in serum, false positives may be generated by detecting IgG via the rheumatoid factor. Rheumatoid factor may be found not only in patients with autoimmune diseases but also in the sera of normal persons, which causes a problem that the specificity is greatly reduced. In addition, a decrease in sensitivity due to the presence of IgG also poses a problem. Therefore, a treatment has been carried out in which an IgG absorbent is added to the test serum in advance to remove the IgG.

【0009】しかし、IgG を吸収剤により完全に除去す
ることは困難であり、またIgG 吸収剤によりIgM の一部
も吸収・除去されてしまい、特異性及び感度低下の要因
となっている。この問題を解決するためには、あらかじ
め抗IgM 抗体を固相しておき、検査血清と反応させIgM
のみを結合させた後、抗原と反応させ、続いて抗原と結
合する標識抗体と反応させる、いわゆる抗体捕捉法を用
いるのが有効である。この方法を用いることにより特異
的かつ高感度でIgM を検出することが可能である。
However, it is difficult to completely remove IgG with an absorbent, and part of IgM is also absorbed and removed by the IgG absorbent, which causes a reduction in specificity and sensitivity. To solve this problem, an anti-IgM antibody is immobilized in advance,
It is effective to use a so-called antibody capture method in which only the antigen is allowed to bind, and then reacted with the antigen, and then reacted with a labeled antibody that binds to the antigen. By using this method, it is possible to detect IgM specifically and with high sensitivity.

【0010】MOMPは疎水性の強い蛋白質であり、可溶化
するには高濃度の尿素や塩酸グアニジンといった変性
剤、あるいはドデシル硫酸ナトリウム(Sodium Dodecyl
Sulfate 、以下SDS と略) の様な強力なイオン性界面活
性剤に代表される蛋白質可溶化剤が必要である。ところ
が上述の抗体捕捉法の抗原としてMOMPを用いる場合、可
溶化状態を保つため抗原溶解液中に高濃度の変性剤やイ
オン性界面活性剤等の蛋白質可溶化剤が含まれている
と、正常な抗原抗体反応が成立しない。また抗原溶解液
中に十分な濃度の変性剤やイオン性界面活性剤等の蛋白
質可溶化剤が含まれていない場合、MOMPは凝集して沈殿
したり、固相面への非特異的な吸着が発生してしまう。
いずれの場合にも初期感染の指標として重要な抗体であ
るIgM の検出が不可能になってしまうという問題が生じ
ていた。
[0010] MOMP is a highly hydrophobic protein. To solubilize it, a high concentration of a denaturant such as urea or guanidine hydrochloride, or sodium dodecyl sulfate (Sodium Dodecyl sulfate) is used.
A protein solubilizing agent represented by a strong ionic surfactant such as Sulfate (hereinafter abbreviated as SDS) is required. However, when MOMP is used as an antigen in the antibody capture method described above, it is normal if a high concentration of a protein solubilizer such as a denaturant or an ionic surfactant is contained in the antigen solution to maintain a solubilized state. No antigen-antibody reaction is established. If the antigen solution does not contain a sufficient concentration of a protein solubilizing agent such as a denaturant or ionic surfactant, MOMP aggregates and precipitates, or nonspecific adsorption to the solid surface Will occur.
In any case, there has been a problem that it becomes impossible to detect IgM, which is an important antibody as an indicator of initial infection.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、変性
剤又はイオン性界面活性剤等の蛋白質可溶化剤の非存在
下においても可溶性を保ち、かつクラミジア・トラコマ
ティス抗体に対する抗原性が天然型MOMPと同一である蛋
白質を遺伝子組換え法により製造し、クラミジア・トラ
コマティス抗体検査の抗原として用いることにより、ク
ラミジア・トラコマティス抗体を高感度かつ特異的に測
定する手段を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to maintain solubility even in the absence of a protein solubilizing agent such as a denaturing agent or an ionic surfactant, and to have a natural antigenicity against Chlamydia trachomatis antibodies. Providing a means to measure Chlamydia trachomatis antibody with high sensitivity and specificity by producing a protein identical to type MOMP by genetic recombination and using it as an antigen for Chlamydia trachomatis antibody test .

【0012】[0012]

【課題を解決するための手段】本発明者らは、クラミジ
ア・トラコマティスMOMPの少なくとも一部をコードする
遺伝子の末端あるいは内部にヒト血清と免疫反応性を有
しない親水性ポリペプチドをコードするDNA を結合した
遺伝子を作製し、大腸菌や昆虫細胞等の宿主に導入し発
現させた場合、発現産物であるクラミジア・トラコマテ
ィスMOMPの少なくとも一部とヒト血清と免疫反応性を有
しない親水性ポリペプチドとの融合蛋白質は、変性剤や
イオン性界面活性剤等の蛋白質可溶化剤の非存在下にお
いても可溶化状態を保持することを見い出した。また、
この融合蛋白質を抗原として用いて抗体補足法によるIg
M 検出用EIA を行った結果、IgG 吸収剤を用いた抗原固
相法によるEIA より感度及び特異性を向上させることに
成功した。さらに、この融合蛋白質を抗原として用いて
抗原固相法によるIgG 検出用EIA 、IgA 検出用EIA 及び
IgM 検出用EIA を行った結果、MOMPを抗原として用いた
EIA と同様の性能を有することを確認し、本発明を完成
するに至った。
Means for Solving the Problems The present inventors have designed a DNA encoding a hydrophilic polypeptide not immunoreactive with human serum at the end or inside of a gene encoding at least a part of Chlamydia trachomatis MOMP. When a gene is prepared and introduced into a host such as Escherichia coli or insect cells and expressed, at least a portion of the expression product, Chlamydia trachomatis MOMP, and a hydrophilic polypeptide having no immunoreactivity with human serum It has been found that a fusion protein with the above maintains a solubilized state even in the absence of a protein solubilizing agent such as a denaturing agent or an ionic surfactant. Also,
Ig by antibody supplementation method using this fusion protein as antigen
As a result of performing EIA for M detection, we succeeded in improving sensitivity and specificity compared to EIA by the antigen solid phase method using an IgG absorbent. Furthermore, using this fusion protein as an antigen, an EIA for detecting IgG, an EIA for detecting IgA,
As a result of performing EIA for IgM detection, MOMP was used as the antigen.
The present inventors have confirmed that they have the same performance as EIA, and have completed the present invention.

【0013】即ち、本発明は、EIA の様な抗原抗体反応
を利用したクラミジア・トラコマティス抗体検査の抗原
として用いた場合、高感度かつ特異的にクラミジア・ト
ラコマティス抗体を検出することが可能である、クラミ
ジア・トラコマティスMOMPの少なくとも一部とヒト血清
と免疫交差性を有しない親水性ポリペプチドとの融合蛋
白質、この融合蛋白質の遺伝子組換え法による製造法、
並びにそれを抗原として用いたクラミジア・トラコマテ
ィス抗体の検査方法及びクラミジア・トラコマティス抗
体検査キットである。
That is, when the present invention is used as an antigen in a Chlamydia trachomatis antibody test utilizing an antigen-antibody reaction such as EIA, it is possible to detect Chlamydia trachomatis antibody with high sensitivity and specificity. A fusion protein of at least a portion of Chlamydia trachomatis MOMP and a hydrophilic polypeptide having no immunological cross-reactivity with human serum, a method for producing the fusion protein by genetic recombination,
And a method for testing Chlamydia trachomatis antibodies using the same as an antigen and a kit for testing Chlamydia trachomatis antibodies.

【0014】以下、本発明をより詳細に説明する。Hereinafter, the present invention will be described in more detail.

【発明の実施の形態】まず、MOMPの構造について説明す
る。MOMPは、クラミジア・トラコマティスの株間でアミ
ノ酸配列が大きく異なり、細胞膜の外部に露出している
と推定されている4つのVD(Variable Domain) 領域(N末
端から順にVDI〜IV領域がある) と、株間でアミノ酸配
列が殆ど保存されており細胞膜に埋没していると推測さ
れている疎水性の高い5 つの領域(N末端、C 末端及び各
VD領域に挟まれた領域からなる。便宜上、本明細書では
Commmon Domainと命名し、以下、CD領域と略、N 末端か
ら順にCDI〜V領域と呼ぶ)からなっている。各領域は
N 末端からCDI,VDI,CDII,VDII,CDIII,VDIII,CDIV,VDI
V,CDVの順で配置している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a MOMP will be described. MOMP has four VD (Variable Domain) regions (having VDI-IV regions in order from the N-terminus) that differ greatly in amino acid sequence between Chlamydia trachomatis strains and are estimated to be exposed outside the cell membrane. There are five highly hydrophobic regions (N-terminal, C-terminal and
It consists of a region sandwiched between VD regions. For convenience, in this specification
(Common domain, hereinafter referred to as CD region, abbreviated as CDI to V region in order from the N-terminus). Each area is
CDI, VDI, CDII, VDII, CDIII, VDIII, CDIV, VDI from N-terminal
V and CDV are arranged in this order.

【0015】MOMPと融合させる親水性ポリペプチドはヒ
ト血清と免疫反応性を有しないものを選択することが必
須である。親水性ポリペプチドとして親水性蛋白質ある
いはその一部を選んだ場合、この条件を満たす蛋白の例
としてはウシ血清アルブミン(Bovine Serum Albumin 、
以下BSA と略) 等があるがこれに限定されるものではな
い。親水性蛋白質の一部を用いる場合には親水性の強い
部分を選択することが望ましい。親水性の目安としてハ
イドロパシープロットを用いることができる。これはア
ミノ酸残基ごとに親水性、疎水性の度合いに応じてパラ
メータを割当て、蛋白質中の連続するいくつかのアミノ
酸残基ごとにパラメータの平均を求め、残基をアミノ末
端からカルボキシ末端まで一つずつ移動させながらプロ
ットしていくものである。パラメータの割当て法にはい
くつかあるが例えばDoolite らの方法[J.Mol.Biol.,15
7,105-132(1982) ]に従ってプロットした場合にはプロ
ットがマイナスに片寄る部分が親水性の領域である。
It is essential that a hydrophilic polypeptide to be fused with MOMP has no immunoreactivity with human serum. When a hydrophilic protein or a part thereof is selected as the hydrophilic polypeptide, an example of a protein satisfying this condition is bovine serum albumin (Bovine Serum Albumin,
However, the present invention is not limited to this. When a part of the hydrophilic protein is used, it is desirable to select a part having strong hydrophilicity. A hydropathy plot can be used as a measure of hydrophilicity. This involves assigning parameters according to the degree of hydrophilicity and hydrophobicity for each amino acid residue, averaging the parameters for several consecutive amino acid residues in the protein, and assigning residues from the amino terminal to the carboxy terminal. The plot is made while moving one by one. There are several parameter assignment methods. For example, the method of Doolite et al. [J. Mol. Biol., 15
7, 105-132 (1982)], the portion where the plot is negatively shifted is the hydrophilic region.

【0016】親水性ポリペプチドとして人工的に設計し
たアミノ酸配列を有するポリペプチドを選んだ場合に
も、設計に上述のDoolite らのパラメータを利用するこ
とができる。パラメータがマイナスのアミノ酸残基、特
にアスパラギン、アスパラギン酸、グルタミン、グルタ
ミン酸、ヒスチジン、アルギニン残基等を多く含む配列
を設計するのが望ましい。その際、ヒト血清と免疫反応
のない配列にすることが必須である。
Even when a polypeptide having an artificially designed amino acid sequence is selected as the hydrophilic polypeptide, the above-mentioned parameters of Doolite et al. Can be used for the design. It is desirable to design a sequence containing a large number of amino acid residues having negative parameters, particularly asparagine, aspartic acid, glutamine, glutamic acid, histidine, arginine residues and the like. At this time, it is essential to make the sequence immune to human serum.

【0017】親水性ポリペプチドを結合させるMOMPは必
要なエピトープを持っていれば断片(一部)でも良く、
さらにそれらを連結したものであっても良い。結合位置
はMOMPのアミノ末端でもカルボキシ末端でも内部でも良
いが、望ましくはCD領域である。内部に結合させる場
合、MOMP内のエピトープの破壊を防ぐため、結合部分の
前後でいくつかのアミノ酸配列をオーバーラップさせて
も良い。さらに親水性ポリペプチドを一カ所のみに配置
しても良いし、いくつかに分散させても良い。分散させ
る場合には同じ配列のポリペプチドを配置しても良い
し、異なる配列のポリペプチドを配置しても良い。また
結合させる親水性ポリペプチドの大きさは融合蛋白質中
の全アミノ酸残基のDoolite らのハイドロパシーのパラ
メータの平均値がアミノ酸残基あたり-0.2以下となる様
にするのが望ましく、-0.3以下にするのがさらに望まし
い。
The MOMP that binds the hydrophilic polypeptide may be a fragment (part) as long as it has a necessary epitope,
Further, they may be connected. The binding position may be at the amino terminus, carboxy terminus or inside of MOMP, but is preferably at the CD region. In the case of internal binding, some amino acid sequences may be overlapped before and after the binding portion to prevent destruction of the epitope in MOMP. Further, the hydrophilic polypeptide may be arranged in only one place or may be dispersed in some places. When dispersed, polypeptides having the same sequence may be arranged, or polypeptides having different sequences may be arranged. Also, the size of the hydrophilic polypeptide to be bound is preferably such that the average value of the hydropathy parameters of Doolite et al. Of all amino acid residues in the fusion protein is -0.2 or less per amino acid residue, and -0.3 or less. More desirably.

【0018】MOMP遺伝子を取得するには、EBを適当な細
胞、例えばHeLaやL929細胞に感染させ、クラミジア・ト
ラコマティスを増殖させた後、細胞を破砕し、ショ糖密
度勾配遠心によって、大量のEBを取得、常法によって染
色体DNA を抽出精製する。MOMP遺伝子をクローニング方
法としてλgt10、λgt11或いはPCR 法などがあるが、最
近ではPCR 法[Nature 324,163(1986)] が多く用いられ
ている。PCR 法とは目的遺伝子の部分配列から成るDNA
プライマーと該遺伝子に相補的な部分配列から成るDNA
プライマーをアニールさせ、耐熱性DNA ポリメラーゼで
あるTaq ポリメラーゼを用いて増幅反応を行うものであ
る。DNA プライマーには目的遺伝子の部分配列あるいは
その相補配列に、必要に応じて一部配列を付加したり配
列の一部に変異を入れることも可能であるが、その場合
には反応条件を十分検討する必要がある。
In order to obtain the MOMP gene, EBs are infected to appropriate cells, for example, HeLa or L929 cells, and Chlamydia trachomatis is grown. After crushing the cells, a large amount of sucrose density gradient centrifugation is performed. Obtain EB and extract and purify chromosomal DNA by a conventional method. As a cloning method of the MOMP gene, there are λgt10, λgt11, PCR method and the like, and recently, the PCR method [Nature 324, 163 (1986)] is often used. What is PCR? DNA consisting of partial sequence of target gene
DNA consisting of a primer and a partial sequence complementary to the gene
The primer is annealed, and an amplification reaction is performed using Taq polymerase, a thermostable DNA polymerase. In the DNA primer, it is possible to add a partial sequence to the partial sequence of the target gene or its complementary sequence as necessary, or to mutate a part of the sequence, but in that case, carefully consider the reaction conditions There is a need to.

【0019】次いで得られたMOMP遺伝子を含む増幅断片
を例えばpUC19 やpBR322等のクローニングベクターに組
み込み、大腸菌等の宿主を形質転換し、目的のDNA を有
するクローンを選択すれば、本発明に用いるMOMP遺伝子
DNA が得られる。親水性蛋白質あるいはその一部をコー
ドする遺伝子を取得するには市販の遺伝子ライブラリー
からPCR 法を用いてクローニングを行うのが便利であ
る。PCR 法に用いるDNA プライマーにはMOMP遺伝子DNA
と結合させるための適当な制限酵素認識部位を内部に持
つように配列を一部付加したり変異を入れたりしておく
ことが必要である。
Then, the obtained amplified fragment containing the MOMP gene is inserted into a cloning vector such as pUC19 or pBR322, and a host such as Escherichia coli is transformed to select a clone having the desired DNA. gene
DNA is obtained. To obtain a gene encoding a hydrophilic protein or a part thereof, it is convenient to carry out cloning from a commercially available gene library by PCR. MOMP gene DNA is used as the DNA primer for PCR.
It is necessary to add a part of the sequence or introduce a mutation so that it has an appropriate restriction enzyme recognition site for binding to the inside.

【0020】人工的に設計したアミノ酸配列を有するポ
リペプチドをコードする遺伝子DNAは化学合成によって
作製することができる。合成するDNA にはMOMP遺伝子と
結合させるため、適当な制限酵素認識部位を有する様に
設計することが必要である。ベクター中に組み込まれた
遺伝子DNA から制限酵素を用いて不必要な部分を取り除
いたり、他の遺伝子DNA を結合する方法については[Mo
lecular Cloning,Cold Spring Harbar Laboratory Pres
s(1989)]等に記載されている。この方法に従えば、設計
した融合蛋白質をコードする遺伝子DNA を作製すること
が可能である。得られたDNA はジデオキシ法等により配
列を決定することが可能である。
Gene DNA encoding a polypeptide having an artificially designed amino acid sequence can be prepared by chemical synthesis. In order to bind to the MOMP gene, it is necessary to design the DNA to be synthesized so as to have an appropriate restriction enzyme recognition site. For methods of removing unnecessary parts from the gene DNA incorporated in the vector using restriction enzymes and binding other gene DNA, see [Mo
lecular Cloning, Cold Spring Harbar Laboratory Pres
s (1989)]. According to this method, it is possible to prepare a gene DNA encoding the designed fusion protein. The sequence of the obtained DNA can be determined by the dideoxy method or the like.

【0021】融合蛋白質の生産のためには、その蛋白質
を安定に発現する宿主−ベクター系を選択することが必
要である。この目的のために宿主としては、大腸菌、酵
母、昆虫細胞または哺乳類細胞等を使用することができ
る。
For production of a fusion protein, it is necessary to select a host-vector system that stably expresses the protein. For this purpose, Escherichia coli, yeast, insect cells or mammalian cells can be used as a host.

【0022】特に昆虫細胞を用いてEIA による抗体検査
に使用する抗原を作製した場合、抗原に混入する昆虫細
胞由来の蛋白質はヒト血清との非特異的な反応がないた
め、精製が容易であり、さらにEIA のカットオフ値を低
く設定することも可能となる。そのためEIA の吸光度の
測定可能な範囲が広くなる。また検体間の非特異的反応
の差による判定ミスを少なくすることができる。
In particular, when an antigen used for antibody testing by EIA is prepared using insect cells, the protein derived from the insect cells contaminating the antigen does not have a nonspecific reaction with human serum, so that purification is easy. In addition, the cut-off value of EIA can be set lower. Therefore, the measurable range of the absorbance of EIA is widened. In addition, it is possible to reduce a determination error due to a difference in nonspecific reaction between samples.

【0023】大腸菌を宿主とした発現ベクターは次のよ
うに構築できる。プロモーターとしては、Tac プロモー
ター、Trp プロモーター、Lac プロモーター、T7プロモ
ーター、PLプロモーター等が使用できる。プロモーター
の下流に上記融合蛋白質遺伝子のDNA 断片を転写方向に
したがって挿入する。発現ベクターの大腸菌への導入方
法は、以下に示す文献[Molecular Cloning,Cold Sprin
g Harbar LaboratoryPress(1989)]に記載されている。
形質転換された大腸菌は、常法により培養し、適当な誘
導処理をし、目的の融合蛋白質を発現させることができ
る。融合蛋白質の発現の有無は抗クラミジア・トラコマ
ティスMOMPモノクローン抗体を用いたウエスタン・ブロ
ッティング[Proc.Natl.Acad.Sci.USA., 76(3),3116-31
20 (1979)]で確認できる。
An expression vector using E. coli as a host can be constructed as follows. As the promoter, a Tac promoter, a Trp promoter, a Lac promoter, a T7 promoter, a PL promoter and the like can be used. A DNA fragment of the fusion protein gene is inserted downstream of the promoter in the transcription direction. The method for introducing an expression vector into E. coli is described in the following document [Molecular Cloning, Cold Sprin
g Harbar Laboratory Press (1989)].
The transformed Escherichia coli can be cultured by a conventional method, subjected to an appropriate induction treatment, and allowed to express the desired fusion protein. Expression of the fusion protein was determined by Western blotting using an anti-Chlamydia trachomatis MOMP monoclonal antibody [Proc. Natl. Acad. Sci. USA., 76 (3), 3116-31.
20 (1979)].

【0024】昆虫細胞を宿主とした転移ベクターは次の
ように構築できる。まず昆虫細胞でのプロモーターとし
ては、ポリヘドリンプロモーター、塩基性プロモーター
等が使用される。プロモーターの下流に目的の融合蛋白
質のDNA 断片を転写方向にしたがって挿入する。転移ベ
クターの昆虫細胞への導入方法は、以下に示す文献等
[Baculovirus Expression Vectors,W.H.Freeman & Com
pany(1992)] に記載されている。形質転換された昆虫細
胞は、常法により浮遊培養または付着培養が可能であ
る。培地としては、例えばTC-100またはGrace's 培地等
を用いることができるが、昆虫細胞の種類によっては5
〜10% の血清を添加した培地を用いることがある。3 〜
4 日間培養し、目的の融合蛋白質を発現させることがで
きる。
A transfer vector using an insect cell as a host can be constructed as follows. First, as a promoter in insect cells, a polyhedrin promoter, a basic promoter and the like are used. A DNA fragment of the target fusion protein is inserted downstream of the promoter in the direction of transcription. The method for introducing a transfer vector into insect cells is described in the following literature [Baculovirus Expression Vectors, WH Freeman & Com.
pany (1992)]. The transformed insect cells can be subjected to suspension culture or adherent culture by a conventional method. As a medium, for example, TC-100 or Grace's medium can be used.
A medium supplemented with ~ 10% serum may be used. 3 to
After culturing for 4 days, the desired fusion protein can be expressed.

【0025】発現させた融合蛋白質は次のような方法で
精製することができる。細胞内で可溶化している場合に
は細胞を超音波で破砕し遠心分離後、上清を回収する。
融合蛋白質は塩析、調製用電気泳動やカラムクロマトグ
ラフィー法等の一般的な蛋白質精製法で、上清中より高
純度に精製することができる。細胞内で凝集体を形成し
た場合には細胞を酵素と非イオン性界面活性剤を用いて
破砕し遠心分離後、沈澱を回収する。沈澱を尿素や塩酸
グアニジン等の変性剤あるいはSDS 等のイオン性界面活
性剤を用いて可溶化する。可溶化した融合蛋白は調製用
電気泳動やカラムクロマトグラフィー等の一般的な蛋白
質精製法で、高純度に精製することができる。どちらの
場合においても精製した融合蛋白質溶液は透析等の手段
により目的の組成の緩衝液に置換することができる。
The expressed fusion protein can be purified by the following method. If solubilized in the cells, the cells are disrupted by sonication, centrifuged, and the supernatant is recovered.
The fusion protein can be purified to a higher purity than the supernatant by a general protein purification method such as salting out, preparative electrophoresis or column chromatography. When aggregates are formed in the cells, the cells are crushed using an enzyme and a nonionic surfactant, centrifuged, and the precipitate is collected. The precipitate is solubilized using a denaturing agent such as urea or guanidine hydrochloride or an ionic surfactant such as SDS. The solubilized fusion protein can be purified to high purity by a general protein purification method such as preparative electrophoresis or column chromatography. In either case, the purified fusion protein solution can be replaced with a buffer of the desired composition by means such as dialysis.

【0026】上述したような方法で得られた融合蛋白質
を用いた抗体捕捉法によるIgM 検出用EIA の方法を以下
に示す。抗ヒトIgM 抗体をポリスチレン平型マイクロプ
レートに1〜100μg/mlの濃度で、望ましくは5
〜50μg/mlの濃度で固相すると抗ヒトIgM抗体
固相プレートができる。このプレートに適当に希釈した
ヒト血清を加えて、一定温度、一定時間反応させ、その
後、未反応物質を除去するためプレートを洗浄する。こ
の操作でプレートに固相した抗ヒトIgM抗体に血清中
のIgMのみが結合する。次にプレートに濃度0.2〜
100μg/ml、好ましくは、0.5〜50μg/m
lの融合蛋白質溶液を100μlを加え、一定温度、一
定時間反応させ、その後、未反応物質を除去するために
プレートを洗浄する。この操作でプレートに固相した抗
ヒトIgM抗体に結合している抗クラミジア・トラコマ
ティスIgMに融合蛋白質が結合する。
An EIA method for IgM detection by an antibody capture method using the fusion protein obtained by the above-described method is described below. Anti-human IgM antibody is applied to a polystyrene flat microplate at a concentration of 1 to 100 μg / ml, preferably 5 to 100 μg / ml.
When the solid phase is immobilized at a concentration of 5050 μg / ml, an anti-human IgM antibody solid phase plate is formed. Appropriately diluted human serum is added to the plate and reacted at a constant temperature for a fixed time, and then the plate is washed to remove unreacted substances. By this operation, only IgM in the serum binds to the anti-human IgM antibody immobilized on the plate. Next, add 0.2 ~
100 μg / ml, preferably 0.5 to 50 μg / m
1 μl of the fusion protein solution is added, and the mixture is reacted at a fixed temperature for a fixed time. After that, the plate is washed to remove unreacted substances. By this operation, the fusion protein binds to anti-Chlamydia trachomatis IgM bound to the anti-human IgM antibody immobilized on the plate.

【0027】次に標識抗体、好ましくは酵素標識した抗
クラミジア・トラコマティスMOMP抗体と反応させ、その
後、未反応物質を除去するためにプレートを洗浄する。
ここで標識に使う酵素は一般にアルカリフォスファター
ゼや西洋ワサビパーオキシダーゼ等がよく用いられる。
最後に酵素の基質を添加し、発色度を吸光度計で測定
し、抗体の有無、つまり感染の有無を測定する。
Next, the plate is reacted with a labeled antibody, preferably an enzyme-labeled anti-Chlamydia trachomatis MOMP antibody, and then the plate is washed to remove unreacted substances.
Here, alkaline phosphatase, horseradish peroxidase and the like are generally used as the enzyme used for labeling.
Finally, a substrate for the enzyme is added, and the degree of color development is measured with an absorptiometer to determine the presence or absence of antibodies, that is, the presence or absence of infection.

