JP2000039431A - On-line water quality meter - Google Patents

On-line water quality meter

Info

Publication number
JP2000039431A
JP2000039431A JP20748998A JP20748998A JP2000039431A JP 2000039431 A JP2000039431 A JP 2000039431A JP 20748998 A JP20748998 A JP 20748998A JP 20748998 A JP20748998 A JP 20748998A JP 2000039431 A JP2000039431 A JP 2000039431A
Authority
JP
Japan
Prior art keywords
water
water quality
quality meter
distribution
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20748998A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Toyoda
康良 豊田
Mitsuru Ehashi
満 江橋
Shozo Kasai
省三 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20748998A priority Critical patent/JP2000039431A/en
Publication of JP2000039431A publication Critical patent/JP2000039431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an on-line water quality meter for suppressing the generation of microbes and germs in a channel without being attacked by fluid by forming a liquid-contacting part on the inner surface of the channel in a motherboard using a corrosive-resistant material or an antibacterial material. SOLUTION: All channels 313 in a water quality meter are formed three- dimensionally in a three-dimensional motherboard 101, and fluid 314 flows in the channels 313. A liquid-contacting part 315 on the inner surface of the channels 313 cannot be attacked by the fluid 314 and corrosion resistance or antibacterial property needs to be improved for suppressing the generation of microbes and germs in the channels 313. Therefore, after a corrosion-resistant material such as fluororesin, liquid-shaped rubber, and electroless plating or an antibacterial material such as silver, copper oxide, and titanium oxide 316 is allowed to flow to the channels 313, heat is applied for coating by several μm in thickness, thus enlarging the range of applicable fluid being generated due to the material restriction of the motherboard 101 being formed in one piece by the light-shaping method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水道の配水水質監視
システムに係わり、特に流路内面の接液部を耐食性材料
または抗菌性材料でコーティングするオンライン水質計
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water distribution monitoring system for water supply, and more particularly to an on-line water quality meter for coating a liquid contact portion on the inner surface of a flow channel with a corrosion-resistant material or an antibacterial material.

【0002】