【0028】さらに上述したような方法で得られた融合
蛋白質を用いた抗原固相法によるEIAの方法を以下に示
す。融合蛋白質をポリスチレン平型マイクロプレートに
0.1〜10μg/mlの濃度で、好ましくは0.2〜
2μg/mlの濃度で固相すると融合蛋白質固相プレー
トができる。このプレートに適当に希釈したヒト血清を
加える。測定する対象がIgM の場合、血清にはあらかじ
めIgG 吸収剤を添加しておく。血清を加えた後、一定温
度、一定時間反応させ、その後、未反応物質を除去する
ためにプレートを洗浄する。この操作でプレートに固相
化した融合蛋白質に血清中の抗クラミジア・トラコマテ
ィス抗体のみが結合する。
The EIA method by the solid phase antigen method using the fusion protein obtained by the above method is described below. The fusion protein is placed on a polystyrene flat microplate at a concentration of 0.1 to 10 μg / ml, preferably 0.2 to 10 μg / ml.
When the solid phase is immobilized at a concentration of 2 μg / ml, a fusion protein solid phase plate is formed. Add appropriately diluted human serum to the plate. If the measurement target is IgM, add an IgG absorbent to the serum in advance. After adding the serum, the plate is reacted at a fixed temperature for a fixed time, and then the plate is washed to remove unreacted substances. By this operation, only the anti-Chlamydia trachomatis antibody in the serum binds to the fusion protein immobilized on the plate.

【0029】次に標識抗体、望ましくは酵素標識した抗
ヒトIgG 、IgA 或いはIgM と反応させ、その後、未反応
物質を除去するためにプレートを洗浄する。ここで標識
に使う酵素は一般にアルカリフォスファターゼや西洋ワ
サビパーオキシダーゼ等がよく用いられる。最後に酵素
の基質を添加し、発色度を吸光度計で測定し、抗体の有
無、つまり感染の有無を測定する。
Next, the plate is reacted with a labeled antibody, preferably an enzyme-labeled anti-human IgG, IgA or IgM, and then the plate is washed to remove unreacted substances. Here, alkaline phosphatase, horseradish peroxidase and the like are generally used as the enzyme used for labeling. Finally, a substrate for the enzyme is added, and the degree of color development is measured with an absorptiometer to determine the presence or absence of antibodies, that is, the presence or absence of infection.

【0030】[0030]

【実施例】以下、実施例に基づいて本発明をさらに詳し
く説明するが、本発明はこれらの実施例に限定されるも
のではない。 実施例1. L2株クラミジア・トラコマティスMOMP遺伝
子のクローニング 1.クラミジア・トラコマティスゲノムDNAの調製 (1)クラミジア・トラコマティスの培養とEBの精製 クラミジア・トラコマティスL2株(L2/434/Bubo) を1
0%ウシ胎児血清(FCS)を含むイーグルMEM培地
で増殖させたL929細胞に接種した。37℃で2〜3
日培養した。尚、一部の感染細胞を採取し、直接蛍光抗
体法でクラミジアの増殖を確認した。培養終了後、培養
液を捨てて、ハンクスBSS を加え、ラバーポリスメンで
細胞をかき取った。次に感染細胞浮遊液を超音波処理(2
0KHz,30 秒) 後、遠心分離(500×g,4 ℃,15 分間) して
上清を回収した。上清を35% Renogranfin液(10mM HE
PES,0.15MNaCl) に重層し、43, 000×g、4℃、
1時間遠心分離した。得られた沈澱にSPG(0.25Mショ
糖及び5mM グルタミン酸を含む10mMリン酸buffer(pH7.
2))を加え、懸濁した。これをRenogranfin 液の不連続
密度勾配(40%/44%/52%) に重層し、43, 000×g、
4℃、1時間遠心分離した。44%と52%の界面のバ
ンドを回収し、SPGで希釈した後、30, 000×
g、4℃、30分間遠心分離し、精製EBを得た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 Cloning of L2 strain Chlamydia trachomatis MOMP gene Preparation of Chlamydia trachomatis genomic DNA (1) Culture of Chlamydia trachomatis and purification of EB Chlamydia trachomatis L2 strain (L2 / 434 / Bubo)
L929 cells grown in Eagle's MEM medium containing 0% fetal calf serum (FCS) were inoculated. 2-3 at 37 ° C
Cultured for one day. In addition, a part of the infected cells was collected, and the growth of Chlamydia was confirmed by a direct fluorescent antibody method. After completion of the culture, the culture solution was discarded, Hanks BSS was added, and the cells were scraped off with rubber policemen. Next, the infected cell suspension was sonicated (2.
After 0 KHz, 30 seconds), the supernatant was collected by centrifugation (500 × g, 4 ° C., 15 minutes). The supernatant was used in 35% Renogranfin solution (10 mM HE
PES, 0.15 M NaCl), 43,000 xg, 4 ° C,
Centrifuged for 1 hour. SPG (10 mM phosphate buffer containing 0.25 M sucrose and 5 mM glutamic acid (pH 7.
2)) was added and suspended. This was layered on the discontinuous density gradient (40% / 44% / 52%) of the Renogranfin solution, and 43,000 × g,
Centrifuged at 4 ° C for 1 hour. The band at the interface of 44% and 52% was collected, diluted with SPG, and then 30,000 ×
g, and centrifuged at 4 ° C. for 30 minutes to obtain purified EB.

【0031】(2)クラミジア・トラコマティスゲノムD
NAの調製 上記で得た精製EBに10倍量のLysis Buffer(10mM Tr
is-HCl(pH8.0),5mM EDTA,0.5% SDS,100 μg/ml Protein
ase K)を加え、55℃、90分間反応させた後、フェノ
ール/クロロホルム抽出を行い、ゲノムDNA をエタノー
ル沈澱させた。得られたゲノムDNA をTE Buffer(10mM T
ris-HCl(pH7.5),1mM EDTA)に溶解後、最終濃度50μg
/mlになるようにRNaseAを加え、60℃、30分間反
応させた。反応終了後、フェノール/クロロホルム抽出
を行い、ゲノムDNAをエタノール沈澱させた。ゲノム
DNAを適当量のTE Buffer に溶解させた。
(2) Chlamydia trachomatis genome D
Preparation of NA A 10-fold amount of Lysis Buffer (10 mM Tr) was added to the purified EB obtained above.
is-HCl (pH8.0), 5mM EDTA, 0.5% SDS, 100 μg / ml Protein
After adding ase K) and reacting at 55 ° C. for 90 minutes, phenol / chloroform extraction was performed to precipitate genomic DNA with ethanol. The obtained genomic DNA is transferred to TE Buffer (10 mM T
ris-HCl (pH7.5), 1mM EDTA)
/ Ml, and reacted at 60 ° C for 30 minutes. After completion of the reaction, phenol / chloroform extraction was performed to precipitate genomic DNA with ethanol. Genomic DNA was dissolved in an appropriate amount of TE Buffer.

【0032】2. クラミジア・トラコマティスMOMP
遺伝子のクローニング 実施例1−1で得たクラミジア・トラコマティスL2株
ゲノムDNA溶液1μlを用いて、Saiki らの方法[Na
ture,324,163(1986)]に従い、Gene Amp PCR Reagent K
it(宝酒造社製)を用いたPCR法で、MOMPを含む遺伝
子領域を増幅した。即ち、10mM Tris-HCl(pH 8.3),50m
M KCl,5mM MgCl2 ,0.1% ゼラチンを含む反応液中にクラ
ミジア・トラコマティスL2株ゲノムDNA溶液1μl
とDNAシンセサイザーを用いて合成した配列番号13
及び14に示す2種類のオリゴヌクレオチドプライマー
それぞれ20pmoles及びTaq polymerase5units を加
え、最終量50μlとした。
2. Chlamydia trachomatis MOMP
Cloning of Gene Using 1 μl of the genomic DNA solution of Chlamydia trachomatis L2 strain obtained in Example 1-1, the method of Saiki et al. [Na
Nature, 324, 163 (1986)].
The gene region containing MOMP was amplified by a PCR method using it (manufactured by Takara Shuzo). That is, 10 mM Tris-HCl (pH 8.3), 50 mM
1 μl of genomic DNA solution of Chlamydia trachomatis L2 strain in a reaction solution containing M KCl, 5 mM MgCl 2 and 0.1% gelatin
And SEQ ID NO: 13 synthesized using a DNA synthesizer
In addition, 20 pmoles and 5 units of Taq polymerase were added to each of the two types of oligonucleotide primers shown in FIGS.

【0033】この反応液を94℃, 3×min.→〔(94
℃,45sec. →55℃,45sec. →72℃,2.5min.) ×30サイク
ル〕→〔(94 ℃,45sec. →55℃,45sec. →72℃,10min.)
×5 サイクル〕反応させた。反応終了液を1%アガロー
スゲル電気泳動で分画した結果、約1.3Kb のPCR 増幅産
物を確認した。この約1.3KbのPCR増幅産物をGene
clean II(BIO101 社製)で回収した後、さらにDNA Blun
ting Kit(宝酒造製)を用いて平滑化した。次にpUC19
2μgを制限酵素SmaI4units で30℃、2時間消化
後、アルカリフォスファターゼ(BRL社製) で5' 末端を
脱リン酸化した。上記PCR増幅断片とpUC19 断片をLi
gation Kit(宝酒造社製)を用いて結合させ、CaCl2
[Molecular Cloning,Cold Spring Harbar Laboratory
Press(1989)]によって大腸菌JM109に導入した。得
られた形質転換体を適当に10個選択、Birnboimらのア
ルカリ―SDS法[Nuc. Acids Res.,7,1513(1979)]で
DNAを精製し、制限酵素マッピングによりPCR増幅
断片を有するクローン(pMOMP-L2 と命名)を得た(図1
参照)。
This reaction solution was heated at 94 ° C., 3 × min. → [(94
° C, 45sec. → 55 ° C, 45sec. → 72 ° C, 2.5min.) × 30 cycles) → [(94 ° C, 45sec. → 55 ° C, 45sec. → 72 ° C, 10min.)
× 5 cycles]. As a result of fractionating the reaction completed solution by 1% agarose gel electrophoresis, a PCR amplification product of about 1.3 Kb was confirmed. This approximately 1.3 Kb PCR amplification product is
After recovery with clean II (BIO101), DNA Blun
Smoothing was performed using ting Kit (Takara Shuzo). Then pUC19
After digesting 2 μg with 4 units of restriction enzyme SmaI at 30 ° C. for 2 hours, the 5 ′ end was dephosphorylated with alkaline phosphatase (BRL). The PCR amplified fragment and pUC19 fragment were
gation Kit (manufactured by Takara Shuzo Co., Ltd.) and the CaCl 2 method [Molecular Cloning, Cold Spring Harbar Laboratory
Press (1989)]. Appropriately selected 10 transformants were obtained, DNA was purified by the alkali-SDS method of Birnboim et al. [Nuc. Acids Res., 7, 1513 (1979)], and clones having PCR amplified fragments were obtained by restriction enzyme mapping. (named pMOMP-L2) (Fig. 1
reference).

【0034】得られたクローンからプラスミドDNA を精
製し、パーキンエルマージャパン社製DNAシーケンサ
ー373Aで塩基配列を決定した。その結果、L2株公
知の塩基配列[J.Bacteriol.,168(3),1277-1287(1986)]
と完全一致した。
Plasmid DNA was purified from the obtained clone, and its nucleotide sequence was determined using DNA sequencer 373A manufactured by PerkinElmer Japan. As a result, the known nucleotide sequence of the L2 strain [J. Bacteriol., 168 (3), 1277-1287 (1986)]
Exact match.

【0035】実施例2.大腸菌によるMOMPとBSA
親水性部分の融合蛋白質の発現 1.MOMP発現ベクターの作製 実施例1で得られたプラスミドpMOMP-L220μgを制限
酵素BstYI 20units で60℃、2時間消化後、フェノー
ル抽出―エタノール沈澱を行なった。DNAを溶解後、
制限酵素KpnI20units で37℃、2時間消化後、1%
アガロースゲル電気泳動を行い、0.8Kb断片をGenecl
ean II(BIO101 社製)で回収した。次に特開平7-147986
号に記載のPLプロモーター発現ベクター pPLN-MCS 5
μg を制限酵素KpnI5units で37℃、2時間消化後、
フェノール抽出―エタノール沈澱を行なった。DNAを
溶解後、制限酵素NdeI5units で37℃、2時間消化
し、1%アガロースゲル電気泳動を行い、3.2kbの
断片をGeneclean IIで回収した。さらにDNA シンセサイ
ザーを用いて、配列番号15及び16に示すオリゴヌク
レオチドを合成した。オリゴヌクレオチドをそれぞれME
GALABEL(宝酒造社製)を用いて5' 末端をリン酸化した
後、リン酸化オリゴヌクレオチドをアニールした。0.
8kbの断片、3.2kbの断片及びアニールしたオリ
ゴヌクレオチドを結合させ、大腸菌N99cI + に導入し
た。得られた形質転換体を適当に24個選択、アルカリ
―SDS法でDNAを精製し、制限酵素NdeIとKpnIによ
るマッピングとオリゴヌクレオチド近辺の塩基配列決定
によりプラスミドpCT33 を取得した(図2参照)。
Embodiment 2 FIG. MOMP and BSA by E. coli
Expression of fusion protein of hydrophilic portion Preparation of MOMP expression vector 20 μg of the plasmid pMOMP-L2 obtained in Example 1 was digested with 20 units of BstYI restriction enzyme at 60 ° C. for 2 hours, followed by phenol extraction and ethanol precipitation. After dissolving the DNA,
1% after digestion with KpnI 20units at 37 ° C for 2 hours
Perform agarose gel electrophoresis.
ean II (BIO101). Next, JP-A-7-147986
Promoter expression vector pPLN-MCS 5
After digesting μg with 5 units of KpnI restriction enzyme at 37 ° C for 2 hours,
Phenol extraction-ethanol precipitation was performed. After dissolving the DNA, it was digested with 5 units of NdeI restriction enzyme at 37 ° C. for 2 hours, subjected to 1% agarose gel electrophoresis, and a 3.2 kb fragment was recovered with Geneclean II. Furthermore, the oligonucleotides shown in SEQ ID NOS: 15 and 16 were synthesized using a DNA synthesizer. Oligonucleotides to each ME
After phosphorylation of the 5 'end using GALABEL (manufactured by Takara Shuzo), the phosphorylated oligonucleotide was annealed. 0.
The 8 kb fragment, the 3.2 kb fragment and the annealed oligonucleotide were ligated and introduced into E. coli N99cI + . Appropriate 24 of the obtained transformants were selected, the DNA was purified by the alkali-SDS method, and the plasmid pCT33 was obtained by mapping with restriction enzymes NdeI and KpnI and determining the nucleotide sequence near the oligonucleotide (see FIG. 2).

【0036】2.MOMPとBSA親水性部分の融合蛋
白質発現ベクターの作製 (1)BSA遺伝子のクローニング Bovine Liver QUICK-CloneTM cDNA(CLONETECH 社製)よ
りSaiki らの方法に従い、Gene Amp PCR Reagent Kit
(宝酒造社製)を用いたPCR 法で、BSA の遺伝子領域を
増幅した。即ち、10mM Tris-HCl(pH8.3),50mM KCl,5mM
MgCl2 ,0.1% ゼラチンを含む反応液中にBovine Liver Q
UICK-CloneTM cDNA 1μlとDNAシンセサイザーを用
いて合成した配列番号17及び18の2種類のプライマ
ーそれぞれ20pmoles及びTaq polymerase5units を加
え、最終量50μlとした。この反応液を94℃, 3mi
n.→〔(94 ℃,45sec. →55℃,45sec. →72℃,2.5min.)
×30サイクル〕→〔(94 ℃,45sec. →55℃,45sec. →72
℃,10min.)×5サイクル〕反応させた。反応終了液を1
%アガロースゲル電気泳動で分画した結果、約1.8k
bのPCR増幅産物を確認した。この約1.8kbのP
CR増幅産物をGeneclean II(BIO101 社製)で回収した
後、さらにDNA Blunting Kit(宝酒造製)を用いて平
滑化した。次にpUC19 2μgを制限酵素SmaI4units で
30℃、2時間消化後、アルカリフォスファターゼ(BRL
社製)で5' 末端を脱リン酸化した。上記PCR増幅断
片とpUC19 断片をLigation Kit(宝酒造社製)を用いて
結合させ、CaCl2 法によって大腸菌JM109に導入し
た。得られた形質転換体を適当に10個選択、アルカリ
―SDS法でDNAを精製し、制限酵素マッピングによ
りPCR増幅断片を有するクローン(pBSA と命名)を得
た(図3参照)。得られたクローンからプラスミドDN
Aを精製し、パーキンエルマージャパン社製DNAシー
ケンサー373Aで塩基配列を決定した。その結果、B
SAの公知の塩基配列とは一部異なっていたがコードす
るアミノ酸配列は公知の配列[GeneBank accession No.
X58989]と完全一致した。
2. Preparation of fusion protein expression vector of MOMP and BSA hydrophilic part (1) Cloning of BSA gene Gene Amp PCR Reagent Kit from Bovine Liver QUICK-Clone cDNA (CLONETECH) according to the method of Saiki et al.
The BSA gene region was amplified by a PCR method (manufactured by Takara Shuzo). That is, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 5 mM
Bovine Liver Q in a reaction solution containing MgCl 2 and 0.1% gelatin
1 μl of UICK-Clone cDNA and 20 pmoles and 5 units of Taq polymerase, respectively, of the two types of primers of SEQ ID NOS: 17 and 18 synthesized using a DNA synthesizer were added to a final volume of 50 μl. This reaction solution was heated at 94 ° C for 3 mi.
n. → [(94 ℃, 45sec. → 55 ℃, 45sec. → 72 ℃, 2.5min.)
× 30 cycles) → [(94 ° C, 45sec. → 55 ° C, 45sec. → 72
C., 10 min.) × 5 cycles]. 1
% Agarose gel electrophoresis, about 1.8 k
The PCR amplification product of b was confirmed. This 1.8 kb P
After the CR amplification product was recovered with Geneclean II (manufactured by BIO101), the product was further blunted using a DNA Blunting Kit (manufactured by Takara Shuzo). Next, 2 μg of pUC19 was digested with 4 units of SmaI restriction enzyme at 30 ° C. for 2 hours, and then alkaline phosphatase (BRL) was digested.
5 'end was dephosphorylated. The PCR amplified fragment and the pUC19 fragment were ligated using a Ligation Kit (Takara Shuzo) and introduced into E. coli JM109 by the CaCl 2 method. Appropriately obtained 10 transformants were selected, the DNA was purified by the alkali-SDS method, and a clone (designated pBSA) having a PCR amplified fragment was obtained by restriction enzyme mapping (see FIG. 3). Plasmid DN was obtained from the resulting clone.
A was purified, and its nucleotide sequence was determined using DNA sequencer 373A manufactured by PerkinElmer Japan. As a result, B
Although the amino acid sequence, which was partially different from the known base sequence of SA, was encoded by a known sequence [GeneBank accession No.
X58989].

【0037】(2) TypeA発現ベクターの作製 MOMPのCDIII 領域にBSA親水性部分を挿入し、接
合部の前後にCDIII 領域内のアミノ酸配列12残基分を
オーバーラップさせた融合蛋白質(配列番号1に示すア
ミノ酸配列を有する融合蛋白質;TypeA と命名)の発現
ベクター(コード部分が配列番号7に示す塩基配列であ
るベクター)pCT78を以下の方法で作製した。BSA中の
親水性の特に高い部分をコードする遺伝子をMOMPの
CDIII 領域をコードする遺伝子内に挿入するため、pBSA
を用い上記のSaiki らの方に従い、Gene Amp PCR Reage
nt Kit(宝酒造社製)を用いたPCR法で、BSAの遺
伝子領域を増幅した。即ち、10mM Tris-HCl(pH8.3),50m
M KCl,5mM MgCl2 ,0.1% ゼラチンを含む反応液中にpBSA
1ngとDNAシンセサイザーを用いて合成した配列番
号19及び20に示す2種類の変異導入オリゴヌクレオ
チドプライマーそれぞれ20pmoles及びTaq polymerase
5units を加え、最終量50μlとした。この反応液を
94℃, 3min.→〔(94 ℃,45sec. →50℃,45sec. →72
℃,2.5min.) ×30サイクル〕→〔(94 ℃,45sec. →50
℃,45sec. →72℃,10min.)×5 サイクル〕反応させた。
反応終了液を1%アガロースゲル電気泳動で分画した結
果、約250bのPCR増幅産物を確認した。この約2
50bのPCR増幅産物をGeneclean II(BIO101 社製)
を用いて回収した。実施例2−1で得られたプラスミド
pCT33 5μgを制限酵素SacIとXmaIをそれぞれ5units
で37℃、2時間消化後、1%アガロースゲル電気泳動
を行い、約4.1kbの断片をGeneclean IIで回収し
た。プラスミドpCT33 20μg を制限酵素Bst1107IとXm
aIをそれぞれ5units で37℃、2時間消化後、1.2
%アガロースゲル電気泳動を行い、740bの断片をGe
neclean IIで回収した。さらに上記の約250bのPC
R増幅産物を制限酵素SacIとBst1107Iをそれぞれ5unit
s で37℃、2時間消化後、1.5%アガロースゲル電
気泳動を行い、約220bの断片をGeneclean IIで回収
した。4.1kbの断片、740bの断片及び220b
の断片を結合させ、大腸菌N99cI + 導入した。得られた
形質転換体を適当に24個選択、アルカリ―SDS法で
DNAを精製し、制限酵素SacIとBst1107Iによるマッピ
ングと結合部位及びPCR 増幅断片付近の塩基配列決定に
よりプラスミドpCT78 を取得した(図4参照)。
(2) Preparation of Type A Expression Vector A fusion protein (SEQ ID NO: 1) in which a BSA hydrophilic portion was inserted into the CDIII region of MOMP and 12 amino acid sequences in the CDIII region overlapped before and after the junction. An expression vector (a vector having a coding sequence of the nucleotide sequence shown in SEQ ID NO: 7) pCT78 of a fusion protein having the amino acid sequence shown in Table 1 and designated as Type A was prepared by the following method. The gene encoding a particularly high hydrophilicity part in BSA was
PBSA for insertion into the gene encoding the CDIII region
And use Gene Amp PCR Reage as described above.
The BSA gene region was amplified by PCR using nt Kit (Takara Shuzo). That is, 10 mM Tris-HCl (pH 8.3), 50 mM
PBSA in a reaction solution containing M KCl, 5 mM MgCl 2 , 0.1% gelatin
1 ng and the two types of mutagenic oligonucleotide primers shown in SEQ ID NOs: 19 and 20 synthesized using a DNA synthesizer were 20 pmoles and Taq polymerase, respectively.
5 units were added to a final volume of 50 μl. This reaction solution was heated at 94 ° C for 3 minutes → [(94 ° C, 45sec. → 50 ° C, 45sec. → 72
℃, 2.5min.) × 30 cycles] → [(94 ° C, 45sec. → 50
° C, 45 sec. → 72 ° C, 10 min.) X 5 cycles].
The reaction completion solution was fractionated by 1% agarose gel electrophoresis, and as a result, a PCR amplification product of about 250 b was confirmed. About 2
Gene Clean II (BIO101) for PCR amplification product of 50b
Collected using Plasmid obtained in Example 2-1
5 µg of pCT33 was added to 5 units of each of the restriction enzymes SacI and XmaI.
After digestion at 37 ° C for 2 hours, 1% agarose gel electrophoresis was performed, and a fragment of about 4.1 kb was recovered using Geneclean II. Plasmid pCT33 (20 μg) was digested with restriction enzymes Bst1107I and Xm
After digesting aI at 37 ° C for 2 hours at 5 units each, 1.2
% Agarose gel electrophoresis.
Collected with neclean II. Furthermore, the above PC of about 250b
R amplification product is 5 units each of restriction enzymes SacI and Bst1107I
After digestion at 37 ° C. for 2 hours, 1.5% agarose gel electrophoresis was performed, and a fragment of about 220 b was recovered using Geneclean II. 4.1 kb fragment, 740b fragment and 220b
Was ligated, and Escherichia coli N99cI + was introduced. Appropriate 24 of the obtained transformants were selected, the DNA was purified by the alkali-SDS method, and the plasmid pCT78 was obtained by mapping with the restriction enzymes SacI and Bst1107I and determining the nucleotide sequence near the binding site and the PCR amplified fragment (FIG. 4).

【0038】(3) TypeB発現ベクターの作製 MOMPのCDII及びIV領域にBSA親水性部分を挿入
しCDII領域内の接合部の前後ではアミノ酸配列20残
基分を、CDIV領域内の接合部の前後ではアミノ酸配列
13残基分をそれぞれオーバーラップさせた融合蛋白質
(配列番号2に示す配列を有する融合蛋白質;TypeB と
命名)の発現ベクター(コード部分が配列番号8に示す
塩基配列であるベクター)pCT80を以下の方法で作製し
た。BSA中の親水性の特に高い部分をコードする遺伝
子をMOMPのCDII領域をコードする遺伝子内に挿入
するため、pBSAを用い上記のSaiki らの方に従い、Gene
Amp PCR Reagent Kit(宝酒造社製)を用いたPCR法
で、BSAの遺伝子領域を増幅した。即ち、10mM Tris-
HCl(pH8.3),50mM KCl,5mM MgCl2,0.1% ゼラチンを含む
反応液中にpBSA 1ngとDNAシンセサイザーを用いて合
成した配列番号21及び22に示す2種類の変異導入オ
リゴヌクレオチドプライマーそれぞれ20pmoles及びTa
q polymerase5units を加え、最終量50μlとした。
この反応液を94℃,3min.→〔(94 ℃,45sec. →50
℃,45sec. →72℃,2.5min.) ×30サイクル〕→〔(94
℃,45sec. →50℃,45sec. →72℃,10min.)×5サイク
ル〕反応させた。反応終了液を1%アガロースゲル電気
泳動で分画した結果、約150bのPCR増幅産物を確
認した。この約150bのPCR増幅産物をGeneclean
II(BIO101 社製)を用いて回収した。実施例2−1で得
られたプラスミドpCT33 5μgを制限酵素AflII とEagI
をそれぞれ5units で37℃、2時間消化後、1%アガ
ロースゲル電気泳動を行い、約4.5kbの断片をGene
clean IIで回収した。プラスミドpCT33 20μgを制限
酵素AflII とSspIをそれぞれ5units で37℃、2時間
消化後、1.2%アガロースゲル電気泳動を行い、35
0bの断片をGene clean II で回収した。さらに上記の
約150bのPCR増幅産物を制限酵素EagIとSspIをそ
れぞれ5unitsで37℃、2時間消化後、1.5%アガ
ロースゲル電気泳動を行い、約120bの断片をGenecl
ean IIで回収した。4.5kbの断片、350bの断片
及び120bの断片を結合させ、大腸菌N99cI + に導入
した。得られた形質転換体を適当に24個選択、アルカ
リ―SDS法でDNAを精製し、制限酵素EagIとSspIに
よるマッピングと結合部位及びPCR増幅断片付近の塩
基配列決定によりプラスミドpCT79 を取得した(図5参
照)。BSA中の親水性の特に高い部分をコードする遺
伝子をMOMPのCDIV領域をコードする遺伝子内に挿
入するため、pBSAを用い上記のSaiki らの方に従い、Ge
ne Amp PCR Reagent Kitを用いたPCR法で、BSAの
遺伝子領域を増幅した。即ち、10mM Tris-HCl(pH8.3),5
0mM KCl,5mM MgCl2,0.1%ゼラチンを含む反応液中にpBSA
1ngとDNAシンセサイザーを用いて合成した配列番号
23及び24に示す2種類の変異導入オリゴヌクレオチ
ドプライマーそれぞれ20pmoles及びTaq polymerase5
units を加え、最終量50μlとした。この反応液を9
4℃, 3min.→〔(94 ℃,45sec. →50℃,45sec. →72
℃,2.5min.) ×30サイクル〕→〔(94 ℃,45sec. →50
℃,45sec. →72℃,10min.)×5サイクル〕反応させた。
反応終了液を1%アガロースゲル電気泳動で分画した結
果、約140bのPCR増幅産物を確認した。この約1
40bのPCR 増幅産物をGeneclean IIを用いて回収し
た。
(3) Preparation of Type B Expression Vector A BSA hydrophilic portion was inserted into the CDII and IV regions of MOMP, and 20 amino acid sequences before and after the junction in the CDII region, and before and after the junction in the CDIV region. The expression vector pCT80 of a fusion protein (fusion protein having the sequence shown in SEQ ID NO: 2; designated as Type B) in which 13 amino acid sequences overlap each other (a vector whose coding part is the base sequence shown in SEQ ID NO: 8) Was produced by the following method. In order to insert a gene encoding a particularly hydrophilic portion in BSA into a gene encoding the CDII region of MOMP, the gene described in Saiki et al.
The BSA gene region was amplified by PCR using Amp PCR Reagent Kit (Takara Shuzo). That is, 10 mM Tris-
In a reaction solution containing HCl (pH 8.3), 50 mM KCl, 5 mM MgCl 2 and 0.1% gelatin, 20 pmoles of each of the two types of mutagenic oligonucleotide primers shown in SEQ ID NOS: 21 and 22 synthesized using 1 ng of pBSA and a DNA synthesizer And Ta
5 units of q polymerase was added to a final volume of 50 μl.
The reaction solution was heated at 94 ° C. for 3 min. → [(94 ° C., 45 sec. → 50
℃, 45sec. → 72 ℃, 2.5min.) × 30 cycles) → [(94
° C, 45 sec. → 50 ° C, 45 sec. → 72 ° C, 10 min.) X 5 cycles]. As a result of fractionating the reaction completed solution by 1% agarose gel electrophoresis, a PCR amplification product of about 150 b was confirmed. This about 150 b PCR amplification product is
It was recovered using II (manufactured by BIO101). 5 μg of the plasmid pCT33 obtained in Example 2-1 was mixed with restriction enzymes AflII and EagI.
After digesting each with 5 units at 37 ° C. for 2 hours, 1% agarose gel electrophoresis was performed, and a fragment of about 4.5 kb was
Collected by clean II. After digesting 20 μg of the plasmid pCT33 with 5 units of each of the restriction enzymes AflII and SspI at 37 ° C. for 2 hours, 1.2% agarose gel electrophoresis was performed.
The fragment of 0b was recovered by Gene clean II. Furthermore, the above-mentioned PCR amplification product of about 150 b was digested with restriction units EagI and SspI at 5 ° C. for 5 hours each at 37 ° C., and subjected to 1.5% agarose gel electrophoresis.
ean II. The 4.5 kb, 350b and 120b fragments were ligated and introduced into E. coli N99cI + . Appropriate 24 of the resulting transformants were selected, the DNA was purified by the alkali-SDS method, and plasmid pCT79 was obtained by mapping with restriction enzymes EagI and SspI and determining the base sequence near the binding site and PCR amplified fragment (FIG. 5). In order to insert a gene encoding a particularly highly hydrophilic portion in BSA into a gene encoding the CDIV region of MOMP, GeA was used according to Saiki et al.
The BSA gene region was amplified by a PCR method using ne Amp PCR Reagent Kit. That is, 10 mM Tris-HCl (pH 8.3), 5
PBSA in a reaction solution containing 0 mM KCl, 5 mM MgCl 2 , 0.1% gelatin
1 ng and two kinds of mutagenic oligonucleotide primers shown in SEQ ID NOS: 23 and 24 synthesized using a DNA synthesizer were 20 pmoles and Taq polymerase 5 respectively.
units were added to a final volume of 50 μl. 9
4 ℃, 3min. → [(94 ℃, 45sec. → 50 ℃, 45sec. → 72
℃, 2.5min.) × 30 cycles] → [(94 ° C, 45sec. → 50
° C, 45 sec. → 72 ° C, 10 min.) X 5 cycles].
As a result of fractionating the reaction completed solution by 1% agarose gel electrophoresis, a PCR amplification product of about 140 b was confirmed. About 1
The 40b PCR amplification product was recovered using Geneclean II.

【0039】プラスミドpCT79 5μgを制限酵素PvuII
とXhoIをそれぞれ5units で37℃、2時間消化後、1
%アガロースゲル電気泳動を行い、約4.8kbの断片
をGeneclean IIで回収した。プラスミドpCT79 20μg
を制限酵素PvuII とBlpIをそれぞれ5units で37℃、
2時間消化後、1.2%アガロースゲル電気泳動を行
い、220bの断片をGeneclean IIで回収した。さらに
上記の約140bのPCR増幅産物を制限酵素XhoIとBl
pIをそれぞれ5units で37℃、2時間消化後、1.5
%アガロースゲル電気泳動を行い、約110bの断片を
Geneclean IIで回収した。4.8kbの断片、220b
の断片及び110bの断片を結合させ、大腸菌N99cI +
に導入した。得られた形質転換体を適当に24個選択、
アルカリ―SDS法でDNAを精製し、制限酵素XhoIと
BlpIによるマッピングと結合部位及びPCR増幅断片付
近の塩基配列決定によりプラスミドpCT80 を取得した
(図6参照)。
5 μg of the plasmid pCT79 was replaced with the restriction enzyme PvuII.
And XhoI were digested with 5 units at 37 ° C for 2 hours,
% Agarose gel electrophoresis was performed, and a fragment of about 4.8 kb was recovered using Geneclean II. Plasmid pCT79 20μg
With restriction enzymes PvuII and BlpI in 5 units each at 37 ° C,
After digestion for 2 hours, 1.2% agarose gel electrophoresis was performed, and a 220b fragment was recovered using Geneclean II. Further, the above-mentioned PCR amplification product of about 140b was digested with restriction enzymes XhoI and Bl.
After digesting the pI for 5 hours at 37 ° C for 2 hours, 1.5
% Agarose gel electrophoresis.
Collected by Geneclean II. 4.8 kb fragment, 220b
And the fragment of 110b were ligated, and Escherichia coli N99cI +
Was introduced. Appropriately selected 24 transformants obtained,
Purify DNA by alkali-SDS method and use restriction enzyme XhoI
Plasmid pCT80 was obtained by mapping with BlpI and determining the nucleotide sequence near the binding site and the PCR amplified fragment (see FIG. 6).

【0040】3.MOMPとBSA親水性部分の融合蛋
白質の発現 プラスミドpPLN-MCS、MOMP発現用プラスミドpCT33
、TypeA発現用プラスミドpCT78 及びTypeB
発現用プラスミドpCT80 で蛋白質発現用大腸菌N4830-1
を形質転換した。それぞれの形質転換体を50μg/m
l Ampicillin を含むLB培地1mlで30℃、16時
間培養した。前培養液1mlを新しいLB培地100m
lに接種した。30℃、約3時間培養後(O.D.600=0.4-
0.5) 、培養温度を42℃にシフトし、さらに3時間培
養した。培養後、遠心分離し菌体を回収した。菌体の一
部をPhosphate Buffered-Saline(PBS)に懸濁し超音波破
砕機で菌体を破砕した後、Laemmli の方法[Nature,22
7,680 (1970)]に従ってSDS―ポリアクリルアミドゲ
ル電気泳動(SDS-PAGE)を行い、コマシュー・ブリリアン
ト・ブルー(CBB) 染色をした。また泳動後、種特異的な
抗クラミジア・トラコマティスMOMPモノクローン抗体を
用いてウエスタンブロッティングを行った。その結果、
CBB染色ではpCT33 で形質転換した菌体で分子量約4
0,000の位置に、pCT78 で形質転換した菌体で分子
量約51,000の位置に、pCT80 で形質転換した菌体
で分子量約52,000の位置にコントロールのpPLN-M
CSで形質転換した菌体には見られないバンドが確認され
た(図13参照)。pCT33 の分子量約40,000、pC
T78 の分子量約51,000及びpCT80 の分子量約5
2,000の位置のバンドはウエスタンブロッティング
を用いた確認で抗MOMP抗体と反応し、目的の蛋白質
が発現していることが確認された(図14参照)。ま
た、超音波破砕処理した菌体を5,500×gで10分
間遠心分離し、上清画分と沈澱画分に分離した。それぞ
れの画分をウエスタンブロッティングで調べた結果、発
現した蛋白質はいずれも沈澱画分に見られ、凝集体を形
成していることがわかった。
3. Expression of fusion protein of MOMP and BSA hydrophilic moiety Plasmid pPLN-MCS, Plasmid pCT33 for MOMP expression
, Type A expression plasmid pCT78 and Type B
Escherichia coli N4830-1 for protein expression using the expression plasmid pCT80
Was transformed. 50 μg / m of each transformant
The cells were cultured at 30 ° C. for 16 hours in 1 ml of LB medium containing l Ampicillin. 1 ml of the preculture was added to 100 m of fresh LB medium.
1 was inoculated. After culturing at 30 ° C for about 3 hours (OD600 = 0.4-
0.5), the culture temperature was shifted to 42 ° C., and the culture was further performed for 3 hours. After the culture, the cells were centrifuged to collect the cells. After suspending some of the cells in Phosphate Buffered-Saline (PBS) and disrupting the cells with an ultrasonic disrupter, Laemmli's method [Nature, 22
7,680 (1970)] and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and stained with Coomassie brilliant blue (CBB). After electrophoresis, Western blotting was performed using a species-specific anti-Chlamydia trachomatis MOMP monoclonal antibody. as a result,
CBB staining shows that cells transformed with pCT33 have a molecular weight of about 4
The control pPLN-M was located at a molecular weight of about 51,000 in the cells transformed with pCT78 at the position of 000, and about 52,000 in the cells transformed with pCT80 at the position of 000.
A band not observed in the cells transformed with CS was confirmed (see FIG. 13). pCT33 molecular weight of about 40,000, pC
The molecular weight of T78 is about 51,000 and the molecular weight of pCT80 is about 5
The band at the 2,000 position was confirmed by Western blotting to react with the anti-MOMP antibody, and it was confirmed that the target protein was expressed (see FIG. 14). The cells disrupted by sonication were centrifuged at 5,500 × g for 10 minutes to separate a supernatant fraction and a precipitated fraction. As a result of examining each fraction by Western blotting, it was found that all of the expressed proteins were found in the precipitated fraction and formed aggregates.

【0041】4.MOMPとBSA親水性部分の融合蛋
白質の精製 前述の培養法でMOMP、TypeA及びTypeB発
現大腸菌をそれぞれ1リットル培養した。遠心分離して
菌体を回収後、8mlのLysis buffer(50mM Tris-HCl(p
H8.0),25%(W/V) Sucrose,1mM EDTA,4mg/ml Lysozyme)に
懸濁後、氷上で30分間放置した。次に最終濃度が10mM
MgCl2,10mM MnCl2,10μg/ml DNaseI,10μg/ml RNaseA
になるようにそれぞれ加え、4℃で30分間放置した。
さらに20mlのDetergent buffer I(20mM Tris-HCl(p
H7.5),0.2M NaCl,2mM EDTA,1% Na-deoxycholate,1.6% N
P-40)を加え、さらに30分間放置した。5,000×
gで15分間遠心分離して沈澱を回収した。この沈澱に
対して10倍量のDetergent buffer II(50mM Tris-HCl
(pH8.0),50mM NaCl,10mM EDTA,0.5% Triton X-100)で十
分に懸濁し、4℃で1時間放置後5,000×gで10
分間遠心分離して沈澱を回収した。Detergent buffer I
I による沈澱の洗浄を3回繰り返した。得られた沈殿を
10mlの2%ザルコシル溶液(2% Sodium N-Lauroyl Salcosi
nate,1.5mM EDTAを含むPBS)中にテフロンホモジナイザ
ーを用いて十分に懸濁し、45℃下で1時間振とうした。
懸濁液を100,000×gで1時間遠心分離して沈殿
を回収した。この操作を2回繰り返した。
4. Purification of fusion protein of MOMP and BSA hydrophilic portion One liter of each of E. coli expressing MOMP, Type A and Type B was cultured by the above-described culture method. After collecting cells by centrifugation, 8 ml of Lysis buffer (50 mM Tris-HCl (p
H8.0), 25% (W / V) sucrose, 1 mM EDTA, 4 mg / ml Lysozyme) and left on ice for 30 minutes. Then the final concentration is 10 mM
MgCl 2 , 10mM MnCl 2 , 10μg / ml DNaseI, 10μg / ml RNaseA
And left at 4 ° C. for 30 minutes.
Further, add 20 ml of Detergent buffer I (20 mM Tris-HCl (p
H7.5), 0.2M NaCl, 2mM EDTA, 1% Na-deoxycholate, 1.6% N
P-40) was added, and the mixture was further left for 30 minutes. 5,000 ×
The precipitate was collected by centrifugation at g for 15 minutes. Detergent buffer II (50 mM Tris-HCl
(pH 8.0), 50 mM NaCl, 10 mM EDTA, 0.5% Triton X-100), leave at 4 ° C for 1 hour, and
The precipitate was collected by centrifugation for minutes. Detergent buffer I
The washing of the precipitate with I was repeated three times. The resulting precipitate
10 ml of 2% sarcosine solution (2% Sodium N-Lauroyl Salcosi
nate, PBS containing 1.5 mM EDTA) using a Teflon homogenizer and shaken at 45 ° C. for 1 hour.
The suspension was centrifuged at 100,000 × g for 1 hour to collect the precipitate. This operation was repeated twice.

【0042】得られた沈殿を20mlの8M Urea,1mM
DTT,10mM Na-phosphate buffer(pH6.0)中にテフロンホ
モジナイザーを用いて十分に懸濁し、45℃下で1時間
振とうした。懸濁液を100,000×gで1時間遠心
分離して上清を回収した。この溶液をハイドロキシアパ
タイト樹脂Macro-Prep Ceramic HydroxyapatiteTypeI
(バイオラッド社製)カラムクロマトを用いて以下の様
に精製した。8M Urea,1mM DTT,10mM Na-phosphate buff
er(pH6.0)で平衡化したφ5cm×15cmのカラムに
5ml/minで送液し、Na-phosphate buffer の濃度
を200mMに上げて十分に洗浄した後、Na-phosphate
buffer の濃度を300mMに上げて溶出した画分を回
収した。このうちMOMPは0.1%SDSを含む50mM
NaCl,50mMホウ酸(pH8.5)に対して透析し、不溶物を遠
心分離により除去し精製品を得た。TypeA及びTy
peBは50mM NaCl, 50mM ホウ酸(pH 8.5)に対して透
析し、不溶物を遠心分離により除去し精製品を得た。精
製品の蛋白質純度を検定するためにSDS-PAGEで分離し、
CBB染色後、ファルマシア社製イメージマスターで分
析した結果MOMP、TypeA及びTypeB蛋白質
の純度はほぼ100%であることがわかった。
The obtained precipitate was mixed with 20 ml of 8M Urea, 1 mM.
It was sufficiently suspended in DTT, 10 mM Na-phosphate buffer (pH 6.0) using a Teflon homogenizer, and shaken at 45 ° C. for 1 hour. The suspension was centrifuged at 100,000 × g for 1 hour to recover the supernatant. This solution was converted to a hydroxyapatite resin Macro-Prep Ceramic HydroxyapatiteTypeI
Purification was carried out as follows using column chromatography (manufactured by Bio-Rad). 8M Urea, 1mM DTT, 10mM Na-phosphate buff
The solution was sent at 5 ml / min to a φ5 cm × 15 cm column equilibrated with er (pH 6.0), the concentration of Na-phosphate buffer was increased to 200 mM, and the solution was washed thoroughly.
The concentration of the buffer was increased to 300 mM, and the eluted fraction was collected. MOMP is 50mM containing 0.1% SDS
It was dialyzed against NaCl and 50 mM boric acid (pH 8.5), and insolubles were removed by centrifugation to obtain a purified product. Type A and Ty
PeB was dialyzed against 50 mM NaCl, 50 mM boric acid (pH 8.5), and insolubles were removed by centrifugation to obtain a purified product. Separated by SDS-PAGE to test protein purity of purified product,
After CBB staining, the protein was analyzed using an image master manufactured by Pharmacia, and as a result, it was found that the purity of MOMP, Type A and Type B proteins was almost 100%.

【0043】実施例3.大腸菌によるMOMPの一部と
BSA親水性部分の融合蛋白質の発現 1.MOMPの一部とBSA親水性部分の融合蛋白質発
現ベクターの作製 (1) TypeC発現ベクターの作製 TypeAからCDII領域の一部を除去し、替わりに強
い免疫原性を持つVDIV領域を挿入し、2カ所のVDIV
領域を有する融合蛋白質(配列番号3に示す配列を有す
る融合蛋白質;TypeC と命名)の発現ベクター(コード
部分が配列番号9に示す塩基配列であるベクター)pCT81
を以下の方法で作製した。実施例2−2(2)で得られた
プラスミドpCT78 5μgを制限酵素EagIとEcoRVをそれ
ぞれ5units で37℃、2時間消化後、1%アガロース
ゲル電気泳動を行い、約5.0kbの断片をGeneclean
II(BIO101 社製)で回収した。さらにDNAシンセサイ
ザーを用いて、配列番号25及び26に示すオリゴヌク
レオチドを合成した。オリゴヌクレオチドをそれぞれME
GALABEL(宝酒造社製)を用いて5' 末端をリン酸化した
後、リン酸化オリゴヌクレオチドをアニールした。5.
0kbの断片及びアニールしたオリゴヌクレオチドを結
合させ、大腸菌N99cI + に導入した。得られた形質転換
体を適当に24個選択、アルカリ―SDS法でDNAを
精製し、制限酵素EagIとEcoRV によるマッピングとオリ
ゴヌクレオチド近辺の塩基配列決定によりプラスミドpC
T81 を取得した(図7参照)。
Embodiment 3 FIG. Expression of fusion protein of part of MOMP and BSA hydrophilic part by E. coli Preparation of fusion protein expression vector of a part of MOMP and BSA hydrophilic part (1) Preparation of Type C expression vector A part of the CDII region was removed from Type A, and a VDIV region having strong immunogenicity was inserted instead. VDIV
Expression vector (fusion vector having the nucleotide sequence shown in SEQ ID NO: 9) of a fusion protein having a region (fusion protein having the sequence shown in SEQ ID NO: 3; designated as Type C) pCT81
Was produced by the following method. 5 μg of the plasmid pCT78 obtained in Example 2-2 (2) was digested with 5 units of each of the restriction enzymes EagI and EcoRV at 37 ° C. for 2 hours, subjected to 1% agarose gel electrophoresis, and the approximately 5.0 kb fragment was subjected to Geneclean.
Collected by II (BIO101). Further, oligonucleotides shown in SEQ ID NOS: 25 and 26 were synthesized using a DNA synthesizer. Oligonucleotides to each ME
After phosphorylation of the 5 'end using GALABEL (manufactured by Takara Shuzo), the phosphorylated oligonucleotide was annealed. 5.
The 0 kb fragment and the annealed oligonucleotide were ligated and introduced into E. coli N99cI + . The obtained transformants were appropriately selected, the DNA was purified by the alkali-SDS method, and the plasmid pC was determined by mapping with the restriction enzymes EagI and EcoRV and determining the nucleotide sequence near the oligonucleotide.
T81 was obtained (see Fig. 7).

【0044】(2) TypeD発現ベクターの作製 TypeC中に残っているCDII領域と挿入したVDIV
領域との間にBSA親水性部分を挿入し、VDIV領域と
BSA親水性部分をそれぞれ2カ所ずつ有する融合蛋白
質(配列番号4に示す配列を有する融合蛋白質;TypeD
と命名)の発現ベクター(コード部分が配列番号10に
示す塩基配列であるベクター)pCT82を以下の方法で作製
した。実施例3−1(1) で得られたプラスミドpCT81 5
μgを制限酵素EagI5unitsで37℃、2時間消化後、
1%アガロースゲル電気泳動を行い、約5.1kbの断
片をGeneclean II(BIO101 社製)で回収し、5' 末端を
アルカリフォスファターゼ(BRL社製)で脱リン酸化し
た。実施例2−2(3) で得られたプラスミドpCT80 5μ
gを制限酵素EagI5unitsで37℃、2時間消化後、
1.2%アガロースゲル電気泳動を行い、約180bの
断片をGeneclean IIで回収した。5.1kb及び180
bの断片を結合させ、大腸菌N99cI + に導入した。得ら
れた形質転換体を適当に24個選択、アルカリ―SDS
法でDNAを精製し、制限酵素EagIによるマッピングと
接合部近辺の塩基配列決定によりプラスミドpCT81 を取
得した(図8参照)。
(2) Preparation of Type D Expression Vector The CDII region remaining in Type C and the inserted VDIV
A fusion protein having a VSA region and a BSA hydrophilic region inserted between the two regions (a fusion protein having the sequence shown in SEQ ID NO: 4; Type D;
The expression vector (the vector whose coding part is the nucleotide sequence shown in SEQ ID NO: 10) pCT82 was named by the following method. Plasmid pCT81 5 obtained in Example 3-1 (1)
After digesting μg with 5 units of restriction enzyme EagI at 37 ° C for 2 hours,
1% agarose gel electrophoresis was performed, a fragment of about 5.1 kb was recovered with Geneclean II (manufactured by BIO101), and the 5 ′ end was dephosphorylated with alkaline phosphatase (manufactured by BRL). 5 μm of plasmid pCT80 obtained in Example 2-2 (3)
g at 37 ° C for 2 hours with 5 units of restriction enzyme EagI.
A 1.2% agarose gel electrophoresis was performed, and a fragment of about 180 b was recovered using Geneclean II. 5.1 kb and 180
The fragment of b was ligated and introduced into E. coli N99cI + . Appropriately select 24 obtained transformants, alkaline-SDS
DNA was purified by the method, and plasmid pCT81 was obtained by mapping with the restriction enzyme EagI and determining the nucleotide sequence near the junction (see FIG. 8).

【0045】2.MOMPの一部とBSA親水性部分の
融合蛋白質の発現 プラスミドpPLN-MCS、MOMP発現用プラスミドpCT33
、TypeC発現用プラスミドpCT81 及びTypeD
発現用プラスミドpCT82 で蛋白質発現用大腸菌N4830-1
を形質転換した。それぞれの形質転換体を50μg/m
l Ampicillin を含むLB培地1mlで30℃、16時
間培養した。前培養液1mlを新しいLB培地100m
lに接種した。30℃、約3時間培養後(O.D.600=0.4-
0.5) 、培養温度を42℃にシフトし、さらに3時間培
養した。培養後、遠心分離し菌体を回収した。菌体の一
部をPBSに懸濁し超音波破砕機で菌体を破砕した後、
SDS-PAGEを行い、CBB染色をした。また泳動後、種特
異的な抗クラミジア・トラコマティスMOMPモノクローン
抗体を用いてウエスタンブロッティングを行った。その
結果、CBB染色ではpCT33 で形質転換した菌体で分子
量約40,000の位置に、pCT81 で形質転換した菌体
で分子量約50,000の位置に、pCT82 で形質転換し
た菌体で分子量約52,000の位置にコントロールの
pPLN-MCSで形質転換した菌体には見られないバンドが確
認された(図13参照)。pCT33 の分子量約40,00
0、 pCT81の分子量約50,000及びpCT82 の分子量
約52,000の位置のバンドはウエスタンブロッティ
ングで発色が認められ、目的の蛋白質が発現しているこ
とが確認された(図14参照)。また、超音波破砕処理
した菌体を5,500×gで10分間遠心分離し、上清
画分と沈澱画分に分離した。それぞれの画分をウエスタ
ンブロッティングで調べた結果、発現した蛋白質はいず
れも沈澱画分に見られ、凝集体を形成していることがわ
かった。
2. Expression of fusion protein of a part of MOMP and BSA hydrophilic part Plasmid pPLN-MCS, Plasmid pCT33 for MOMP expression
, Type C expression plasmid pCT81 and Type D
E. coli N4830-1 for protein expression using the expression plasmid pCT82
Was transformed. 50 μg / m of each transformant
The cells were cultured at 30 ° C. for 16 hours in 1 ml of LB medium containing l Ampicillin. 1 ml of the preculture was added to 100 m of fresh LB medium.
1 was inoculated. After culturing at 30 ° C for about 3 hours (OD600 = 0.4-
0.5), the culture temperature was shifted to 42 ° C., and the culture was further performed for 3 hours. After the culture, the cells were centrifuged to collect the cells. After suspending some of the cells in PBS and crushing the cells with an ultrasonic crusher,
SDS-PAGE was performed and CBB staining was performed. After electrophoresis, Western blotting was performed using a species-specific anti-Chlamydia trachomatis MOMP monoclonal antibody. As a result, the CBB staining showed that the cells transformed with pCT33 had a molecular weight of about 40,000, the cells transformed with pCT81 had a molecular weight of about 50,000, and the cells transformed with pCT82 had a molecular weight of about 50,000. Control at 52,000 positions
A band not observed in the cells transformed with pPLN-MCS was confirmed (see FIG. 13). The molecular weight of pCT33 is about 40,00
0, the bands at the molecular weight of about 50,000 for pCT81 and about 52,000 for pCT82 were colored by Western blotting, confirming that the target protein was expressed (see FIG. 14). The cells disrupted by sonication were centrifuged at 5,500 × g for 10 minutes to separate a supernatant fraction and a precipitated fraction. As a result of examining each fraction by Western blotting, it was found that all of the expressed proteins were found in the precipitated fraction and formed aggregates.

【0046】3.MOMPの一部とBSA親水性部分の
融合蛋白質の精製 前述の培養法でTypeC及びTypeD発現大腸菌を
それぞれ1リットル培養した。遠心分離して菌体を回収
後、8ml のLysis buffer(50mM Tris-HCl(pH8.0),25%(W/
V) Sucrose,1mM EDTA,4mg/ml Lysozyme)に懸濁後、氷上
で30分間放置した。次に最終濃度が10mM MgCl2,10mM
MnCl2,10μg/ml DNaseI,10μg/ml RNaseA になるように
それぞれ加え、4℃で30分間放置した。さらに20m
lのDetergent buffer I(20mM Tris-HCl(pH7.5),0.2M N
aCl,2mM EDTA,1% Na-deoxycholate,1.6% NP-40)を加
え、さらに30分間放置した。5,000×gで15分
間遠心分離して沈澱を回収した。この沈澱に対して10
倍量のDetergent buffer II(50mM Tris-HCl(pH8.0),50m
M NaCl,10mM EDTA,0.5% Triton X-100)で十分に懸濁
し、44℃で1時間放置後、5,000×gで10分間
遠心分離して沈澱を回収した。Detergent buffer II に
よる沈澱の洗浄を3回繰り返した。得られた沈殿を10
mlの2%ザルコシル溶液(2% Sodium N-Lauroyl Salco
sinate,1.5mM EDTAを含むPBS(pH6.8)) 中にテフロンホ
モジナイザーを用いて十分に懸濁し、45℃下で1時間
振とうした。懸濁液を100,000×gで1時間遠心
分離して沈殿を回収した。この操作を2回繰り返した。
3. Purification of fusion protein of a part of MOMP and BSA hydrophilic part One liter of each of E. coli expressing TypeC and TypeD was cultured by the above-mentioned culture method. After collecting cells by centrifugation, 8 ml of Lysis buffer (50 mM Tris-HCl (pH 8.0), 25% (W /
V) After suspending in Sucrose, 1 mM EDTA, 4 mg / ml Lysozyme), the suspension was left on ice for 30 minutes. Next, a final concentration of 10 mM MgCl 2 , 10 mM
MnCl 2 , 10 μg / ml DNaseI, and 10 μg / ml RNaseA were added thereto, respectively, and left at 4 ° C. for 30 minutes. 20m more
l of Detergent buffer I (20 mM Tris-HCl (pH 7.5), 0.2 MN
aCl, 2 mM EDTA, 1% Na-deoxycholate, 1.6% NP-40) was added, and the mixture was further left for 30 minutes. The precipitate was collected by centrifugation at 5,000 xg for 15 minutes. 10 to this precipitate
Double volume of Detergent buffer II (50 mM Tris-HCl (pH 8.0), 50m
M NaCl, 10 mM EDTA, 0.5% Triton X-100), left at 44 ° C. for 1 hour, and centrifuged at 5,000 × g for 10 minutes to collect a precipitate. Washing of the precipitate with Detergent buffer II was repeated three times. The resulting precipitate is
ml of 2% sarcosine solution (2% Sodium N-Lauroyl Salco)
sinate, PBS (pH 6.8) containing 1.5 mM EDTA) using a Teflon homogenizer, and shaken at 45 ° C. for 1 hour. The suspension was centrifuged at 100,000 × g for 1 hour to collect the precipitate. This operation was repeated twice.

【0047】得られた沈殿を20mlの8M Urea,1mM DTT,10
mM Na-phosphate buffer(pH6.0)中にテフロンホモジナ
イザーを用いて十分に懸濁し、45℃下で1時間振とう
した。懸濁液を100,000×gで1時間遠心分離し
て上清を回収した。この溶液をハイドロキシアパタイト
樹脂Macro-Prep Ceramic Hydroxyapatite TypeI(バイオ
ラッド社製)カラムクロマトを用いて以下の様に精製し
た。8M Urea,1mM DTT,10mM Na-phosphate buffer(pH6.
0)で平衡化したφ5cm×15cmのカラムに5ml
/minで送液し、Na-phosphate buffer の濃度を20
0mMに上げて十分に洗浄した後、Na-phosphate buffe
r の濃度を300mMに上げて溶出した画分を回収し
た。この画分を50mM NaCl,50mMホウ酸(pH8.5)に対して
透析し、不溶物を遠心分離により除去し精製品を得た。
精製品の蛋白質純度を検定するためにSDS-PAGEで分離
し、CBB染色後、ファルマシア社製イメージマスター
で分析した結果、TypeC及びTypeD蛋白質の純
度はほぼ100%であることがわかった。
The obtained precipitate was mixed with 20 ml of 8M Urea, 1 mM DTT, 10 ml.
The suspension was sufficiently suspended in mM Na-phosphate buffer (pH 6.0) using a Teflon homogenizer, and shaken at 45 ° C. for 1 hour. The suspension was centrifuged at 100,000 × g for 1 hour to recover the supernatant. This solution was purified as follows using a hydroxyapatite resin Macro-Prep Ceramic Hydroxyapatite Type I (manufactured by Bio-Rad) column chromatography. 8M Urea, 1mM DTT, 10mM Na-phosphate buffer (pH6.
5ml in a φ5cm x 15cm column equilibrated in 0)
/ Min, and adjust the concentration of Na-phosphate buffer to 20
After washing to 0 mM and washing well, Na-phosphate buffe
The fraction eluted by increasing the concentration of r to 300 mM was collected. This fraction was dialyzed against 50 mM NaCl and 50 mM boric acid (pH 8.5), and insolubles were removed by centrifugation to obtain a purified product.
The purified product was separated by SDS-PAGE in order to examine the protein purity, stained with CBB, and analyzed with an image master manufactured by Pharmacia. As a result, it was found that the purity of Type C and Type D proteins was almost 100%.

【0048】実施例4.大腸菌によるMOMPの一部と
親水性ポリペプチドの融合蛋白質の発現 1.MOMPの一部と親水性ポリペプチドの融合蛋白質
の発現ベクターの作製 (1) TypeE発現ベクターの作製 MOMPのCDIII 領域の一部を除去し、替わりに20
個の連続するアスパラギン残基を含む親水性ポリペプチ
ドを挿入した融合蛋白質(配列番号5に示す配列を有す
る融合蛋白質;TypeE と命名)の発現ベクター(コード
部分が配列番号11に示す塩基配列であるベクター)pCT
51 を以下に示す方法で作製した。実施例2−1で得ら
れたプラスミドpCT33 5μgを制限酵素Bst1107IとPvuI
Iをそれぞれ5units で37℃、2時間消化後、1%ア
ガロースゲル電気泳動を行い、約4.7kbの断片をGe
neclean II(BIO101 社製)で回収し、5' 末端をアルカ
リフォスファターゼ(BRL社製)で脱リン酸化した。さら
にDNAシンセサイザーを用いて、配列番号27及び2
8に示すオリゴヌクレオチドを合成した。オリゴヌクレ
オチドをそれぞれMEGALABEL(宝酒造社製)を用いて5'
末端をリン酸化した後、リン酸化オリゴヌクレオチドを
アニールした。4.7kbの断片及びアニールしたオリ
ゴヌクレオチドを結合させ、大腸菌N99cI + に導入し
た。得られた形質転換体を適当に24個選択、アルカリ
―SDS法でDNAを精製し、オリゴヌクレオチド近辺
の塩基配列決定によりプラスミドpCT51 を取得した(図
9参照)。
Embodiment 4 FIG. Expression of a fusion protein of a part of MOMP and a hydrophilic polypeptide by Escherichia coli Preparation of Expression Vector for Fusion Protein of Part of MOMP and Hydrophilic Polypeptide (1) Preparation of Type E Expression Vector A part of the CDIII region of MOMP was removed and replaced with 20.
Expression vector (fusion protein having the sequence shown in SEQ ID NO: 5; named as TypeE) into which a hydrophilic polypeptide containing two consecutive asparagine residues has been inserted (the coding portion is the nucleotide sequence shown in SEQ ID NO: 11) (Vector) pCT
51 was prepared by the following method. 5 μg of the plasmid pCT33 obtained in Example 2-1 was ligated with the restriction enzymes Bst1107I and PvuI.
After digesting each I at 5 units at 37 ° C. for 2 hours, 1% agarose gel electrophoresis was carried out, and a fragment of about 4.7 kb was converted into Ge.
The product was recovered with neclean II (manufactured by BIO101) and dephosphorylated at the 5 'end with alkaline phosphatase (manufactured by BRL). Further, using a DNA synthesizer, SEQ ID NOS: 27 and 2
The oligonucleotide shown in No. 8 was synthesized. Oligonucleotides were 5 'each using MEGALABEL (Takara Shuzo)
After phosphorylation of the termini, the phosphorylated oligonucleotide was annealed. The 4.7 kb fragment and the annealed oligonucleotide were ligated and introduced into E. coli N99cI + . Appropriate 24 of the obtained transformants were selected, the DNA was purified by the alkali-SDS method, and the base sequence near the oligonucleotide was determined to obtain the plasmid pCT51 (see FIG. 9).

【0049】(2) TypeF発現ベクターの作製 MOMPのCDIII とCDIV領域の一部及びVDIII 領
域を除去し、替わりに20個の連続するアスパラギン酸
を含む親水性ポリペプチドを挿入した融合蛋白質(配列
番号6に示す配列を有する融合蛋白質;TypeF と命名)
の発現ベクター(コード部分が配列番号12に示す塩基
配列であるベクター)pCT52を以下に示す方法で作製し
た。実施例2−1で得られたプラスミドpCT33 5μgを
制限酵素Bst1107IとBlpIをそれぞれ5units で37℃、
2時間消化後、1%アガロースゲル電気泳動を行い、約
4.5kbの断片をGeneclean II(BIO101 社製)で回収
した。さらにDNAシンセサイザーを用いて、配列番号
29及び30に示すオリゴヌクレオチドを合成した。オ
リゴヌクレオチドをそれぞれMEGALABEL(宝酒造社製)を
用いて5' 末端をリン酸化した後、リン酸化オリゴヌク
レオチドをアニールした。4.5kbの断片及びアニー
ルしたオリゴヌクレオチドを結合させ、大腸菌N99cI +
に導入した。得られた形質転換体を適当に24個選択、
アルカリ―SDS法でDNAを精製し、制限酵素BlpIに
よるマッピングとオリゴヌクレオチド近辺の塩基配列決
定によりプラスミドpCT52 を取得した(図9参照)。
(2) Preparation of TypeF Expression Vector A fusion protein (SEQ ID NO: 1) obtained by removing a part of the CDIII and CDIV regions and the VDIII region of MOMP and inserting 20 consecutive hydrophilic polypeptides containing aspartic acid instead Fusion protein having the sequence shown in No. 6; named TypeF)
An expression vector pCT52 (a vector whose coding portion is the nucleotide sequence shown in SEQ ID NO: 12) was prepared by the following method. 5 μg of the plasmid pCT33 obtained in Example 2-1 was ligated with the restriction enzymes Bst1107I and BlpI in 5 units each at 37 ° C.
After digestion for 2 hours, 1% agarose gel electrophoresis was performed, and a fragment of about 4.5 kb was recovered using Geneclean II (manufactured by BIO101). Furthermore, oligonucleotides shown in SEQ ID NOS: 29 and 30 were synthesized using a DNA synthesizer. Each oligonucleotide was phosphorylated at the 5 'end using MEGALABEL (manufactured by Takara Shuzo), and then the phosphorylated oligonucleotide was annealed. The 4.5 kb fragment and the annealed oligonucleotide were ligated and E. coli N99cI +
Was introduced. Appropriately selected 24 transformants obtained,
DNA was purified by the alkali-SDS method, and plasmid pCT52 was obtained by mapping with the restriction enzyme BlpI and determining the nucleotide sequence near the oligonucleotide (see FIG. 9).

【0050】2.MOMPの一部と親水性ポリペプチド
の融合蛋白質の発現 プラスミドpPLN-MCS、MOMP発現用プラスミドpCT33 、Ty
peE 発現用プラスミドpCT51 及びTypeF 発現用プラスミ
ドpCT52 で蛋白質発現用大腸菌N4830-1 を形質転換し
た。それぞれの形質転換体を50μg/ml Ampicilli
n を含むLB培地1mlで30℃、16時間培養した。前
培養液1mlを新しいLB培地100mlに接種した。
30℃、約3時間培養後(O.D.600=0.4-0.5) 、培養温度
を42℃にシフトし、さらに3時間培養した。培養後、
遠心分離し菌体を回収した。菌体の一部をPBSに懸濁
し超音波破砕機で菌体を破砕した後、SDS-PAGEを行い、
CBB染色をした。また泳動後、種特異的な抗クラミジ
ア・トラコマティスMOMPモノクローン抗体を用いて
ウエスタンブロッティングを行った。その結果、CBB
染色ではpCT33 で形質転換した菌体で分子量約40,0
00の位置に、pCT51 で形質転換した菌体で分子量約3
7,000の位置に、pCT52 で形質転換した菌体で分子
量約31,000の位置にコントロールのpPLN-MCSで形
質転換した菌体には見られないバンドが確認された(図
13参照)。pCT33 の分子量約40,000、pCT51 の
分子量約37,000及びpCT52 の分子量約31,00
0の位置のバンドはウエスタンブロッティングで発色が
認められ、目的の蛋白質が発現していることが確認され
た(図14参照)。また超音波破砕処理した菌体を5,
500×gで10分間遠心分離し、上清画分と沈澱画分
に分離した。それぞれの画分をウエスタンブロッティン
グで調べた結果、発現した蛋白質はいずれも沈澱画分に
見られ、凝集体を形成していることがわかった。
2. Expression of fusion protein of a part of MOMP and hydrophilic polypeptide Plasmid pPLN-MCS, Plasmid pCT33 for MOMP expression, Ty
Escherichia coli N4830-1 for protein expression was transformed with plasmid pCT51 for peE expression and plasmid pCT52 for TypeF expression. Each transformant was treated with 50 μg / ml Ampicilli
The cells were cultured in 1 ml of LB medium containing n at 30 ° C. for 16 hours. 1 ml of the preculture was inoculated into 100 ml of fresh LB medium.
After culturing at 30 ° C. for about 3 hours (OD600 = 0.4-0.5), the culturing temperature was shifted to 42 ° C., and culturing was further performed for 3 hours. After culture
The cells were collected by centrifugation. After suspending some of the cells in PBS and crushing the cells with an ultrasonic crusher, SDS-PAGE was performed,
CBB staining was performed. After electrophoresis, Western blotting was performed using a species-specific anti-Chlamydia trachomatis MOMP monoclonal antibody. As a result, CBB
For staining, cells transformed with pCT33 had a molecular weight of about 40,0
At position 00, the bacterial cell transformed with pCT51 has a molecular weight of about 3
At 7,000 positions, a band not observed in the cells transformed with pPLN-MCS as a control was observed in the cells transformed with pCT52 at the molecular weight of about 31,000 (see FIG. 13). The molecular weight of pCT33 is about 40,000, the molecular weight of pCT51 is about 37,000, and the molecular weight of pCT52 is about 3,100.
Color development was observed in the band at position 0 by Western blotting, and it was confirmed that the target protein was expressed (see FIG. 14). In addition, the cells sonicated
The mixture was centrifuged at 500 × g for 10 minutes to separate a supernatant fraction and a precipitate fraction. As a result of examining each fraction by Western blotting, it was found that all of the expressed proteins were found in the precipitated fraction and formed aggregates.

【0051】3.MOMPの一部と親水性ポリペプチド
の融合蛋白質の精製 前述の培養法でTypeE及びTypeF発現大腸菌を
それぞれ1リットル培養した。遠心分離して菌体を回収
後、8ml のLysis buffer(50mM Tris-HCl(pH8.0),25%(W/
V) Sucrose,1mM EDTA,4mg/ml Lysozyme)に懸濁後、氷上
で30分間放置した。次に最終濃度が10mM MgCl2,10mM
MnCl2,10μg/ml DNaseI,10μg/ml RNaseA になるように
それぞれ加え、4℃で30分間放置した。さらに20mlの
Detergent buffer I(20mM Tris-HCl(pH7.5),0.2M NaCl,
2mM EDTA,1% Na-deoxycholate,1.6% NP-40)を加え、3
0分間放置した。5,000×gで15分間遠心分離し
て沈澱を回収した。この沈澱に対して10倍量のDeterg
ent buffer II(50mM Tris-HCl(pH8.0),50mM NaCl,10mM
EDTA,0.5% Triton X-100)で十分に懸濁し、4℃で1時
間放置後5,000×g、で10分間遠心分離して沈澱
を回収した。このDetergent buffer II による沈澱の洗
浄を3回繰り返した。得られた沈殿を10mlの2%ザル
コシル溶液(2% Sodium N-Lauroyl Salcosinate,1.5mM
EDTAを含むPBS)中にテフロンホモジナイザーを用いて十
分に懸濁し、45℃下で1時間振とうした。懸濁液を1
00,000×gで1時間遠心分離して沈殿を回収し
た。この操作を2回繰り返した。
3. Purification of fusion protein of a part of MOMP and hydrophilic polypeptide One liter of each of E. coli expressing TypeE and TypeF was cultured by the above-mentioned culture method. After collecting cells by centrifugation, 8 ml of Lysis buffer (50 mM Tris-HCl (pH 8.0), 25% (W /
V) After suspending in Sucrose, 1 mM EDTA, 4 mg / ml Lysozyme), the suspension was left on ice for 30 minutes. Next, a final concentration of 10 mM MgCl 2 , 10 mM
MnCl 2 , 10 μg / ml DNaseI, and 10 μg / ml RNaseA were added thereto, respectively, and left at 4 ° C. for 30 minutes. Another 20ml
Detergent buffer I (20 mM Tris-HCl (pH 7.5), 0.2 M NaCl,
2mM EDTA, 1% Na-deoxycholate, 1.6% NP-40)
Left for 0 minutes. The precipitate was collected by centrifugation at 5,000 xg for 15 minutes. 10 times the amount of Deterg
ent buffer II (50 mM Tris-HCl (pH 8.0), 50 mM NaCl, 10 mM
The precipitate was sufficiently suspended in EDTA, 0.5% Triton X-100), left at 4 ° C. for 1 hour, and centrifuged at 5,000 × g for 10 minutes to collect a precipitate. This washing of the precipitate with Detergent buffer II was repeated three times. The obtained precipitate was added to 10 ml of a 2% sarcosine solution (2% sodium N-Lauroyl Salcosinate, 1.5 mM).
The suspension was sufficiently suspended in a PBS containing EDTA) using a Teflon homogenizer, and shaken at 45 ° C. for 1 hour. 1 suspension
The precipitate was collected by centrifugation at 00000 × g for 1 hour. This operation was repeated twice.

【0052】得られた沈殿を20mlの8M Urea,1mM DTT,10
mM Na-phosphate buffer(pH6.0)中にテフロンホモジナ
イザーを用いて十分に懸濁し、45℃下で1時間振とう
した。懸濁液を100,000×gで1時間遠心分離し
て上清を回収した。この溶液をハイドロキシアパタイト
樹脂Macro-Prep Ceramic Hydroxyapatite TypeI(バイ
オラッド社製)カラムクロマトを用いて以下の様に精製
した。8M Urea,1mM DTT,10mM Na-phosphate buffer(pH
6.0)で平衡化したφ5cm×15cmのカラムに5m
l/minで送液し、Na-phosphate buffer の濃度を2
00mMに上げて十分に洗浄した後、Na-phosphate buf
fer の濃度を300mMに上げて溶出した画分を回収し
た。この画分を50mM NaCl,50mMホウ酸(pH8.5)に対して
透析し、不溶物を遠心分離により除去し精製品を得た。
精製品の蛋白質純度を検定するためにSDS −PAGEで分離
し、CBB染色後、ファルマシア社製イメージマスター
で分析した結果、Type E及びTypeF蛋白質の純
度はほぼ100%であることがわかった。
The obtained precipitate was mixed with 20 ml of 8 M Urea, 1 mM DTT, 10
The suspension was sufficiently suspended in mM Na-phosphate buffer (pH 6.0) using a Teflon homogenizer, and shaken at 45 ° C. for 1 hour. The suspension was centrifuged at 100,000 × g for 1 hour to recover the supernatant. This solution was purified using a hydroxyapatite resin Macro-Prep Ceramic Hydroxyapatite Type I (manufactured by Bio-Rad) column chromatography as follows. 8M Urea, 1mM DTT, 10mM Na-phosphate buffer (pH
5m on a φ5cm x 15cm column equilibrated in 6.0)
1 / min and adjust the concentration of Na-phosphate buffer to 2
After increasing to 00 mM and washing well, Na-phosphate buf
The eluted fraction was collected by increasing the concentration of fer to 300 mM. This fraction was dialyzed against 50 mM NaCl and 50 mM boric acid (pH 8.5), and insolubles were removed by centrifugation to obtain a purified product.
The purified product was separated by SDS-PAGE to test the protein purity, stained with CBB, and analyzed with an image master manufactured by Pharmacia. As a result, it was found that the purity of Type E and Type F proteins was almost 100%.

【0053】実施例5.大腸菌で発現させた融合蛋白質
を用いた抗クラミジア・トラコマティス抗体の検出 1.検査用プレートの作製 (1)抗体捕捉法EIA用抗ヒトIgM抗体固相プレート
の作製 ヤギ抗ヒトIgMモノクローナル抗体(マイルス社製)
を50mM炭酸buffer(pH9.5)で15μg/ml濃度に希釈
し、ポリスチレン平型マイクロプレート(ヌンク社製)
に100μl/wellで分注し、4℃で一晩静置し
た。18時間以上静置したマイクロプレートを最終濃度
0.05% Tween20 を含むTris-HCl(pH7.6)300μl/w
ellで2回洗浄後、最終濃度0.5% BSAと0.05% Tween2
0 を含むTris-HCl(pH7.6)を200μl/well加え
て4℃一晩静置し、抗ヒトIgMモノクローナル抗体固
相マイクロプレートを作製した。
Embodiment 5 FIG. Detection of anti-Chlamydia trachomatis antibody using fusion protein expressed in Escherichia coli Preparation of Test Plate (1) Preparation of Anti-Human IgM Antibody Solid Plate for Antibody Capture Method EIA Goat anti-human IgM monoclonal antibody (Miles)
Was diluted with a 50 mM carbonate buffer (pH 9.5) to a concentration of 15 μg / ml, and a polystyrene flat microplate (manufactured by Nunc Corporation) was used.
Was dispensed at 100 μl / well and left at 4 ° C. overnight. Allow the microplate to stand for 18 hours or more
Tris-HCl (pH7.6) containing 0.05% Tween20 300μl / w
After washing twice with a cell, a final concentration of 0.5% BSA and 0.05% Tween2
200 μl / well of Tris-HCl (pH 7.6) containing 0 was added and allowed to stand at 4 ° C. overnight to prepare an anti-human IgM monoclonal antibody solid phase microplate.

【0054】(2)抗原固相法EIA用抗原固相プレート
の作製 実施例2〜4に記載したMOMP及びTypeA〜F蛋
白質精製品を50mM炭酸buffer(pH9.5)で各々1μg/m
l濃度に希釈し、ポリスチレン平型マイクロプレート
(ヌンク社製)に100μl/wellで分注し、4℃
で一晩静置した。18時間以上静置したマイクロプレー
トを最終濃度0.05% Tween20 を含むPBS(pH7.0)200μ
l/wellで3回洗浄後、最終濃度0.5% BSAと0.05%
Tween20 を含むPBS200μl/well加えて4℃
一晩静置し、抗原固相マイクロプレートを作製した。
(2) Antigen solid phase method Preparation of antigen solid phase plate for EIA The purified MOMP and Type A to F proteins described in Examples 2 to 4 were each 1 μg / m 2 in 50 mM carbonate buffer (pH 9.5).
and dispensed at 100 μl / well into a polystyrene flat microplate (manufactured by Nunc) at 4 ° C.
And left overnight. The microplate that had been allowed to stand for 18 hours or more was treated with 200 μl of PBS (pH 7.0) containing 0.05% Tween20 at a final concentration.
After washing 3 times with l / well, final concentration 0.5% BSA and 0.05%
Add 200μl / well of PBS containing Tween20 and add 4 ℃
The mixture was allowed to stand overnight to prepare an antigen solid phase microplate.

【0055】2.抗クラミジア・トラコマティスIgM
の検出 (1)抗体補足法EIAによる検出 実施例5−1(1)記載の抗ヒトIgMモノクローナル抗
体固相マイクロプレートウエル中のプレート保存液を除
いた後、抗原陽性で新生児クラミジア肺炎と診断された
乳幼児の血清30検体及び正常血清50検体を0.5% BSA
と0.05% Tween20 を含むPBS(pH7.0)で200倍に希釈
し、100μlを固相マイクロプレートのウエルに加
え、室温(15 ℃〜25℃)で約1時間反応させた。反応
後、0.05% Tween20 を含むPBS(pH7.0)200μl/we
llで3回洗浄した。ついで、抗原溶解液を1% BSAと0.
05% Tween20 を含む50mM NaCl,50mMホウ酸(pH8.5)を用
いて、MOMP、TypeA及びTypeBの場合は実
施例2−4記載の精製品をそれぞれ10μg/ml,1
0μg/ml及び5μg/mlに、TypeC及びTy
peDの場合は実施例3−3記載の精製品をそれぞれ2
μg/mlに、TypeE及びTypeFの場合は実施
例4−3記載の精製品をそれぞれ5μg/mlに希釈し
て作製した。抗原溶解液を固相マイクロプレートのウエ
ルに100μl/wellで加えた後、室温(15 ℃〜25
℃)で約1時間反応させた。反応後、0.05% Tween20 を
含むPBS200μl/wellで3回洗浄した。
2. Anti-Chlamydia trachomatis IgM
(1) Detection by antibody supplementation method EIA After removing the plate preservation solution in the anti-human IgM monoclonal antibody solid phase microplate wells described in Example 5-1 (1), antigen positive was diagnosed as neonatal Chlamydia pneumonia. 0.5% BSA from 30 infant sera and 50 normal sera
And 200-fold diluted with PBS (pH 7.0) containing 0.05% Tween20, 100 μl was added to the wells of the solid-phase microplate, and reacted at room temperature (15 ° C. to 25 ° C.) for about 1 hour. After the reaction, PBS containing 0.05% Tween20 (pH 7.0) 200 μl / we
Washed three times with 1 l. Then, the antigen lysate was mixed with 1% BSA and 0.
Using 50 mM NaCl containing 50% Tween20, 50 mM boric acid (pH 8.5), the purified products described in Example 2-4 were added at 10 μg / ml and 1 μm for MOMP, Type A and Type B, respectively.
At 0 μg / ml and 5 μg / ml, TypeC and Ty
In the case of peD, the purified product described in Example 3-3 was used for 2 each.
In the case of Type E and Type F, the purified products described in Example 4-3 were each diluted to 5 μg / ml. After adding the antigen lysis solution to the wells of the solid phase microplate at 100 μl / well, room temperature (15 ° C. to 25 ° C.)
C) for about 1 hour. After the reaction, the wells were washed three times with 200 μl / well of PBS containing 0.05% Tween20.

【0056】次いで、0.05% Tween20 を含むPBSで2
μg/mlに希釈したヤギ抗MOMPパーオキシダーゼ
標識モノクローナル抗体100μl/wellを加え、
室温で約1時間反応させた。反応後、0.05% Tween20 を
含むPBS 200 μl/wellで5回洗浄した。洗浄後、3.3mg/
mlο−フェニレンジアミンを含む0.1Mクエン酸−リン酸
緩衝液(pH5.0)に、0.02% 過酸化水素水を加えた基質液
を100μl/well加えて室温で約30分間反応さ
せた。反応後、1.5N硫酸100μl/wellを加
えて反応を停止させ、マイクロプレート用比色計を用い
て主波長492nm、副波長630nmで各ウエルの
O.D.値を測定した。尚、カットオフ値は正常ヒト血
清の吸光度の平均に標準偏差を3倍したものを加えた値
とした。その結果を表1に示す。表1より、クラミジア
・トラコマティス以外の他のクラミジア属に対する特異
性を評価するために、クラミジア・ニューモニエの抗原
陽性ヒト血清9例、クラミジア・シタシの抗原陽性ヒト
血清4例を用い、上記の方法で捕捉法EIAを実施した
が、陽性を示した例は一つもなかった。
Next, 2 times with PBS containing 0.05% Tween20.
100 μl / well of a goat anti-MOMP peroxidase-labeled monoclonal antibody diluted to μg / ml was added,
The reaction was carried out at room temperature for about 1 hour. After the reaction, the wells were washed five times with 200 μl / well of PBS containing 0.05% Tween20. After washing, 3.3 mg /
To a 0.1 M citrate-phosphate buffer (pH 5.0) containing mlo-phenylenediamine, a substrate solution containing 0.02% aqueous hydrogen peroxide was added at 100 μl / well, and reacted at room temperature for about 30 minutes. After the reaction, 100 μl / well of 1.5N sulfuric acid was added to stop the reaction, and the O.D. of each well was measured at a main wavelength of 492 nm and a sub wavelength of 630 nm using a microplate colorimeter. D. The value was measured. The cutoff value was a value obtained by adding a value obtained by multiplying the average of the absorbance of normal human serum by three times the standard deviation. Table 1 shows the results. From Table 1, in order to evaluate the specificity to Chlamydia other than Chlamydia trachomatis, nine cases of Chlamydia pneumoniae antigen-positive human sera and four cases of Chlamydia shitashi antigen-positive human sera were used. The capture method EIA was performed, but none of the cases showed a positive result.

【0057】(2)抗原固相法EIA による検出 実施例5−1(2)記載の抗原固相マイクロプレートウエ
ル中のプレート保存液を除いた後、上記の血清を2.0
mg/mlウサギ抗ヒトIgG抗体、0.5% BSA及び0.05
% Tween20 を含むPBS(pH7.0)で20倍に希釈し、1時間
放置した。次いで、この血清希釈液100μlを固相マ
イクロプレートのウエルに加え、室温(15 ℃〜25℃)で
約1時間反応させた。反応後、0.05% Tween20 を含むP
BS200μl/wellで3回洗浄した。次いで、0.
05% Tween20 を含むPBSで約40,000倍に希釈し
たヤギ抗ヒトIgGパーオキシダーゼ標識抗体(MBL社)
を100μl/well加え、室温で約1時間反応させ
た。反応後、0.05% Tween20 を含むPBS 200μl/w
ellで3〜4回洗浄した。洗浄後、3.3mg/ml
ο−フェニレンジアミンを含む0.1Mクエン酸−リン
酸緩衝液(pH5.0)に、0.02%過酸化水素水を加えた
基質液を100μl/well加えて室温で約30分間
反応させた。反応後、1.5N硫酸を100μl/we
ll加えて反応を停止させ、マイクロプレート用比色計
を用いて主波長492nm、副波長630nmで各ウエルの
O.D.値を測定した。尚、カットオフ値は正常ヒト血
清の吸光度の平均に標準偏差を3倍したものを加えた値
とした。その結果を表1に示す。表1より、クラミジア
・トラコマティス以外の他のクラミジア属に対する特異
性を評価するために、クラミジア・ニューモニエの抗原
陽性ヒト血清9例、クラミジア・シタシの抗原陽性ヒト
血清4例を用い、上記の方法で抗原固相法EIAを実施
したが、陽性を示した例は一つもなかった。
(2) Detection by antigen solid phase method EIA After removing the plate preservation solution in the antigen solid phase microplate well described in Example 5-1 (2),
mg / ml rabbit anti-human IgG antibody, 0.5% BSA and 0.05
The mixture was diluted 20-fold with PBS (pH 7.0) containing% Tween20 and left for 1 hour. Next, 100 μl of this serum diluent was added to the wells of the solid phase microplate, and reacted at room temperature (15 ° C. to 25 ° C.) for about 1 hour. After the reaction, P containing 0.05% Tween20
Washing was performed three times with 200 μl / well of BS. Then, 0.
Goat anti-human IgG peroxidase-labeled antibody (MBL) diluted approximately 40,000-fold with PBS containing 05% Tween20
Was added at 100 μl / well, and reacted at room temperature for about 1 hour. After the reaction, 200 μl / w of PBS containing 0.05% Tween20
Washed 3 to 4 times with ell. After washing, 3.3 mg / ml
100 μl / well of a substrate solution obtained by adding 0.02% aqueous hydrogen peroxide to 0.1 M citrate-phosphate buffer (pH 5.0) containing ο-phenylenediamine was added, and reacted at room temperature for about 30 minutes. . After the reaction, add 1.5 N sulfuric acid to 100 μl / we
Then, the reaction was stopped by adding a colorimeter for microplate, and the O.D. D. The value was measured. The cutoff value was a value obtained by adding a value obtained by multiplying the average of the absorbance of normal human serum by three times the standard deviation. Table 1 shows the results. From Table 1, in order to evaluate the specificity to Chlamydia other than Chlamydia trachomatis, nine cases of Chlamydia pneumoniae antigen-positive human sera and four cases of Chlamydia shitashi antigen-positive human sera were used. , The antigen solid phase method EIA was performed, but none of the cases showed a positive result.

【0058】[0058]

【表1】 [Table 1]

【0059】3.抗クラミジア・トラコマティスIgG
の検出 前記述の抗原固相マイクロプレートウエル中のプレート
保存液を除いた後、FA法で判定したクラミジア・トラ
コマティス感染患者血清50検体及び正常血清50検体を
0.5% BSAと0.05% Tween20 を含むPBSで200倍に希
釈し、その100μlを固相マイクロプレートのウエル
に加え、室温(15 ℃〜25℃)で約1時間反応させた。反
応後、0.05% Tween20 を含むPBS 200 μl/wellで3回洗
浄した。次いで、0.05% Tween20 を含むPBSで約4
0,000倍に希釈したヤギ抗ヒトIgGパーオキシダ
ーゼ標識抗体(MBL社) を100μl/well加え、室
温で約1時間反応させた。反応後、0.05% Tween20を含
むPBS 200 μl/wellで3〜4回洗浄した。洗浄後、3.
3mg/mlο−フェニレンジアミンを含む0.1Mクエン
酸−リン酸緩衝液(pH5.0)に、0.02% 過酸化水素水を加
えた基質液を100μl/well加えて室温で約30
分間反応させた。反応後、1.5N硫酸を100μl/
well加えて反応を停止させ、マイクロプレート用比
色計を用いて主波長492nm、副波長630nmで各
ウエルのO.D.値を測定した。尚、カットオフ値は正
常ヒト血清の吸光度の平均に標準偏差を3倍したものを
加えた値とした。結果を表2に示す。
3. Anti-Chlamydia trachomatis IgG
After removing the plate preservation solution from the antigen-solid phase microplate wells described above, 50 serum samples of Chlamydia trachomatis-infected patients and 50 normal serum samples determined by the FA method were used.
After diluting 200-fold with PBS containing 0.5% BSA and 0.05% Tween20, 100 µl of the diluted solution was added to the wells of a solid-phase microplate, and reacted at room temperature (15 ° C to 25 ° C) for about 1 hour. After the reaction, the wells were washed three times with 200 μl / well of PBS containing 0.05% Tween20. Then, about 4% with PBS containing 0.05% Tween20.
Goat anti-human IgG peroxidase-labeled antibody (MBL) diluted 0000-fold was added at 100 µl / well, and the mixture was reacted at room temperature for about 1 hour. After the reaction, the wells were washed 3 to 4 times with 200 μl / well of PBS containing 0.05% Tween20. After washing, 3.
To a 0.1 M citrate-phosphate buffer (pH 5.0) containing 3 mg / ml o-phenylenediamine, a substrate solution obtained by adding 0.02% aqueous hydrogen peroxide was added at 100 μl / well, and the mixture was added at room temperature for about 30 minutes.
Allowed to react for minutes. After the reaction, 1.5 N sulfuric acid was added to 100 μl /
The reaction was stopped by adding a well, and the O.D. of each well was measured at a main wavelength of 492 nm and a sub wavelength of 630 nm using a colorimeter for microplate. D. The value was measured. The cutoff value was a value obtained by adding a value obtained by multiplying the average of the absorbance of normal human serum by three times the standard deviation. Table 2 shows the results.

【0060】[0060]

【表2】 [Table 2]

【0061】表2より、クラミジア・トラコマティス以
外の他のクラミジア属に対する特異性を評価するため
に、クラミジア・ニューモニエの抗原陽性ヒト血清9
例、クラミジア・シタシの抗原陽性ヒト血清4例を用
い、上記の方法で抗原固相法EIAを実施したが、陽性
を示した例は一つもなかった。
From Table 2, in order to evaluate the specificity to Chlamydia other than Chlamydia trachomatis, the antigen-positive human serum 9 of Chlamydia pneumoniae was evaluated.
For example, the antigen solid phase method EIA was carried out by the above method using four cases of Chlamydia shiitake antigen-positive human sera, but none of the cases showed a positive result.

【0062】以上の結果から、各種融合蛋白質を抗原と
した抗体捕捉法EIAにより、MOMPを抗原とした抗
原固相法EIAよりも、抗クラミジア・トラコマティス
IgMを高感度かつ特異的に検出できる。また各種融合
蛋白質は抗原固相法EIAの抗原としても用いることが
できる。
From the above results, anti-Chlamydia trachomatis IgM can be detected with higher sensitivity and specificity by the antibody capture method EIA using various fusion proteins as antigens than the antigen solid phase method EIA using MOMP as antigen. Various fusion proteins can also be used as antigens in the antigen solid phase EIA.

【0063】実施例6.昆虫細胞を用いた融合蛋白質遺
伝子の発現 1.組換え転移ベクター及び組換えウイルスの作製 (1)組換え転移ベクターの作製 実施例2〜4で得たpCT33 、pCT78 、pCT80 、pCT81 、
pCT82 、pCT51 及びpCT52 各20μgを制限酵素SmaI2
0units で30℃、2時間消化、さらに制限酵素BsaBI
で65℃、2時間消化後、1%アガロースゲル電気泳動
で順に約1.6Kb、1.9Kb 、2.0kb 、1.9Kb 、2.1kb 、1.6
kb 及び1.4kb のDNA 断片を分画し、Geneclean II(BIO1
01 社製)でDNAを回収した。次に転移ベクターpAcYM
1[J.Gen.Virol.,68,1233(1987)]5μgを制限酵素SmaI
で30℃、2時間消化後、アルカリフォスファターゼ(B
RL社製)で5' 末端の脱リン酸化を行った。上記の6種
類のDNA 断片をpAcYM1に結合させた後、大腸菌HB101 に
感染させた。得られた形質転換体を適当に各々20個選
択、アルカリ―SDS法でDNAを精製し、制限酵素に
よるマッピングにより目的のプラスミドpAcMOMP 、pAcT
ypeA、pAcTypeB、pAcTypeC、pAcTypeD 、pAcTypeE及び
pAcTypeFを取得した(図11及び図12参照)。
Embodiment 6 FIG. Expression of fusion protein gene using insect cells Preparation of recombinant transfer vector and recombinant virus (1) Preparation of recombinant transfer vector pCT33, pCT78, pCT80, pCT81 obtained in Examples 2 to 4
20 μg of each of pCT82, pCT51 and pCT52 was replaced with restriction enzyme SmaI2
Digest at 30 ° C for 2 hours with 0 units, and restriction enzyme BsaBI
After digestion at 65 ° C for 2 hours, about 1.6 Kb, 1.9 Kb, 2.0 kb, 1.9 Kb, 2.1 kb and 1.6 kb were sequentially analyzed by 1% agarose gel electrophoresis.
The DNA fragments of kb and 1.4 kb were fractionated, and Geneclean II (BIO1
The DNA was collected from the same company. Next, transfer vector pAcYM
1 [J. Gen. Virol., 68, 1233 (1987)]
After digestion at 30 ° C for 2 hours, alkaline phosphatase (B
RL) was used to dephosphorylate the 5 'end. After linking the above six types of DNA fragments to pAcYM1, Escherichia coli HB101 was infected. Appropriately selected 20 transformants were obtained, DNA was purified by the alkali-SDS method, and the target plasmids pAcMOMP, pAcT
ypeA, pAcTypeB, pAcTypeC, pAcTypeD, pAcTypeE and
pAcTypeF was obtained (see FIGS. 11 and 12).

【0064】(2)組換えウイルスの作製 φ35mmDish(住友ベ−クライト社製)を用い、
夜蛾幼虫由来株化細胞Sf9(Spodopterd frugiperda)細胞
は、10%牛胎児血清(FCS)を含む培地(TC-100 、また
はGrace's 培地)で、夜蛾幼虫由来株化細胞:Tn5(Trich
oplusia ni) 細胞は、無血清培地(TC-100 、またはGrac
e's 培地)で3〜4日培養した。次いで、φ35mmD
ish(住友ベ−クライト社製)を用い、1×106/Di
sh、培地量約1.5mlになる様に前記述の培養細胞を
調整した。この状態で30〜40分静置した後、無菌的
に上記培地を取り去り1.5ml無血清培地(EX-CELL 400
または Grace's 培地)に交換した。ここにAcNPV(キン
ウラバ亜科、Autographa californica nuclear polyh
edorosis virus)DNA約20ng/μlを1μl、組
換え転移ベクター2-3 μg/μl 濃度を1 μl、滅菌蒸留
水6μlの計8μl及びリポフェクチン(BRL社製)5μ
l、滅菌蒸留水3μlの計8μlをエッペンドルフチュ
ーブ内で穏やかに混和した後、上記無血清培地中に1滴
ずつ静かに全体に滴下した(コ・トランスフェクショ
ン)。そしてモイスチャーチャンバー内へ収納し、26
〜26.5℃で3日間培養した。
(2) Preparation of Recombinant Virus Using a φ35 mm dish (manufactured by Sumitomo Bakelite),
Night moth larva-derived cell line Sf9 (Spodopterd frugiperda) cells were cultured in a medium (TC-100 or Grace's medium) containing 10% fetal calf serum (FCS) in a night moth larva-derived cell line: Tn5 (Trich
oplusia ni) Cells should be in serum-free medium (TC-100 or Grac
e's medium) for 3 to 4 days. Then, φ35mmD
1 × 10 6 / Di using ish (Sumitomo Bakelite)
sh, the cultured cells described above were adjusted to a medium volume of about 1.5 ml. After allowing to stand in this state for 30 to 40 minutes, the medium was aseptically removed and 1.5 ml of a serum-free medium (EX-CELL 400
Or Grace's medium). Here, AcNPV (kinuraba, Autographa californica nuclear polyh
edorosis virus) 1 μl of about 20 ng / μl DNA, 1 μl of 2-3 μg / μl recombinant transfer vector, 6 μl of sterile distilled water, 8 μl in total and 5 μl of lipofectin (BRL)
After gently mixing 8 μl of 3 μl of sterilized distilled water in an Eppendorf tube, the mixture was gently dropped dropwise into the serum-free medium (co-transfection). And put it in the moisture chamber,
Cultured at 2626.5 ° C. for 3 days.

【0065】コ・トランスフェクション後、3日目の培
養上清約1mlをチューブに移しそれらの各20μlを
用いて10-1〜10-3まで希釈しそれらの100μlを
1×106/Dish(φ35mm)に調整した細胞に接種し約1
時間静置して吸着させた。その後、ウイルス液を捨て1
%低融点寒天(Sea Plaque :宝酒造社製)2mlを重層
し、凝固した後更に1mlの培地(Sf9細胞の場合は 10%
FCS を含むTC-100またはGrace's 培地を用い、Tn5 細胞
の場合はTC-100またはGrace's の無血清培地を用い
る。)を重層し26〜26.5℃で3〜4日培養後、0.
01%(W/V) Nutral Red を含むPBS(pH7.0)を1ml加えプ
ラークを染色し透明な組換え体を選択した。
After the co-transfection, about 1 ml of the culture supernatant on the third day was transferred to a tube, diluted with 10 μl to 10 −1 to 10 −3 using 20 μl of each, and 100 μl of them was diluted to 1 × 10 6 / Dish ( Inoculate cells adjusted to φ35mm)
It was allowed to stand for a period of time for adsorption. After that, discard the virus solution.
2 ml of low-melting point agar (Sea Plaque: manufactured by Takara Shuzo Co., Ltd.), and after coagulation, 1 ml of medium (10% for Sf9 cells)
Use TC-100 or Grace's medium containing FCS. For Tn5 cells, use TC-100 or Grace's serum-free medium. ) And cultured at 26-26.5 ° C for 3-4 days.
1 ml of PBS (pH 7.0) containing 01% (W / V) Nutral Red was added, and the plaque was stained to select a transparent recombinant.

【0066】プラ−クアッセイによって得た組換え体と
思われるプラークをパスツールピペットによってゲルご
と採取し、それらを細胞培養用培地400μlに浮遊し
十分撹拌を行った後、1,000×gで5分間遠心分離
してアガロ−スゲルを沈澱させ、上清をプラ−クアッセ
イ時同様10-1〜10-3までそれぞれの培地で希釈し、
低融点寒天を用いて同様にプラ−クアッセイを行い組換
えウイルスを純化した。
The plaque, which was considered to be a recombinant obtained by the plaque assay, was collected together with the gel using a Pasteur pipette, suspended in 400 μl of a cell culture medium, and thoroughly stirred. Agarose gel was precipitated by centrifugation for 10 minutes, and the supernatant was diluted with each medium to 10 -1 to 10 -3 as in the plaque assay.
Plaque assay was similarly performed using low melting point agar to purify the recombinant virus.

【0067】プラ−ク純化(plaque pulify)によって得
られた組換え体の力価を細胞に感染させることで上昇さ
せた。この時も同様にφ35mmDishに約1×10
6/DishのSf9細胞及びTn5細胞を用意し、約30分
間静置後培地の大部分を捨てそこに得られた組換え体を
約100μl加え、更に約15分間隔でおだやかに振盪
混和を行い計4回、約1時間にわたってこの操作を行っ
た。次に、Sf9細胞の場合は、10%FCSを含む培
地を、Tn5細胞の場合は無血清培地を1.5ml加
え、3〜4日間培養を行った。この時得られた上清を用
いて75cm2 培養ビン2本を用いて、同様に細胞を用意
し、既に1度力価を上げてある組換えウイルス液1ml
を接種し、3〜4日間の培養の後、得られた上清を構造
遺伝子発現用の高力価組換え体とした。
The recombinant titers obtained by plaque pulify were increased by infecting cells. Also at this time, about 1 × 10
6 / Dish Sf9 cells and Tn5 cells are prepared and left for about 30 minutes. After discarding most of the medium, about 100 μl of the obtained recombinant is added, and the mixture is gently shaken and mixed at about 15 minute intervals. This operation was performed four times in total for about one hour. Next, in the case of Sf9 cells, a medium containing 10% FCS was added, and in the case of Tn5 cells, 1.5 ml of a serum-free medium was added, followed by culturing for 3 to 4 days. Using the supernatant obtained at this time, cells were prepared in the same manner using two 75 cm 2 culture bottles, and 1 ml of the recombinant virus solution already titrated once was used.
And after culturing for 3 to 4 days, the resulting supernatant was used as a high-titer recombinant for expression of the structural gene.

【0068】2.融合蛋白質の発現 φ35mmDishに約1×106/Dishで細胞数を調整
し培地の大部分を吸引し、そこに高力価組換え体(約1
×107pfu/ml)をM.0.I.5 〜10になる様に接種し約15分
間隔で穏やかに振盪しながら計4回、1時間にわたりこ
の操作を続けた。その後、培地(Sf9細胞の場合は10%FCS
を含むTC-100またはGrace's 培地を用い、Tn5 細胞の場
合はTC-100またはGrace's の無血清培地を用いる。)を
0.5−1ml加え3〜4日間、26〜26.5℃で培
養し、各種融合蛋白質の発現を行った。
2. Expression of fusion protein The number of cells was adjusted at about 1 × 10 6 / Dish to φ35 mm dish, most of the medium was aspirated, and the high titer recombinant (about 1
× 10 7 pfu / ml) was inoculated to M.O.I.5 to 10 and this operation was continued for about 1 hour at a time of about 15 minutes with gentle shaking for a total of 4 times. Then, the medium (10% FCS for Sf9 cells)
Use Tc-100 or Grace's medium containing Tc5. For Tn5 cells, use a serum-free medium of Tc-100 or Grace's. ) Was added and cultured at 26 to 26.5 ° C. for 3 to 4 days to express various fusion proteins.

【0069】4日間培養後、遠心分離し、細胞を回収し
た。細胞の一部をPBSに懸濁し超音波破砕機で細胞を
破砕した後、SDS-PAGEを行った。泳動後、ウエスタンブ
ロッティングを行った結果、pAcMOMP で組換えたウイル
スを感染させた細胞では分子量40,000の位置に発
色がみられ、pAcTypeAで組換えたウイルスを感染させた
細胞では分子量約51,000の位置に発色がみられ、
pAcTypeBで組換えたウイルスを感染させた細胞では分子
量約52,000の位置に発色がみられ、pAcTypeCで組
換えたウイルスを感染させた細胞では分子量約50,0
00の位置に発色がみられ、pAcTypeDで組換えたウイル
スを感染させた細胞では分子量約52,000の位置に
発色がみられ、pAcTypeEで組換えたウイルスを感染させ
た細胞では分子量約37,000の位置に発色がみら
れ、pAcTypeFで組換えたウイルスを感染させた細胞では
分子量約31,000の位置に発色がみられ、各蛋白質
の発現が確認された。
After culturing for 4 days, the cells were collected by centrifugation. A part of the cells was suspended in PBS, and the cells were crushed with an ultrasonic crusher, followed by SDS-PAGE. After electrophoresis, Western blotting showed that cells infected with the virus recombined with pAcMOMP developed color at a molecular weight of 40,000, and cells infected with the virus recombined with pAcTypeA showed a molecular weight of about 51,000. Coloring is seen at 000,
In cells infected with the virus recombined with pAcTypeB, color development was observed at a position of about 52,000 molecular weight, and in cells infected with the virus recombined with pAcTypeC about 50,000 molecular weight.
A color was observed at position 00, a color was observed at a molecular weight of about 52,000 in cells infected with the virus recombined with pAcTypeD, and a molecular weight of about 37,7 was observed in cells infected with the virus recombined with pAcTypeE. Color development was observed at the position of 000, and in cells infected with the virus recombined with pAcTypeF, color development was observed at the position of the molecular weight of about 31,000, and the expression of each protein was confirmed.

【0070】また、超音波破砕処理した細胞を5,50
0×gで10分間遠心分離し、上清画分と沈澱画分に分
離した。それぞれの画分をウエスタンブロッティングで
調べた結果、MOMPは沈澱画分に見られ、不溶体を形成し
ていることがわかった。一方、各種融合蛋白質はいずれ
も上清画分に見られ可溶性であることがわかった。
Further, the cells subjected to the ultrasonic crushing treatment were
The mixture was centrifuged at 0 × g for 10 minutes to separate a supernatant fraction and a precipitate fraction. As a result of examining each fraction by Western blotting, it was found that MOMP was found in the precipitated fraction and formed an insoluble substance. On the other hand, all the fusion proteins were found to be soluble in the supernatant fraction.

【0071】3.融合蛋白質の精製 MOMPの精製は以下の如く行った。前述の培養法でS
f9細胞を1リットル培養した。遠心分離して細胞を回
収後、8ml のLysis bufferII(50mM Tris-HCl(pH8.0),25
%(W/V) Sucrose,1mM EDTA)に懸濁後、超音波破砕を行っ
た。次に最終濃度が10mM MgCl2,10mM MnCl2,10μg/ml
DNAseI,10 μg/ml RNaseA になるようにそれぞれ加え、
4℃で30分間放置した。さらに20 ml のDetergent bu
ffer I(20mM Tris-HCl(pH7.5),0.2M NaCl,2mM EDTA,1%
Na-deoxy- cholate,1.6% NP-40)を加え、さらに30分
間放置した。5,000×gで15分間遠心分離して沈
澱を回収した。この沈澱に対して10倍量のDetergent
buffer II(50mM Tris-HCl(pH8.0), 50mM NaCl,10mM EDT
A,0.5% Triton X-100)で十分に懸濁し、4℃で5分間放
置後、5,000×gで10分間遠心分離して沈澱を回
収した。Detergentbuffer II による沈澱の洗浄を3回
繰り返した。沈殿を2%SDSを含むPBSで溶解した
後、不溶画分を遠心分離により除去した後、0.1%S
DSを含むPBSに対して透析し、精製品を得た。
3. Purification of fusion protein MOMP was purified as follows. In the culture method described above, S
One liter of the f9 cells was cultured. After collecting cells by centrifugation, 8 ml of Lysis buffer II (50 mM Tris-HCl (pH 8.0), 25
% (W / V) Sucrose, 1 mM EDTA), followed by sonication. Then the final concentration is 10 mM MgCl 2 , 10 mM MnCl 2 , 10 μg / ml
DNAseI and 10 μg / ml RNaseA
It was left at 4 ° C. for 30 minutes. Another 20 ml Detergent bu
ffer I (20 mM Tris-HCl (pH 7.5), 0.2 M NaCl, 2 mM EDTA, 1%
Na-deoxy-cholate, 1.6% NP-40) was added, and the mixture was further left for 30 minutes. The precipitate was collected by centrifugation at 5,000 xg for 15 minutes. 10 times the volume of Detergent for this precipitate
buffer II (50 mM Tris-HCl (pH 8.0), 50 mM NaCl, 10 mM EDT
A, 0.5% Triton X-100), left at 4 ° C. for 5 minutes, and centrifuged at 5,000 × g for 10 minutes to collect a precipitate. Washing of the precipitate with Detergentbuffer II was repeated three times. The precipitate was dissolved in PBS containing 2% SDS, and the insoluble fraction was removed by centrifugation.
It was dialyzed against PBS containing DS to obtain a purified product.

【0072】一方、各種融合蛋白質の精製は以下の如く
行った。前述の培養法でSf9細胞を1リットル培養し
た。遠心分離して細胞を回収後、8ml のLysis bufferII
(50mM Tris-HCl(pH8.0),25%(W/V)Sucrose,1mM EDTA)に
懸濁後、超音波破砕を行った。不溶物を遠心分離で除去
した後、20%飽和硫安を添加し、4℃で15時間撹は
んした。5,000×gで10分間遠心分離で沈澱を回
収し、20mlの8M Urea,20mM HEPES(pH8.0)で溶解した
後、不溶物を遠心分離により除去した。この画分をPB
Sに対して透析した後、不溶物を遠心分離により除去し
精製品を得た。
On the other hand, various fusion proteins were purified as follows. One liter of Sf9 cells was cultured by the above-described culture method. After collecting cells by centrifugation, 8 ml of Lysis buffer II
(50 mM Tris-HCl (pH 8.0), 25% (W / V) sucrose, 1 mM EDTA), followed by sonication. After removing insolubles by centrifugation, 20% saturated ammonium sulfate was added, and the mixture was stirred at 4 ° C. for 15 hours. The precipitate was collected by centrifugation at 5,000 × g for 10 minutes, dissolved in 20 ml of 8 M Urea, 20 mM HEPES (pH 8.0), and insolubles were removed by centrifugation. PB
After dialysis against S, insolubles were removed by centrifugation to obtain a purified product.

【0073】実施例7.昆虫細胞で発現させた融合蛋白
質を用いた抗クラミジア・トラコマティス抗体検出 1.検査用プレートの作製 (1)抗体捕捉法EIA用抗ヒトIgM抗体固相プレート
の作製 実施例6−3に記載したMOMP及び各種融合蛋白質の
精製品を用い、実施例5−1(1)に記載した方法に従い
作製した。
Embodiment 7 FIG. Detection of anti-Chlamydia trachomatis antibody using fusion protein expressed in insect cells Preparation of Test Plate (1) Preparation of Anti-Human IgM Antibody Solid-Plate for Antibody Capture Method EIA Using the purified products of MOMP and various fusion proteins described in Example 6-3, proceed to Example 5-1 (1). It was prepared according to the described method.

【0074】(2)抗原固相法EIA用抗原固相プレート
の作製 実施例6−3に記載したMOMP及び各種融合蛋白質の
精製品を用い、実施例5−1(2)に記載した方法に従い
作製した。
(2) Antigen solid phase method Preparation of antigen solid phase plate for EIA Using the purified product of MOMP and various fusion proteins described in Example 6-3, according to the method described in Example 5-1 (2) Produced.

【0075】2.抗クラミジア・トラコマティスIgM の
検出 (1)抗体補足法EIAによる検出 実施例7−1(1)に記載した検査用プレートを用い、実
施例5−2(1)に記載した方法に従って実施した。実施
例5−2(1)と比較した結果を表3に示す。
2. Detection of anti-Chlamydia trachomatis IgM (1) Detection by antibody supplementation method EIA Using the test plate described in Example 7-1 (1), the detection was performed according to the method described in Example 5-2 (1). Table 3 shows the results of comparison with Example 5-2 (1).

【0076】[0076]

【表3】 [Table 3]

【0077】クラミジア・トラコマティス以外の他のク
ラミジア属に対する特異性を評価するために、クラミジ
ア・ニューモニエの抗原陽性ヒト血清9例、クラミジア
・シタシの抗原陽性ヒト血清4例を用い、上記の方法で
捕捉法EIAを実施したが、陽性を示した例は一つもな
かった。
In order to evaluate the specificity to Chlamydia other than Chlamydia trachomatis, nine cases of Chlamydia pneumoniae antigen-positive human sera and four cases of Chlamydia shitashi antigen-positive human sera were used. The capture EIA was performed, but none of the cases showed a positive result.

【0078】(2)抗原固相法EIAによる検出 実施例7−1(2)に記載した検査用プレートを用い、実
施例6−2(2)に記載した方法に従って実施した。実施
例5−2(2)と比較した結果を表4に示す。
(2) Detection by antigen solid phase method EIA Using the test plate described in Example 7-1 (2), the detection was performed according to the method described in Example 6-2 (2). Table 4 shows the results of comparison with Example 5-2 (2).

【0079】[0079]

【表4】 [Table 4]

【0080】表4より、クラミジア・トラコマティス以
外の他のクラミジア属に対する特異性を評価するため
に、クラミジア・ニューモニエの抗原陽性ヒト血清9
例、クラミジア・シタシの抗原陽性ヒト血清4例を用
い、上記の方法で抗原固相法EIAを実施したが、陽性
を示した例は一つもなかった。
From Table 4, in order to evaluate the specificity against Chlamydia other than Chlamydia trachomatis, antigen-positive human sera of Chlamydia pneumoniae 9
For example, the antigen solid phase method EIA was carried out by the above method using four cases of Chlamydia shiitake antigen-positive human sera, but none of the cases showed a positive result.

【0081】3.抗クラミジア・トラコマティスIgG
の検出 実施例7−1(2)に記載した検査用プレートを用い、実
施例6−3に記載した方法に従って実施した。実施例5
−3と比較した結果を表5に示す。
3. Anti-Chlamydia trachomatis IgG
The detection was performed according to the method described in Example 6-3 using the test plate described in Example 7-1 (2). Example 5
Table 5 shows the results of comparison with -3.

【0082】[0082]

【表5】 [Table 5]

【0083】表5より、クラミジア・トラコマティス以
外の他のクラミジア属に対する特異性を評価するため
に、クラミジア・ニューモニエの抗原陽性ヒト血清9
例、クラミジア・シタシの抗原陽性ヒト血清4例を用
い、上記の方法で抗原固相法EIAを実施したが、陽性
を示した例は一つもなかった。
From Table 5, in order to evaluate the specificity to Chlamydia other than Chlamydia trachomatis, antigen-positive human serum 9 of Chlamydia pneumoniae was used.
For example, the antigen solid phase method EIA was carried out by the above method using four cases of Chlamydia shiitake antigen-positive human sera, but none of the cases showed a positive result.

【0084】以上の結果から、昆虫細胞で製造した各種
融合蛋白質を用いた検査プレートは、大腸菌で製造した
各種融合蛋白質を用いた場合と同様、高感度かつ特異的
に抗クラミジア・トラコマティス抗体を検出することが
できる。さらにカットオフ値を大腸菌で製造した場合よ
りもさらに低く設定することができるために、EIAの
吸光度の測定可能な範囲が広くなる。また検体間の非特
異的反応の差による判定ミスもより少なくすることが可
能である。
From the above results, the test plate using various fusion proteins produced by insect cells can be used with high sensitivity and specificity for the anti-Chlamydia trachomatis antibody, as in the case of using various fusion proteins produced by Escherichia coli. Can be detected. Further, since the cut-off value can be set lower than that in the case where E. coli is produced, the measurable range of the absorbance of EIA is widened. Further, it is possible to further reduce a determination error due to a difference in non-specific reaction between samples.

【0085】[0085]

【発明の効果】本発明の可溶性融合蛋白質を遺伝子組換
え法で製造し、クラミジア・トラコマティス抗体検出の
抗原として用いることにより、従来より高感度かつ特異
的なクラミジア・トラコマティス感染症の診断が可能と
なった。
The soluble fusion protein of the present invention is produced by a gene recombination method and used as an antigen for detecting Chlamydia trachomatis antibodies, thereby enabling more sensitive and specific diagnosis of Chlamydia trachomatis infection than before. It has become possible.

【0086】[0086]

【配列表】 配列番号:1 配列の長さ:457 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-177,250-457 クラミジア・トラコマティスL2株MOMP領域 178 接合部分 179-249 BSA領域 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly 165 170 175 Ala Gln Leu Cys Lys Val Ala Ser Leu Arg Glu Thr Tyr Gly Asp Met 180 185 190 Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu 195 200 205 Ser His Lys Asp Asp Ser Pro Asp Leu Pro Lys Leu Lys Pro Asp Pro 210 215 220 Asn Thr Leu Cys Asp Glu Phe Lys Ala Asp Glu Lys Lys Phe Trp Gly 225 230 235 240 Lys Tyr Leu Tyr Glu Ile Ala Arg Arg Tyr Thr Asp Thr Thr Phe Ala 245 250 255 Trp Ser Ala Gly Ala Arg Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr 260 265 270 Leu Gly Ala Ser Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu 275 280 285 Leu Asn Val Leu Cys Asn Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys 290 295 300 Gly Tyr Val Gly Gln Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp 305 310 315 320 Gly Val Thr Gly Thr Lys Asp Ala Ser Ile Asp Tyr His Glu Trp Gln 325 330 335 Ala Ser Leu Ala Leu Ser Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile 340 345 350 Gly Val Lys Trp Ser Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile 355 360 365 Ala Gln Pro Lys Ser Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn 370 375 380 Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln 385 390 395 400 Leu Gly Asp Thr Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys 405 410 415 Ser Arg Lys Ser Cys Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala 420 425 430 Asp Lys Tyr Ala Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala 435 440 445 Ala His Val Asn Ala Gln Phe Arg Phe 450 455[Sequence list] SEQ ID NO: 1 Sequence length: 457 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence characteristics: 1-177,250-457 Chlamydia trachomatis L2 strain MOMP region 178 Joining portion 179 -249 BSA region Sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys L eu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly 165 170 175 Ala Gln Leu Cys Lys Val Ala Ser Leu Arg Glu Thr Tyr Gly Asp Met 180 185 190 Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu 195 200 205 Ser His Lys Asp Asp Ser Pro Asp Leu Pro Lys Leu Lys Pro Asp Pro 210 215 220 Asn Thr Leu Cys Asp Glu Phe Lys Ala Asp Glu Lys Lys Phe Trp Gly 225 230 235 240 Lys Tyr Leu Tyr Glu Ile Ala Arg Arg Tyr Thr Asp Thr Thr Phe Ala 245 250 255 Trp Ser Ala Gly Ala Arg Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr 260 265 270 Leu Gly Ala Ser Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu 275 280 285 Leu Asn Val Leu Cys Asn Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys 290 295 300 Gly Tyr Val Gly Gln Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp 305 310 315 320 Gly Val Thr Gly Thr Lys Asp Ala Ser Ile Asp Tyr His Glu Trp Gln 325 330 335 Ala Ser Leu Ala Leu Ser Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile 340 345 350 Gly Val Lys Trp Ser Arg Ala S er Phe Asp Ala Asp Thr Ile Arg Ile 355 360 365 Ala Gln Pro Lys Ser Ala Thr Thr Val Val Phe Asp Val Thr Thr Leu Asn 370 375 380 Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln 385 390 395 400 Leu Gly Asp Thr Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys 405 410 415 Ser Arg Lys Ser Cys Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala 420 425 430 Asp Lys Tyr Ala Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala 435 440 445 Ala His Val Asn Ala Gln Phe Arg Phe 450 455

【0087】 配列番号:2 配列の長さ:484 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-108,149-348,385-484 クラミジア・トラコマティスL2株MOMP領域 384 接合部分 109-148,349-383 BSA領域 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Ala Ser Leu Arg 100 105 110 Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu 115 120 125 Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro 130 135 140 Lys Leu Lys Pro Gly Arg His Met Gln Asp Ala Glu Met Phe Thr Asn 145 150 155 160 Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe Asp Val Phe Cys 165 170 175 Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn Ser Ala Ser Phe 180 185 190 Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val Ser 195 200 205 Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val Glu 210 215 220 Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gly Ala Arg 225 230 235 240 Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala Ser Phe Gln 245 250 255 Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val Leu Cys Asn 260 265 270 Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu 275 280 285 Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr Gly Thr Lys 290 295 300 Asp Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu Ala Leu Ser 305 310 315 320 Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg 325 330 335 Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Arg Glu Thr Tyr 340 345 350 Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu 355 360 365 Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro Lys Leu Thr 370 375 380 Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro Lys Ser 385 390 395 400 Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly 405 410 415 Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr Met 420 425 430 Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser Cys 435 440 445 Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr Ala Val 450 455 460 Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn Ala 465 470 475 480 Gln Phe Arg PheSEQ ID NO: 2 Sequence length: 484 Sequence type: amino acid Topology: linear Sequence type: protein Sequence characteristics: 1-108,149-348,385-484 Chlamydia trachomatis L2 strain MOMP region 384 junction 109-148,349-383 BSA region sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Ala Ser Leu Arg 100 105 110 Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu 115 120 125 Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro 130 135 140 Lys Leu Ly s Pro Gly Arg His Met Gln Asp Ala Glu Met Phe Thr Asn 145 150 155 160 Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe Asp Val Phe Cys 165 170 175 Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn Ser Ala Ser Phe 180 185 190 Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val Ser 195 200 205 Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val Glu 210 215 220 Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gly Ala Arg 225 230 235 240 Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala Ser Phe Gln 245 250 255 Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val Leu Cys Asn 260 265 270 Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu 275 280 285 Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr Gly Thr Lys 290 295 300 Asp Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu Ala Leu Ser 305 310 315 320 Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg 325 330 335 Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Arg Glu Thr Tyr 340 345 350 Gly Asp Me t Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu 355 360 365 Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro Lys Leu Thr 370 375 380 Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro Lys Ser 385 390 395 400 Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly 405 410 415 Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr Met 420 425 430 Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser Cys 435 440 445 Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr Ala Val 450 455 460 Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn Ala 465 470 475 480 Gln Phe Arg Phe

【0088】 配列番号:3 配列の長さ:454 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-90,121-174,247-454 クラミジア・トラコマティスL2株MOMP領域 91-120 クラミジア・トラコマティスL2株MOMPのVDIV 領域挿入部分 175 接合部分 176-246 BSA領域 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg Ser Ala Thr Thr Val Phe 85 90 95 Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys 100 105 110 Ala Ser Ala Glu Gly Gln Leu Gly Tyr Leu Lys Gly Asn Ser Ala Ser 115 120 125 Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val 130 135 140 Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val 145 150 155 160 Glu Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gln Leu 165 170 175 Cys Lys Val Ala Ser Leu Arg Glu Thr Tyr Gly Asp Met Ala Asp Cys 180 185 190 Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Ser His Lys 195 200 205 Asp Asp Ser Pro Asp Leu Pro Lys Leu Lys Pro Asp Pro Asn Thr Leu 210 215 220 Cys Asp Glu Phe Lys Ala Asp Glu Lys Lys Phe Trp Gly Lys Tyr Leu 225 230 235 240 Tyr Glu Ile Ala Arg Arg Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala 245 250 255 Gly Ala Arg Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala 260 265 270 Ser Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val 275 280 285 Leu Cys Asn Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val 290 295 300 Gly Gln Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr 305 310 315 320 Gly Thr Lys Asp Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu 325 330 335 Ala Leu Ser Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys 340 345 350 Trp Ser Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro 355 360 365 Lys Ser Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile 370 375 380 Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp 385 390 395 400 Thr Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys 405 410 415 Ser Cys Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr 420 425 430 Ala Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val 435 440 445 Asn Ala Gln Phe Arg Phe 450SEQ ID NO: 3 Sequence length: 454 Sequence type: amino acid Topology: linear Sequence type: protein Sequence features: 1-90,121-174,247-454 Chlamydia trachomatis L2 strain MOMP region 91-120 Chlamydia trachomatis L2 strain MOMP VDIV region insertion part 175 junction part 176-246 BSA region Sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg Ser Ala Thr Thr Val Phe 85 90 95 Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys 100 105 110 Ala Ser Ala Glu Gly Gln Leu Gly Tyr Leu Lys Gly Asn Ser Ala Ser 115 120 1 25 Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val 130 135 140 Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val 145 150 155 160 Glu Leu Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gln Leu 165 170 175 Cys Lys Val Ala Ser Leu Arg Glu Thr Tyr Gly Asp Met Ala Asp Cys 180 185 190 Cys Glu Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Ser His Lys 195 200 205 Asp Asp Ser Pro Asp Leu Pro Lys Leu Lys Pro Asp Pro Asn Thr Leu 210 215 220 Cys Asp Glu Phe Lys Ala Asp Glu Lys Lys Phe Trp Gly Lys Tyr Leu 225 230 235 240 Tyr Glu Ile Ala Arg Arg Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala 245 250 255 Gly Ala Arg Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala 260 265 270 Ser Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val 275 280 285 285 Leu Cys Asn Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val 290 295 300 300 Gly Gln Glu Phe Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr 305 310 315 320 Gly Thr Lys Asp Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu 325 330 Three 35 Ala Leu Ser Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys 340 345 350 Trp Ser Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro 355 360 365 Lys Ser Ala Thr Thr Val Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile 370 375 380 Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp 385 390 395 400 400 Thr Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys 405 410 415 Ser Cys Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr 420 425 430 Ala Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val 435 440 445 Asn Ala Gln Phe Arg Phe 450

【0089】 配列番号:4 配列の長さ:514 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-108,149-150,181-234,307-514 クラミジア・トラコマティスL2株MOMP 領域 151-180 クラミジア・トラコマティスL2株MOMP のVDIV領域挿入部分 235 接合部分 109-148,236-306 BSA領域 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Ala Ser Leu Arg 100 105 110 Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Glu Pro Glu 115 120 125 Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro 130 135 140 Lys Leu Lys Pro Gly Arg Ser Ala Thr Thr Val Phe Asp Val Thr Thr 145 150 155 160 Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu 165 170 175 Gly Gln Leu Gly Tyr Leu Lys Gly Asn Ser Ala Ser Phe Asn Leu Val 180 185 190 Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val Ser Asp Ser Lys 195 200 205 Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val Glu Leu Tyr Thr 210 215 220 Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gln Leu Cys Lys Val Ala 225 230 235 240 Ser Leu Arg Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln 245 250 255 Glu Pro Glu Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro 260 265 270 Asp Leu Pro Lys Leu Lys Pro Asp Pro Asn Thr Leu Cys Asp Glu Phe 275 280 285 Lys Ala Asp Glu Lys Lys Phe Trp Gly Lys Tyr Leu Tyr Glu Ile Ala 290 295 300 Arg Arg Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Arg Ala 305 310 315 320 Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala Ser Phe Gln Tyr 325 330 335 Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val Leu Cys Asn Ala 340 345 350 Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu Phe 355 360 365 Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr Gly Thr Lys Asp 370 375 380 Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu Ala Leu Ser Tyr 385 390 395 400 Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg Ala 405 410 415 Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro Lys Ser Ala Thr 420 425 430 Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly 435 440 445 Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr Met Gln Ile 450 455 460 Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser Cys Gly Ile 465 470 475 480 Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr Ala Val Thr Val 485 490 495 Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn Ala Gln Phe 500 505 510 Arg PheSEQ ID NO: 4 Sequence length: 514 Sequence type: amino acid Topology: linear Sequence type: protein Sequence characteristics: 1-108,149-150,181-234,307-514 Chlamydia trachomatis L2 strain MOMP region 151 -180 VDIV region insertion part of Chlamydia trachomatis L2 strain MOMP 235 junction 109-148,236-306 BSA region Sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Ala Ser Leu Arg 100 105 110 Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln Gl u Pro Glu 115 120 125 Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro Asp Leu Pro 130 135 140 Lys Leu Lys Pro Gly Arg Ser Ala Thr Thr Val Val Phe Asp Val Thr Thr 145 150 155 160 Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser Ala Glu 165 170 175 Gly Gln Leu Gly Tyr Leu Lys Gly Asn Ser Ala Ser Phe Asn Leu Val 180 185 190 Gly Leu Phe Gly Asp Asn Glu Asn His Ala Thr Val Ser Asp Ser Lys 195 200 205 Leu Val Pro Asn Met Ser Leu Asp Gln Ser Val Val Glu Leu Tyr Thr 210 215 220 Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Gln Leu Cys Lys Val Ala 225 230 235 240 Ser Leu Arg Glu Thr Tyr Gly Asp Met Ala Asp Cys Cys Glu Lys Gln 245 250 255 Glu Pro Glu Arg Asn Glu Cys Phe Leu Ser His Lys Asp Asp Ser Pro 260 265 270 Asp Leu Pro Lys Leu Lys Pro Asp Pro Asn Thr Leu Cys Asp Glu Phe 275 280 285 Lys Ala Asp Glu Lys Lys Phe Trp Gly Lys Tyr Leu Tyr Glu Ile Ala 290 295 300 300 Arg Arg Tyr Thr Asp Thr Thr Phe Ala Trp Ser Ala Gly Ala Arg Ala 305 310 315 320 Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala Ser Ph e Gln Tyr 325 330 335 Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val Leu Cys Asn Ala 340 345 350 Ala Glu Phe Thr Ile Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu Phe 355 360 365 365 Pro Leu Asp Leu Lys Ala Gly Thr Asp Gly Val Thr Gly Thr Lys Asp 370 375 380 Ala Ser Ile Asp Tyr His Glu Trp Gln Ala Ser Leu Ala Leu Ser Tyr 385 390 395 400 Arg Leu Asn Met Phe Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg Ala 405 410 415 Ser Phe Asp Ala Asp Thr Ile Arg Ile Ala Gln Pro Lys Ser Ala Thr 420 425 430 Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly 435 440 445 Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr Met Gln Ile 450 455 460 Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser Cys Gly Ile 465 470 475 480 480 Ala Val Gly Thr Thr Ile Val Asp Ala Asp Lys Tyr Ala Val Thr Val 485 490 490 495 Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn Ala Gln Phe 500 505 510 Arg Phe

【0090】 配列番号:5 配列の長さ:349 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-166,188-349 クラミジア・トラコマティスL2株MOMP領域 168-187 ポリアスパラギン領域 167 接合部分 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Val Asn Asn Asn Asn Asn Asn Asn Asn Asn 165 170 175 Asn Asn Asn Asn Asn Asn Asn Asn Asn Asn Asn Ala Glu Phe Thr Ile 180 185 190 Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu Phe Pro Leu Asp Leu Lys 195 200 205 Ala Gly Thr Asp Gly Val Thr Gly Thr Lys Asp Ala Ser Ile Asp Tyr 210 215 220 His Glu Trp Gln Ala Ser Leu Ala Leu Ser Tyr Arg Leu Asn Met Phe 225 230 235 240 Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg Ala Ser Phe Asp Ala Asp 245 250 255 Thr Ile Arg Ile Ala Gln Pro Lys Ser Ala Thr Thr Val Phe Asp Val 260 265 270 Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser 275 280 285 Ala Glu Gly Gln Leu Gly Asp Thr Met Gln Ile Val Ser Leu Gln Leu 290 295 300 Asn Lys Met Lys Ser Arg Lys Ser Cys Gly Ile Ala Val Gly Thr Thr 305 310 315 320 Ile Val Asp Ala Asp Lys Tyr Ala Val Thr Val Glu Thr Arg Leu Ile 325 330 335 Asp Glu Arg Ala Ala His Val Asn Ala Gln Phe Arg Phe 340 345SEQ ID NO: 5 Sequence length: 349 Sequence type: amino acid Topology: linear Sequence type: protein Sequence characteristics: 1-166,188-349 Chlamydia trachomatis L2 strain MOMP region 168-187 polyasparagine Region 167 Junction sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Val Asn Asn Asn Asn Asn Asn Asn Asn Asn 165 170 175 Asn Asn Asn Asn Asn Asn Asn Asn Asn Asn Asn Ala Glu Phe Thr Ile 180 185 190 Asn Lys Pro Lys Gly Tyr Val Gly Gln Glu Phe Pro Leu Asp Leu Lys 195 200 205 Ala Gly Thr Asp Gly Val Thr Gly Thr Lys Asp Ala Ser Ile Asp Tyr 210 215 220 His Glu Trp Gln Ala Ser Leu Ala Leu Ser Tyr Arg Leu Asn Met Phe 225 230 235 240 Thr Pro Tyr Ile Gly Val Lys Trp Ser Arg Ala Ser Phe Asp Ala Asp 245 250 255 Thr Ile Arg Ile Ala Gln Pro Lys Ser Ala Thr Thr Val Phe Asp Val 260 265 270 Thr Thr Leu Asn Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Ala Ser 275 280 285 Ala Glu Gly Gln Leu Gly Asp Thr Met Gln Ile Val Ser Leu Gln Leu 290 295 300 Asn Lys Met Lys Ser Arg Lys Ser Cys Gly Ile Ala Val Gly Thr Thr 305 310 315 320 Ile Val Asp Ala Asp Lys Tyr Ala Val Thr Val Glu Thr Arg Leu Ile 325 330 335 Asp Glu Arg Ala Ala His Val Asn Ala Gln Phe Arg Phe 340 345

【0091】 配列番号:6 配列の長さ:277 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列の特徴: 1-166,188-277 クラミジア・トラコマティスL2株MOMP領域 168-187 ポリアスパラギン酸領域 167 接合部分 配列 Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Val Asp Asp Asp Asp Asp Asp Asp Asp Asp 165 170 175 Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Ile Ala Gln Pro Lys 180 185 190 Ser Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala 195 200 205 Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr 210 215 220 Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser 225 230 235 240 Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn 260 265 270 Ala Gln Phe Arg Phe 275SEQ ID NO: 6 Sequence length: 277 Sequence type: amino acid Topology: linear Sequence type: protein Sequence characteristics: 1-166,188-277 Chlamydia trachomatis L2 strain MOMP region 168-187 polyasparagine Acid region 167 junction sequence Met Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Met Ile Asp Gly 1 5 10 15 Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys Asp Pro Cys Thr Thr 20 25 30 Trp Cys Asp Ala Ile Ser Met Arg Met Gly Tyr Tyr Gly Asp Phe Val 35 40 45 Phe Asp Arg Val Leu Gln Thr Asp Val Asn Lys Glu Phe Gln Met Gly 50 55 60 Ala Lys Pro Thr Thr Ala Thr Gly Asn Ala Ala Ala Pro Ser Thr Cys 65 70 75 80 Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His Met Gln Asp Ala Glu 85 90 95 Met Phe Thr Asn Ala Ala Tyr Met Ala Leu Asn Ile Trp Asp Arg Phe 100 105 110 Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly Tyr Leu Lys Gly Asn 115 120 125 Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly Asp Asn Glu Asn His 130 135 140 Ala Thr Val Ser Asp Ser Lys Leu Val Pro Asn Met Ser Leu Asp Gln 145 150 155 160 Ser Val Val Glu Leu Tyr Val Asp Asp Asp Asp Asp Asp Asp Asp Asp 165 170 175 Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Ile Ala Gln Pro Lys 180 185 190 Ser Ala Thr Thr Val Phe Asp Val Thr Thr Leu Asn Pro Thr Ile Ala 195 200 205 Gly Ala Gly Asp Val Lys Ala Ser Ala Glu Gly Gln Leu Gly Asp Thr 210 215 220 Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys Ser Arg Lys Ser 225 230 235 240 Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala Ala His Val Asn 260 265 270 270 Ala Gln Phe Arg Phe 275

【0092】 配列番号:7 配列の長さ:1371 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コー ド部分) cDNA to mRNA(BSA領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1371 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 480 TCTGTTGTTG AGTTGTATAC AGATACTACT TTTGCTTGGA GTGCTGGAGC TCAATTGTGT 540 AAAGTTGCAT CCCTTCGTGA AACCTATGGT GACATGGCTG ACTGCTGTGA GAAACAAGAG 600 CCTGAAAGAA ATGAATGCTT CCTGAGCCAC AAAGATGATA GCCCAGACCT CCCTAAATTG 660 AAACCAGACC CCAATACTTT GTGTGATGAG TTTAAGGCAG ATGAAAAGAA GTTTTGGGGA 720 AAATACCTAT ACGAAATTGC TAGAAGGTAT ACAGATACTA CTTTTGCTTG GAGTGCTGGA 780 GCTCGTGCAG CTTTGTGGGA ATGTGGATGC GCGACTTTAG GCGCTTCTTT CCAATACGCT 840 CAATCCAAGC CTAAAGTCGA AGAATTAAAC GTTCTCTGTA ACGCAGCTGA GTTTACTATC 900 AATAAGCCTA AAGGATATGT AGGGCAAGAA TTCCCTCTTG ATCTTAAAGC AGGAACAGAT 960 GGTGTGACAG GAACTAAGGA TGCCTCTATT GATTACCATG AATGGCAAGC AAGTTTAGCT 1020 CTCTCTTACA GACTGAATAT GTTCACTCCC TACATTGGAG TTAAATGGTC TCGAGCAAGT 1080 TTTGATGCAG ACACGATTCG TATTGCTCAG CCGAAGTCAG CTACAACTGT CTTTGATGTT 1140 ACCACTCTGA ACCCAACTAT TGCTGGAGCT GGCGATGTGA AAGCTAGCGC AGAGGGTCAG 1200 CTCGGAGATA CCATGCAAAT CGTTTCCTTG CAATTGAACA AGATGAAATC TAGAAAATCT 1260 TGCGGTATTG CAGTAGGAAC AACTATTGTG GATGCAGACA AATACGCAGT TACAGTTGAG 1320 ACTCGCTTGA TCGATGAGAG AGCTGCTCAC GTAAATGCAC AATTCCGCTT C 1371SEQ ID NO: 7 Sequence length: 1371 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA (MOMP region code of Chlamydia trachomatis L2 strain) cDNA to mRNA (BSA region coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1.1371 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCTCTGTG CGATCTGTGCTCGTC ACCACTTGTGCTCGTC ACCACTTGTGCT TG AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 480 TCTGTTGTTG AGTTGTATAC AGA TACTACT TTTGCTTGGA GTGCTGGAGC TCAATTGTGT 540 AAAGTTGCAT CCCTTCGTGA AACCTATGGT GACATGGCTG ACTGCTGTGA GAAACAAGAG 600 CCTGAAAGAA ATGAATGCTT CCTGAGCCAC AAAGATGATA GCCCAGACCT CCCTAAATTG 660 AAACCAGACC CCAATACTTT GTGTGATGAG TTTAAGGCAG ATGAAAAGAA GTTTTGGGGA 720 AAATACCTAT ACGAAATTGC TAGAAGGTAT ACAGATACTA CTTTTGCTTG GAGTGCTGGA 780 GCTCGTGCAG CTTTGTGGGA ATGTGGATGC GCGACTTTAG GCGCTTCTTT CCAATACGCT 840 CAATCCAAGC CTAAAGTCGA AGAATTAAAC GTTCTCTGTA ACGCAGCTGA GTTTACTATC 900 AATAAGCCTA AAGGATATGT AGGGCAAGAA TTCCCTCTTG ATCTTAAAGC AGGAACAGAT 960 GGTGTGACAG GAACTAAGGA TGCCTCTATT GATTACCATG AATGGCAAGC AAGTTTAGCT 1020 CTCTCTTACA GACTGAATAT GTTCACTCCC TACATTGGAG TTAAATGGTC TCGAGCAAGT 1080 TTTGATGCAG ACACGATTCG TATTGCTCAG CCGAAGTCAG CTACAACTGT CTTTGATGTT 1140 ACCACTCTGA ACCCAACTAT TGCTGGAGCT GGCGATGTGA AAGCTAGCGC AGAGGGTCAG 1200 CTCGGAGATA CCATGCAAAT CGTTTCCTTG CAATTGAACA AGATGAAATC TAGAAAATCT 1260 TGCGGTATTG CAGTAGGAAC AACTATTGTG GATGCAGACA AATACGCAGT TACAGTTGAG 1320 ACTCGCTTGA TCGATGAGAG AGCTGCTCAC GTAAAT GCAC AATTCCGCTT C 1371

【0093】 配列番号:8 配列の長さ:1452 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コー ド部分) cDNA to mRNA(BSA領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1452 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTGCATCC CTTCGTGAAA CCTATGGTGA CATGGCTGAC 360 TGCTGTGAGA AACAAGAGCC TGAAAGAAAT GAATGCTTCC TGAGCCACAA AGATGATAGC 420 CCAGACCTCC CTAAATTGAA ACCCGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 480 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 540 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 600 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 660 TCTGTTGTTG AGTTGTATAC AGATACTACT TTTGCTTGGA GTGCTGGAGC TGGAGCTCGT 720 GCAGCTTTGT GGGAATGTGG ATGCGCGACT TTAGGCGCTT CTTTCCAATA CGCTCAATCC 780 AAGCCTAAAG TCGAAGAATT AAACGTTCTC TGTAACGCAG CTGAGTTTAC TATCAATAAG 840 CCTAAAGGAT ATGTAGGGCA AGAATTCCCT CTTGATCTTA AAGCAGGAAC AGATGGTGTG 900 ACAGGAACTA AGGATGCCTC TATTGATTAC CATGAATGGC AAGCAAGTTT AGCTCTCTCT 960 TACAGACTGA ATATGTTCAC TCCCTACATT GGAGTTAAAT GGTCTCGAGC AAGTTTTGAT 1020 GCAGACACGA TTCGTATTGC TCAGCGTGAA ACCTATGGTG ACATGGCTGA CTGCTGTGAG 1080 AAACAAGAGC CTGAAAGAAA TGAATGCTTC CTGAGCCACA AAGATGATAG CCCAGACCTC 1140 CCTAAATTGA CTCGAGCAAG TTTTGATGCA GACACGATTC GTATTGCTCA GCCGAAGTCA 1200 GCTACAACTG TCTTTGATGT TACCACTCTG AACCCAACTA TTGCTGGAGC TGGCGATGTG 1260 AAAGCTAGCG CAGAGGGTCA GCTCGGAGAT ACCATGCAAA TCGTTTCCTT GCAATTGAAC 1320 AAGATGAAAT CTAGAAAATC TTGCGGTATT GCAGTAGGAA CAACTATTGT GGATGCAGAC 1380 AAATACGCAG TTACAGTTGA GACTCGCTTG ATCGATGAGA GAGCTGCTCA CGTAAATGCA 1440 CAATTCCGCT TC 1452SEQ ID NO: 8 Sequence length: 1452 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA (MOMP region code of Chlamydia trachomatis L2 strain) cDNA to mRNA (BSA region coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1.1452 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCTCTGTG CGATCTGTGCTCGTC ACCACTTGTGCTCT CG AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTGCATCC CTTCGTGAAA CCTATGGTGA CATGGCTGAC 360 TGCTGTGAGA AACAAGAGCC TGAAAGAAAT GAATGCTTCC TGAGCCACAA AGATGATAGC 420 CCAGACCTCC CTAAATTGAA ACCCGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 480 GCTGCTTACA TGGCATTGAA TAT TTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 540 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 600 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 660 TCTGTTGTTG AGTTGTATAC AGATACTACT TTTGCTTGGA GTGCTGGAGC TGGAGCTCGT 720 GCAGCTTTGT GGGAATGTGG ATGCGCGACT TTAGGCGCTT CTTTCCAATA CGCTCAATCC 780 AAGCCTAAAG TCGAAGAATT AAACGTTCTC TGTAACGCAG CTGAGTTTAC TATCAATAAG 840 CCTAAAGGAT ATGTAGGGCA AGAATTCCCT CTTGATCTTA AAGCAGGAAC AGATGGTGTG 900 ACAGGAACTA AGGATGCCTC TATTGATTAC CATGAATGGC AAGCAAGTTT AGCTCTCTCT 960 TACAGACTGA ATATGTTCAC TCCCTACATT GGAGTTAAAT GGTCTCGAGC AAGTTTTGAT 1020 GCAGACACGA TTCGTATTGC TCAGCGTGAA ACCTATGGTG ACATGGCTGA CTGCTGTGAG 1080 AAACAAGAGC CTGAAAGAAA TGAATGCTTC CTGAGCCACA AAGATGATAG CCCAGACCTC 1140 CCTAAATTGA CTCGAGCAAG TTTTGATGCA GACACGATTC GTATTGCTCA GCCGAAGTCA 1200 GCTACAACTG TCTTTGATGT TACCACTCTG AACCCAACTA TTGCTGGAGC TGGCGATGTG 1260 AAAGCTAGCG CAGAGGGTCA GCTCGGAGAT ACCATGCAAA TCGTTTCCTT GCAATTGAAC 1320 AAGATGAAAT CTAGAAAATC TTGCGGTATT GCAGTA GGAA CAACTATTGT GGATGCAGAC 1380 AAATACGCAG TTACAGTTGA GACTCGCTTG ATCGATGAGA GAGCTGCTCA CGTAAATGCA 1440 CAATTCCGCT TC 1452

【0094】 配列番号:9 配列の長さ:1362 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コー ド部分) cDNA to mRNA(BSA領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1362 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGT TCTGCTACCA CTGTCTTTGA TGTTACCACT 300 CTGAACCCAA CTATTGCTGG AGCTGGCGAT GTGAAAGCAA GCGCTGAGGG TCAGCTGGGA 360 TATCTTAAAG GAAATTCAGC ATCTTTCAAC TTAGTTGGCT TATTCGGAGA TAATGAGAAC 420 CATGCTACAG TTTCAGATAG TAAGCTTGTA CCAAATATGA GCTTAGATCA ATCTGTTGTT 480 GAGTTGTATA CAGATACTAC TTTTGCTTGG AGTGCTGGAG CTCAATTGTG TAAAGTTGCA 540 TCCCTTCGTG AAACCTATGG TGACATGGCT GACTGCTGTG AGAAACAAGA GCCTGAAAGA 600 AATGAATGCT TCCTGAGCCA CAAAGATGAT AGCCCAGACC TCCCTAAATT GAAACCAGAC 660 CCCAATACTT TGTGTGATGA GTTTAAGGCA GATGAAAAGA AGTTTTGGGG AAAATACCTA 720 TACGAAATTG CTAGAAGGTA TACAGATACT ACTTTTGCTT GGAGTGCTGG AGCTCGTGCA 780 GCTTTGTGGG AATGTGGATG CGCGACTTTA GGCGCTTCTT TCCAATACGC TCAATCCAAG 840 CCTAAAGTCG AAGAATTAAA CGTTCTCTGT AACGCAGCTG AGTTTACTAT CAATAAGCCT 900 AAAGGATATG TAGGGCAAGA ATTCCCTCTT GATCTTAAAG CAGGAACAGA TGGTGTGACA 960 GGAACTAAGG ATGCCTCTAT TGATTACCAT GAATGGCAAG CAAGTTTAGC TCTCTCTTAC 1020 AGACTGAATA TGTTCACTCC CTACATTGGA GTTAAATGGT CTCGAGCAAG TTTTGATGCA 1080 GACACGATTC GTATTGCTCA GCCGAAGTCA GCTACAACTG TCTTTGATGT TACCACTCTG 1140 AACCCAACTA TTGCTGGAGC TGGCGATGTG AAAGCTAGCG CAGAGGGTCA GCTCGGAGAT 1200 ACCATGCAAA TCGTTTCCTT GCAATTGAAC AAGATGAAAT CTAGAAAATC TTGCGGTATT 1260 GCAGTAGGAA CAACTATTGT GGATGCAGAC AAATACGCAG TTACAGTTGA GACTCGCTTG 1320 ATCGATGAGA GAGCTGCTCA CGTAAATGCA CAATTCCGCT TC 1362SEQ ID NO: 9 Sequence length: 1362 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA (Chlamydia trachomatis L2 strain MOMP region code portion) cDNA to mRNA (BSA region coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1..1362 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAGACAA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCTCTGTG CGATCTGTGCT CGACTTCTGTGCT ACT AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGT TCTGCTACCA CTGTCTTTGA TGTTACCACT 300 CTGAACCCAA CTATTGCTGG AGCTGGCGAT GTGAAAGCAA GCGCTGAGGG TCAGCTGGGA 360 TATCTTAAAG GAAATTCAGC ATCTTTCAAC TTAGTTGGCT TATTCGGAGA TAATGAGAAC 420 CATGCTACAG TTTCAGATAG TAAGCTTGTA CCAAATATGA GCTTAGATCA ATCTGTTGTT 480 GAGTTGTATA CAGATACTAC TTT TGCTTGG AGTGCTGGAG CTCAATTGTG TAAAGTTGCA 540 TCCCTTCGTG AAACCTATGG TGACATGGCT GACTGCTGTG AGAAACAAGA GCCTGAAAGA 600 AATGAATGCT TCCTGAGCCA CAAAGATGAT AGCCCAGACC TCCCTAAATT GAAACCAGAC 660 CCCAATACTT TGTGTGATGA GTTTAAGGCA GATGAAAAGA AGTTTTGGGG AAAATACCTA 720 TACGAAATTG CTAGAAGGTA TACAGATACT ACTTTTGCTT GGAGTGCTGG AGCTCGTGCA 780 GCTTTGTGGG AATGTGGATG CGCGACTTTA GGCGCTTCTT TCCAATACGC TCAATCCAAG 840 CCTAAAGTCG AAGAATTAAA CGTTCTCTGT AACGCAGCTG AGTTTACTAT CAATAAGCCT 900 AAAGGATATG TAGGGCAAGA ATTCCCTCTT GATCTTAAAG CAGGAACAGA TGGTGTGACA 960 GGAACTAAGG ATGCCTCTAT TGATTACCAT GAATGGCAAG CAAGTTTAGC TCTCTCTTAC 1020 AGACTGAATA TGTTCACTCC CTACATTGGA GTTAAATGGT CTCGAGCAAG TTTTGATGCA 1080 GACACGATTC GTATTGCTCA GCCGAAGTCA GCTACAACTG TCTTTGATGT TACCACTCTG 1140 AACCCAACTA TTGCTGGAGC TGGCGATGTG AAAGCTAGCG CAGAGGGTCA GCTCGGAGAT 1200 ACCATGCAAA TCGTTTCCTT GCAATTGAAC AAGATGAAAT CTAGAAAATC TTGCGGTATT 1260 GCAGTAGGAA CAACTATTGT GGATGCAGAC AAATACGCAG TTACAGTTGA GACTCGCTTG 1320 ATCGATGAGA GAGCTGCTCA CGTAAATGCA CAATTC CGCT TC 1362

【0095】 配列番号:10 配列の長さ:1542 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コ ード部分) cDNA to mRNA(BSA領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1542 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTGCATCC CTTCGTGAAA CCTATGGTGA CATGGCTGAC 360 TGCTGTGAGA AACAAGAGCC TGAAAGAAAT GAATGCTTCC TGAGCCACAA AGATGATAGC 420 CCAGACCTCC CTAAATTGAA ACCCGGCCGT TCTGCTACCA CTGTCTTTGA TGTTACCACT 480 CTGAACCCAA CTATTGCTGG AGCTGGCGAT GTGAAAGCAA GCGCTGAGGG TCAGCTGGGA 540 TATCTTAAAG GAAATTCAGC ATCTTTCAAC TTAGTTGGCT TATTCGGAGA TAATGAGAAC 600 CATGCTACAG TTTCAGATAG TAAGCTTGTA CCAAATATGA GCTTAGATCA ATCTGTTGTT 660 GAGTTGTATA CAGATACTAC TTTTGCTTGG AGTGCTGGAG CTCAATTGTG TAAAGTTGCA 720 TCCCTTCGTG AAACCTATGG TGACATGGCT GACTGCTGTG AGAAACAAGA GCCTGAAAGA 780 AATGAATGCT TCCTGAGCCA CAAAGATGAT AGCCCAGACC TCCCTAAATT GAAACCAGAC 840 CCCAATACTT TGTGTGATGA GTTTAAGGCA GATGAAAAGA AGTTTTGGGG AAAATACCTA 900 TACGAAATTG CTAGAAGGTA TACAGATACT ACTTTTGCTT GGAGTGCTGG AGCTCGTGCA 960 GCTTTGTGGG AATGTGGATG CGCGACTTTA GGCGCTTCTT TCCAATACGC TCAATCCAAG 1020 CCTAAAGTCG AAGAATTAAA CGTTCTCTGT AACGCAGCTG AGTTTACTAT CAATAAGCCT 1080 AAAGGATATG TAGGGCAAGA ATTCCCTCTT GATCTTAAAG CAGGAACAGA TGGTGTGACA 1140 GGAACTAAGG ATGCCTCTAT TGATTACCAT GAATGGCAAG CAAGTTTAGC TCTCTCTTAC 1200 AGACTGAATA TGTTCACTCC CTACATTGGA GTTAAATGGT CTCGAGCAAG TTTTGATGCA 1260 GACACGATTC GTATTGCTCA GCCGAAGTCA GCTACAACTG TCTTTGATGT TACCACTCTG 1320 AACCCAACTA TTGCTGGAGC TGGCGATGTG AAAGCTAGCG CAGAGGGTCA GCTCGGAGAT 1380 ACCATGCAAA TCGTTTCCTT GCAATTGAAC AAGATGAAAT CTAGAAAATC TTGCGGTATT 1440 GCAGTAGGAA CAACTATTGT GGATGCAGAC AAATACGCAG TTACAGTTGA GACTCGCTTG 1500 ATCGATGAGA GAGCTGCTCA CGTAAATGCA CAATTCCGCT TC 1542SEQ ID NO: 10 Sequence length: 1542 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA (MOMP region coding portion of Chlamydia trachomatis L2 strain) cDNA to mRNA (BSA region coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1..1542 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCTGAG CGACTTGTGCT TG CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTGCATCC CTTCGTGAAA CCTATGGTGA CATGGCTGAC 360 TGCTGTGAGA AACAAGAGCC TGAAAGAAAT GAATGCTTCC TGAGCCACAA AGATGATAGC 420 CCAGACCTCC CTAAATTGAA ACCCGGCCGT TCTGCTACCA CTGTCTTTGA TGTTACCACT 480 CTGAACCCAA CTATTGCTGG AGCTGGCGAT GTGAAAGCAA GCGCTGAGGG TCAGCTGGGA 540 TATCTTAAAG GAAATTCAGC ATCTTTCAAC TTAGTTGGCT TATTCGGAGA TAATGAGAAC 600 CATGCTACAG TTTCAGATAG TAAGCTTGTA CCAAATATGA GCTTAGATCA ATCTGTTGTT 660 GAGTTGTATA CAGATACTAC TTTTGCTTGG AGTGCTGGAG CTCAATTGTG TAAAGTTGCA 720 TCCCTTCGTG AAACCTATGG TGACATGGCT GACTGCTGTG AGAAACAAGA GCCTGAAAGA 780 AATGAATGCT TCCTGAGCCA CAAAGATGAT AGCCCAGACC TCCCTAAATT GAAACCAGAC 840 CCCAATACTT TGTGTGATGA GTTTAAGGCA GATGAAAAGA AGTTTTGGGG AAAATACCTA 900 TACGAAATTG CTAGAAGGTA TACAGATACT ACTTTTGCTT GGAGTGCTGG AGCTCGTGCA 960 GCTTTGTGGG AATGTGGATG CGCGACTTTA GGCGCTTCTT TCCAATACGC TCAATCCAAG 1020 CCTAAAGTCG AAGAATTAAA CGTTCTCTGT AACGCAGCTG AGTTTACTAT CAATAAGCCT 1080 AAAGGATATG TAGGGCAAGA ATTCCCTCTT GATCTTAAAG CAGGAACAGA TGGTGTGACA 1140 GGAACTAAGG ATGCCTCTAT TGATTACCAT GAATGGCAAG CAAGTTTAGC TCTCTCTTAC 1200 AGACTGAATA TGTTCACTCC CTACATTGGA GTTAAATGGT CTCGAGCAAG TTTTGATGCA 1260 GACACGATTC GTATTGCTCA GCCGAAGTCA GCTACAACTG TCTTTGATGT TACCACTCTG 1320 AACCCAACTA TTGCTGGAGC TGGCGATGTG AAA GCTAGCG CAGAGGGTCA GCTCGGAGAT 1380 ACCATGCAAA TCGTTTCCTT GCAATTGAAC AAGATGAAAT CTAGAAAATC TTGCGGTATT 1440 GCAGTAGGAA CAACTATTGT GGATGCAGAC AAATACGCAG TTACAGTTGA GACTCGCTTG 1500 ATCGATGAGA GAGCTGCTCA CGTAAATGCAATTCC

【0096】 配列番号:11 配列の長さ:1047 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コー ド部分) その他の核酸 合成DNA(ポリアスパラギン領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..1047 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 480 TCTGTTGTTG AGTTGTATGT TAACAATAAC AATAACAATA ACAATAACAA TAACAATAAC 540 AATAACAATA ACAATAACAA TGCTGAGTTT ACTATCAATA AGCCTAAAGG ATATGTAGGG 600 CAAGAATTCC CTCTTGATCT TAAAGCAGGA ACAGATGGTG TGACAGGAAC TAAGGATGCC 660 TCTATTGATT ACCATGAATG GCAAGCAAGT TTAGCTCTCT CTTACAGACT GAATATGTTC 720 ACTCCCTACA TTGGAGTTAA ATGGTCTCGA GCAAGTTTTG ATGCAGACAC GATTCGTATT 780 GCTCAGCCGA AGTCAGCTAC AACTGTCTTT GATGTTACCA CTCTGAACCC AACTATTGCT 840 GGAGCTGGCG ATGTGAAAGC TAGCGCAGAG GGTCAGCTCG GAGATACCAT GCAAATCGTT 900 TCCTTGCAAT TGAACAAGAT GAAATCTAGA AAATCTTGCG GTATTGCAGT AGGAACAACT 960 ATTGTGGATG CAGACAAATA CGCAGTTACA GTTGAGACTC GCTTGATCGA TGAGAGAGCT 1020 GCTCACGTAA ATGCACAATT CCGCTTC 1047SEQ ID NO: 11 Sequence length: 1047 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA (Chlamydia trachomatis L2 strain MOMP region code portion) Other Nucleic acid Synthetic DNA (polyasparagine region coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1..1047 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCTGCT TG CGATCTGTCTGTCGATCTGCTCGTCGATCTGCTCGTCGATCTGCT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 480 TCTGTTGTTG AGTTGTATGT TAACAATAAC AATAACAATA ACAATAACAA TAACAATAAC 540 AATAACAATA ACAATAACAA TGCTGAGTTT ACTATCAATA AGCCTAAAGG ATATGTAGGG 600 CAAGAATTCC CTCTTGATCT TAAAGCAGGA ACAGATGGTG TGACAGGAAC TAAGGATGCC 660 TCTATTGATT ACCATGAATG GCAAGCAAGT TTAGCTCTCT CTTACAGACT GAATATGTTC 720 ACTCCCTACA TTGGAGTTAA ATGGTCTCGA GCAAGTTTTG ATGCAGACAC GATTCGTATT 780 GCTCAGCCGA AGTCAGCTAC AACTGTCTTT GATGTTACCA CTCTGAACCC AACTATTGCT 840 GGAGCTGGCG ATGTGAAAGC TAGCGCAGAG GGTCAGCTCG GAGATACCAT GCAAATCGTT 900 TCCTTGCAAT TGAACAAGAT GAAATCTAGA AAATCTTGCG GTATTGCAGT AGGAACAACT 960 ATTGTGGATG CAGACAAATA CGCAGTTACA GTTGAGACTC GCTTGATCGA TGAGAGAGCT 1020 GCTCACGTAA ATGCACAATT CCGCTTC 1047

【0097】 配列番号:12 配列の長さ:831 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA(クラミジア・トラコマティスL2株MOMP領域コ ード部分) その他の核酸 合成DNA(ポリアスパラギン酸領域コード部分) 配列の特徴: 特徴を表す記号:CDS 存在位置:1..831 特徴を決定した方法:E 配列 ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGATCCTTGC ACCACTTGGT GTGACGCTAT CAGCATGCGT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG CTTAGATCAA 480 TCTGTTGTTG AGTTGTATGT CGACGATGAC GATGACGATG ACGATGACGA TGACGATGAC 540 GATGACGATG ACGATGACGA TATCGCTCAG CCGAAGTCAG CTACAACTGT CTTTGATGTT 600 ACCACTCTGA ACCCAACTAT TGCTGGAGCT GGCGATGTGA AAGCTAGCGC AGAGGGTCAG 660 CTCGGAGATA CCATGCAAAT CGTTTCCTTG CAATTGAACA AGATGAAATC TAGAAAATCT 720 TGCGGTATTG CAGTAGGAAC AACTATTGTG GATGCAGACA AATACGCAGT TACAGTTGAG 780 ACTCGCTTGA TCGATGAGAG AGCTGCTCAC GTAAATGCAC AATTCCGCTT C 831SEQ ID NO: 12 Sequence length: 831 Sequence type: nucleic acid Number of strands: double stranded Topology: linear Sequence type: Genomic DNA (Chlamydia trachomatis L2 strain MOMP region coding part) Others Nucleic acid of synthetic DNA (polyaspartic acid domain coding portion) Sequence characteristics: Symbol indicating characteristics: CDS Location: 1..831 Method used to determine characteristics: E sequence ATGCTGCCTG TGGGTAACCC TGCTGAACCA AGCCTTATGA TCGACGGGAT CCTATGGGAA 60 GGTTTCGGCG GAGATCCTTG CGACGCTGCTGTCGATCTGCT 120 ATGGGTTACT ATGGTGACTT TGTTTTCGAC CGTGTTTTGC AAACAGATGT GAATAAAGAA 180 TTCCAAATGG GTGCCAAGCC TACAACTGCT ACAGGCAATG CTGCAGCTCC ATCCACTTGT 240 ACAGCAAGAG AGAATCCTGC TTACGGCCGA CATATGCAGG ATGCTGAGAT GTTTACAAAT 300 GCTGCTTACA TGGCATTGAA TATTTGGGAT CGTTTTGATG TATTCTGTAC ATTAGGAGCC 360 ACCAGTGGAT ATCTTAAAGG AAATTCAGCA TCTTTCAACT TAGTTGGCTT ATTCGGAGAT 420 AATGAGAACC ATGCTACAGT TTCAGATAGT AAGCTTGTAC CAAATATGAG C TTAGATCAA 480 TCTGTTGTTG AGTTGTATGT CGACGATGAC GATGACGATG ACGATGACGA TGACGATGAC 540 GATGACGATG ACGATGACGA TATCGCTCAG CCGAAGTCAG CTACAACTGT CTTTGATGTT 600 ACCACTCTGA ACCCAACTAT TGCTGGAGCT GGCGATGTGA AAGCTAGCGC AGAGGGTCAG 660 CTCGGAGATA CCATGCAAAT CGTTTCCTTG CAATTGAACA AGATGAAATC TAGAAAATCT 720 TGCGGTATTG CAGTAGGAAC AACTATTGTG GATGCAGACA AATACGCAGT TACAGTTGAG 780 ACTCGCTTGA TCGATGAGAG AGCTGCTCAC GTAAATGCAC AATTCCGCTT C 831

【0098】配列番号:13 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCAGAAAAAG ATAGCGAGCA CASEQ ID NO: 13 Sequence length: 22 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acids Synthetic DNA sequence CCAGAAAAAG ATAGCGAGCA CA

【0099】配列番号:14 配列の長さ:22 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 AAAAAAACTG GACCCGACCG AASEQ ID NO: 14 Sequence length: 22 Sequence type: nucleic acid Number of strands: single strand Topology: linear Sequence type: other nucleic acid Synthetic DNA Antisense: Yes sequence AAAAAAACTG GACCCGACCG AA

【0100】 配列番号:15 配列の長さ:73 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TATGCTGCCT GTGGGTAACC CTGCTGAACC AAGCCTTATG ATCGACGGGA TCCTATGGGA AGGTTTCGGC GGASEQ ID NO: 15 Sequence length: 73 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence TATGCTGCCT GTGGGTAACC CTGCTGAACC AAGCCTTATG ATCGACGGGA TCCTATGGGA AGGTTTCGGC GGA

【0101】 配列番号:16 配列の長さ:75 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 GATCTCCGCC GAAACCTTCC CATAGGATCC CGTCGATCAT AAGGCTTGGT TCAGCAGGGT TACCCACAGG CAGCASEQ ID NO: 16 Sequence length: 75 Sequence type: Nucleic acid Number of strands: Single stranded Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Antisense: Yes Sequence GATCTCCGCC GAAACCTTCC CATAGGATCC CGTCGATCAT AAGGCTTGGT TCAGCAGGGT TACCCACAGG CAGCA

【0102】配列番号:17 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGCACAATGA AGTGGGTGAC TTTTATTTCTSEQ ID NO: 17 Sequence length: 30 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence GGCACAATGA AGTGGGTGAC TTTTATTTCT

【0103】配列番号:18 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 TCGTGTTTAG GCTAAGGCTG TTTGAGTTGASEQ ID NO: 18 Sequence length: 30 Sequence type: nucleic acid Number of strands: single strand Topology: linear Sequence type: other nucleic acid Synthetic DNA Antisense: Yes sequence TCGTGTTTAG GCTAAGGCTG TTTGAGTTGA

【0104】配列番号:19 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CTTCACACTC TCTTTGGAGC TCAATTGTGTSEQ ID NO: 19 Sequence length: 30 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence CTTCACACTC TCTTTGGAGC TCAATTGTGT

【0105】配列番号:20 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 ATAAAAGTAG GTATACCTTC TAGCAATTTCSEQ ID NO: 20 Sequence length: 30 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA Antisense: Yes sequence ATAAAAGTAG GTATACCTTC TAGCAATTTC

【0106】配列番号:21 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTGTGTAATA TTGCATCCCT TCGTGAAACCSEQ ID NO: 21 Sequence length: 30 Sequence type: nucleic acid Number of strands: single strand Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence TTGTGTAATA TTGCATCCCT TCGTGAAACC

【0107】配列番号:22 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 ACACAAAGTA TTGCGGCCGG GTTTCAATTTSEQ ID NO: 22 Sequence length: 30 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA Antisense: Yes sequence ACACAAAGTA TTGCGGCCGG GTTTCAATTT

【0108】配列番号:23 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTGTGTAAAG TTGCAGCTCA GCGTGAAACCSEQ ID NO: 23 Sequence length: 30 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence TTGTGTAAAG TTGCAGCTCA GCGTGAAACC

【0109】配列番号:24 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 AGTATTGGGG TCTCGAGTCA ATTTAGGGAGSEQ ID NO: 24 Sequence length: 30 Sequence type: nucleic acid Number of strands: single strand Topology: linear Sequence type: other nucleic acid Synthetic DNA Antisense: Yes sequence AGTATTGGGG TCTCGAGTCA ATTTAGGGAG

【0110】 配列番号:25 配列の長さ:97 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGCCGTTCTG CTACCACTGT CTTTGATGTT ACCACTCTGA ACCCGACTAT TGCTGGTGCT GGCGAT GTGA AAGCAAGCGC TGAGGGTCAG CTGGGATSEQ ID NO: 25 Sequence length: 97 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence GGCCGTTCTG CTACCACTGT CTTTGATGTT ACCACTCTGA ACCCGACTAT TGCTGGTGCT GGCGAT GTGA AAGCAAGCGC TGAGGGTCAG CTGGGAT

【0111】 配列番号:26 配列の長さ:93 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 ATCCCAGCTG ACCCTCAGCG CTTGCTTTCA CATCGCCAGC ACCAGCAATA GTCGGGTTCA GAGTGG TAAC ATCAAAGACA GTGGTAGCAG AACSEQ ID NO: 26 Sequence length: 93 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Antisense: Yes Sequence ATCCCAGCTG ACCCTCAGCG CTTGCTTTCA CATCGCCAGC ACCAGCAATA GTCGGGTTCA GAGTGG TAAC ATCAAAGACA GTGGTAGCAG AAC

【0112】 配列番号:27 配列の長さ:65 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGTTAACAAT AACAATAACA ATAACAATAA CAATAACAAT AACAATAACA ATAACAATAA CAATG SEQ ID NO: 27 Sequence length: 65 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence TGTTAACAAT AACAATAACA ATAACAATAA CAATAACAAT AACAATAACA ATAACAATAA CAATG

【0113】 配列番号:28 配列の長さ:65 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 CATTGTTATT GTTATTGTTA TTGTTATTGT TATTGTTATT GTTATTGTTA TTGTTATTGT TAACA SEQ ID NO: 28 Sequence length: 65 Sequence type: Nucleic acid Number of strands: Single stranded Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Antisense: Yes Sequence CATTGTTATT GTTATTGTTA TTGTTATTGT TATTGTTATT GTTATTGTTA TTGTTATTGT TAACA

【0114】 配列番号:29 配列の長さ:69 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGTCGACGAT GACGATGACG ATGACGATGA CGATGACGAT GACGATGACG ATGACGATGA CGATAT CGCSEQ ID NO: 29 Sequence length: 69 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid Synthetic DNA sequence TGTCGACGAT GACGATGACG ATGACGATGA CGATGACGAT GACGATGACG ATGACGATGA CGATAT CGC

【0115】 配列番号:30 配列の長さ:72 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA アンチセンス:Yes 配列 TGAGCGATAT CGTCATCGTC ATCGTCATCG TCATCGTCAT CGTCATCGTC ATCGTCATCG TCATCG TCGA CASEQ ID NO: 30 Sequence length: 72 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acids Synthetic DNA Antisense: Yes sequence TGAGCGATAT CGTCATCGTC ATCGTCATCG TCATCGTCAT CGTCATCGTC ATCGTCATCG TCATCG TCGA CA

【図面の簡単な説明】[Brief description of the drawings]

【図1】L2株主要外膜蛋白質遺伝子を含むベクターの
構築を示す図である。
FIG. 1 shows the construction of a vector containing a major outer membrane protein gene of L2 strain.

【図2】発現ベクターpCT33 の構築を示す図である。FIG. 2 is a diagram showing the construction of an expression vector pCT33.

【図3】BSA遺伝子を含むベクターの構築を示す図で
ある。
FIG. 3 shows the construction of a vector containing a BSA gene.

【図4】発現ベクターpCT78 の構築を示す図である。FIG. 4 is a view showing the construction of an expression vector pCT78.

【図5】発現ベクターpCT79 の構築を示す図である。FIG. 5 is a view showing the construction of an expression vector pCT79.

【図6】発現ベクターpCT80 の構築を示す図である。FIG. 6 is a diagram showing the construction of an expression vector pCT80.

【図7】発現ベクターpCT81 の構築を示す図である。FIG. 7 shows the construction of the expression vector pCT81.

【図8】発現ベクターpCT82 の構築を示す図である。FIG. 8 is a diagram showing the construction of an expression vector pCT82.

【図9】発現ベクターpCT51 の構築を示す図である。FIG. 9 is a diagram showing the construction of an expression vector pCT51.

【図10】発現ベクターpCT52 の構築を示す図である。FIG. 10 is a view showing the construction of an expression vector pCT52.

【図11】転移ベクターpAcMOMP 、pAcTypeA、及びpAcT
ypeBの構築を示す図である。
FIG. 11. Transfer vectors pAcMOMP, pAcTypeA, and pAcT
It is a figure showing construction of ypeB.

【図12】転移ベクターpAcTypeC、pAcTypeD、pAcType
E、及びpAcTypeFの構築を示す図である。
FIG. 12: Transfer vectors pAcTypeC, pAcTypeD, pAcType
It is a figure showing construction of E and pAcTypeF.

【図13】各種発現ベクターで形質転換した大腸菌N483
0-1 の菌体破砕物のSDS −PAGEGを示す図である。
FIG. 13: Escherichia coli N483 transformed with various expression vectors
It is a figure which shows SDS-PAGEG of the crushed cell body of 0-1.

【図14】各種発現ベクターで形質転換した大腸菌N483
0-1 の菌体破砕物のウエスタンブロッティングを示す図
である。
FIG. 14: Escherichia coli N483 transformed with various expression vectors
It is a figure which shows the western blotting of the cell crushed product of 0-1.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 5/10 C12P 21/02 C C12P 21/02 G01N 33/53 D G01N 33/53 33/569 F 33/569 33/571 33/571 C12N 5/00 B //(C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (72)発明者 石井 良之 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社総合研究所内 Fターム(参考) 4B024 AA13 BA80 CA01 DA02 DA06 EA04 GA11 HA08 HA09 HA11 4B064 AG01 CA02 CA10 CA19 CC24 DA15 4B065 AA01X AA01Y AA26X AA90X AB01 BA02 CA24 CA46 4H045 AA10 AA20 AA30 BA10 BA41 CA11 CA15 CA42 DA76 DA86 EA52 EA54 FA72 FA74 GA24 GA31 HA05 HA06 HA31 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C12N 5/10 C12P 21/02 C C12P 21/02 G01N 33/53 D G01N 33/53 33/569 F 33/569 33 / 571 33/571 C12N 5/00 B // (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1 : 91) (72) Inventor Yoshiyuki Ishii 3-5-1 Asahicho, Machida-shi, Tokyo F-term (reference) in Denki Kagaku Kogyo Co., Ltd. 4B024 AA13 BA80 CA01 DA02 DA06 EA04 GA11 HA08 HA09 HA11 4B064 AG01 CA02 CA10 CA19 CC24 DA15 4B065 AA01X AA01Y AA26X AA90X AB01 BA02 CA24 CA46 4H045 AA10 AA20 AA30 BA10 BA41 CA11 CA15 CA42 DA76 DA86 EA52 EA54 FA72 FA74 GA24 GA31 HA05 HA06 HA31

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】 クラミジア・トラコマティス主要外膜蛋
白質の少なくとも一部、及びヒト血清と免疫反応性を有
しない少なくとも一つの親水性ポリペプチド、及びそれ
らの接合部分から成ることを特徴とする蛋白質可溶化剤
の非存在下で可溶化状態を保持する融合蛋白質。
1. A protein comprising at least a portion of a Chlamydia trachomatis major outer membrane protein, at least one hydrophilic polypeptide having no immunoreactivity with human serum, and a junction thereof. A fusion protein that maintains a solubilized state in the absence of a solubilizing agent.
【請求項2】 親水性ポリペプチドのうち少なくとも一
つがウシ血清アルブミンの少なくとも一部と同一のアミ
ノ酸配列を有するポリペプチドであることを特徴とする
請求項1記載の融合蛋白質。
2. The fusion protein according to claim 1, wherein at least one of the hydrophilic polypeptides is a polypeptide having the same amino acid sequence as at least a part of bovine serum albumin.
【請求項3】 親水性ポリペプチドのうち少なくとも一
つがアスパラギン残基が2個以上連続して結合したポリ
ペプチドであることを特徴とする請求項1又は2記載の
融合蛋白質。
3. The fusion protein according to claim 1, wherein at least one of the hydrophilic polypeptides is a polypeptide in which two or more asparagine residues are continuously bonded.
【請求項4】 親水性ポリペプチドのうち少なくとも一
つがアスパラギン酸残基が2個以上連続して結合したポ
リペプチドであることを特徴とする請求項1〜3のいず
れか1項に記載の融合蛋白質。
4. The fusion according to claim 1, wherein at least one of the hydrophilic polypeptides is a polypeptide in which two or more aspartic acid residues are continuously bonded. protein.
【請求項5】 配列表の配列番号1記載のアミノ酸配列
を有することを特徴とする請求項2記載の融合蛋白質。
5. The fusion protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
【請求項6】 配列表の配列番号2記載のアミノ酸配列
を有することを特徴とする請求項2記載の融合蛋白質。
6. The fusion protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 2 in the sequence listing.
【請求項7】 配列表の配列番号3記載のアミノ酸配列
を有することを特徴とする請求項2記載の融合蛋白質。
7. The fusion protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 3 in the sequence listing.
【請求項8】 配列表の配列番号4記載のアミノ酸配列
を有することを特徴とする請求項2記載の融合蛋白質。
8. The fusion protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 4 in the sequence listing.
【請求項9】 配列表の配列番号5記載のアミノ酸配列
を有することを特徴とする請求項3記載の融合蛋白質。
9. The fusion protein according to claim 3, which has the amino acid sequence of SEQ ID NO: 5 in the sequence listing.
【請求項10】 配列表の配列番号6記載のアミノ酸配
列を有することを特徴とする請求項4記載の融合蛋白
質。
10. The fusion protein according to claim 4, which has the amino acid sequence of SEQ ID NO: 6 in the sequence listing.
【請求項11】 請求項5に記載された融合蛋白質をコ
ードする塩基配列を有することを特徴とするDNA
11. A DNA having a base sequence encoding the fusion protein according to claim 5.
【請求項12】 配列表の配列番号7記載の塩基配列を
有することを特徴とする請求項11記載のDNA、また
はその配列に相補的な塩基配列を有するDNA。
12. The DNA according to claim 11, which has the nucleotide sequence of SEQ ID NO: 7 in the sequence listing, or the DNA having a nucleotide sequence complementary to the sequence.
【請求項13】 請求項6に記載された融合蛋白質をコ
ードする塩基配列を有することを特徴とするDNA。
13. A DNA comprising a base sequence encoding the fusion protein according to claim 6.
【請求項14】 配列表の配列番号8記載の塩基配列を
有することを特徴とする請求項13記載のDNA、また
はその配列に相補的な塩基配列を有するDNA。
14. The DNA according to claim 13, which has the nucleotide sequence of SEQ ID NO: 8 in the sequence listing, or the DNA having a nucleotide sequence complementary to the sequence.
【請求項15】 請求項7に記載された融合蛋白質をコ
ードする塩基配列を有することを特徴とするDNA。
15. A DNA comprising a base sequence encoding the fusion protein according to claim 7.
【請求項16】 配列表の配列番号9記載の塩基配列を
有することを特徴とする請求項15記載のDNA、また
はその配列に相補的な塩基配列を有するDNA。
16. The DNA according to claim 15, which has the nucleotide sequence of SEQ ID NO: 9 in the sequence listing, or the DNA having a nucleotide sequence complementary to the sequence.
【請求項17】 請求項8に記載された融合蛋白質をコ
ードする塩基配列を有することを特徴とするDNA。
17. A DNA having a base sequence encoding the fusion protein according to claim 8.
【請求項18】 配列表の配列番号10記載の塩基配列
を有することを特徴とする請求項17記載のDNA、ま
たはその配列に相補的な塩基配列を有するDNA。
18. The DNA according to claim 17, which has the nucleotide sequence of SEQ ID NO: 10 in the sequence listing, or a DNA having a nucleotide sequence complementary to the sequence.
【請求項19】 請求項9に記載された融合蛋白質をコ
ードする塩基配列を有することを特徴とするDNA。
19. A DNA having a base sequence encoding the fusion protein according to claim 9.
【請求項20】 配列表の配列番号11記載の塩基配列
を有することを特徴とする請求項19記載のDNA、ま
たはその配列に相補的な塩基配列を有するDNA。
20. The DNA according to claim 19, which has the nucleotide sequence of SEQ ID NO: 11 in the sequence listing, or a DNA having a nucleotide sequence complementary to the sequence.
【請求項21】 請求項10に記載された融合蛋白質を
コードする塩基配列を有することを特徴とするDNA。
21. A DNA having a base sequence encoding the fusion protein according to claim 10.
【請求項22】 配列表の配列番号12記載の塩基配列
を有することを特徴とする請求項21記載のDNA、ま
たはその配列に相補的な塩基配列を有するDNA。
22. The DNA according to claim 21, which has the nucleotide sequence of SEQ ID NO: 12 in the sequence listing, or the DNA having a nucleotide sequence complementary to the sequence.
【請求項23】 請求項11〜22のいずれか1項に記
載のDNAを含有することを特徴とするベクター。
A vector comprising the DNA according to any one of claims 11 to 22.
【請求項24】 宿主中で請求項1〜10記載の融合蛋
白質を発現可能な発現ベクターであることを特徴とした
請求項23記載のベクター。
24. The vector according to claim 23, which is an expression vector capable of expressing the fusion protein according to claim 1 in a host.
【請求項25】 請求項23又は24記載のベクターで
宿主細胞を形質転換することにより得られる形質転換
体。
25. A transformant obtained by transforming a host cell with the vector according to claim 23 or 24.
【請求項26】 宿主細胞が真核細胞又は原核細胞であ
ることを特徴とする請求項25記載の形質転換体。
26. The transformant according to claim 25, wherein the host cell is a eukaryotic cell or a prokaryotic cell.
【請求項27】 宿主細胞が大腸菌であることを特徴と
する請求項26記載の形質転換体。
27. The transformant according to claim 26, wherein the host cell is Escherichia coli.
【請求項28】 宿主細胞が昆虫細胞であることを特徴
とする請求項26記載の形質転換体。
28. The transformant according to claim 26, wherein the host cell is an insect cell.
【請求項29】 請求項25〜28のいずれか1項に記
載の形質転換体を前記蛋白質が発現する条件下で培養
し、該培養細胞から発現産物を採取し、クラミジア属細
菌と交差反応性を示す他の蛋白質を実質的に含まないこ
とを特徴とする請求項1〜10のいずれか1項に記載の
融合蛋白質の製造方法。
29. The transformant according to any one of claims 25 to 28, wherein the transformant is cultured under conditions in which the protein is expressed, and an expression product is collected from the cultured cell and cross-reacted with a Chlamydia bacterium. The method for producing a fusion protein according to any one of claims 1 to 10, wherein the fusion protein is substantially free of another protein showing
【請求項30】 請求項1〜10のいずれか1項に記載
の蛋白質を抗原として用いることを特徴とするクラミジ
ア・トラコマティス抗体検査方法。
30. A method for testing a Chlamydia trachomatis antibody, comprising using the protein according to any one of claims 1 to 10 as an antigen.
【請求項31】 請求項30記載の方法から成るクラミ
ジア・トラコマティス抗体検査キット。
31. A kit for testing a Chlamydia trachomatis antibody, comprising the method according to claim 30.
JP10213212A 1998-07-28 1998-07-28 Soluble fused protein and gene encoding the same, and production of fused protein and its use Pending JP2000041678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10213212A JP2000041678A (en) 1998-07-28 1998-07-28 Soluble fused protein and gene encoding the same, and production of fused protein and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10213212A JP2000041678A (en) 1998-07-28 1998-07-28 Soluble fused protein and gene encoding the same, and production of fused protein and its use

Publications (1)

Publication Number Publication Date
JP2000041678A true JP2000041678A (en) 2000-02-15

Family

ID=16635406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10213212A Pending JP2000041678A (en) 1998-07-28 1998-07-28 Soluble fused protein and gene encoding the same, and production of fused protein and its use

Country Status (1)

Country Link
JP (1) JP2000041678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388041B (en) * 2020-03-12 2024-02-06 厦门大学 SARS-CoV-2S trimer protein with premelting early conformation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388041B (en) * 2020-03-12 2024-02-06 厦门大学 SARS-CoV-2S trimer protein with premelting early conformation and application thereof

Similar Documents

Publication Publication Date Title
US10125177B2 (en) Treponema pallidum triplet antigen
CA2270163C (en) Helicobacter pylori diagnostics
US8389678B2 (en) Protein fragments of virB10 and sero-detection of Anaplasma phagocytophilum
Frikha-Gargouri et al. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections
US8859722B2 (en) Hemolysin and its protein fragments in sero-detection of anaplasma phagocytophilum
EP0863982B1 (en) Synthetic hpv11 virus-like particles
AU770809B2 (en) Synthetic virus-like particles with heterologous epitopes
JP2000041678A (en) Soluble fused protein and gene encoding the same, and production of fused protein and its use
US8580271B2 (en) Detection kit containing a novel recombinant 15-kDA polypeptide useful for detecting human infection with Bartonella henselae
Reischl et al. Expression and purification of an Epstein-Barr virus encoded 23-kDa protein and characterization of its immunological properties
US8338190B2 (en) Type IV secretion system proteins in sero-detection of Anaplasma phagocytophilum
US6689366B1 (en) Synthetic virus like particles with heterologous epitopes
JPH10234395A (en) Production of major outer membrane protein of chlamydia trachomatis, and measurement of antibody against chlamydia trachomatis and reagent therefor
Liu et al. Production of a fragment of glycoprotein G of herpes simplex virus type 2 and evaluation of its diagnostic potential
CA2274474C (en) Synthetic hpv16 virus-like particles
JP4249279B2 (en) Chlamydia trachomatis major outer membrane protein and method for producing the same, chlamydia trachomatis antibody measuring method and antibody measuring reagent
Lü et al. A nanobody-based blocking enzyme-linked immunosorbent assay for detecting antibodies against pseudorabies virus glycoprotein E
JPH10253634A (en) Chlamydia-trachomatis antibody measuring method and antibody measuring reagent
JP4619580B2 (en) Antibody immunoassay by antibody capture method
US9134324B2 (en) Anaplasma translocated substrate-1 (Ats-1) and sero-detection of Anaplasma phagocytophilum
Korshun et al. Recombinant glycoprotein G analog for determination of specific immunoglobulins to herpes simplex virus type 2 by ELISA
JP2001286295A (en) Antibody for detecting chlamydia trachomatis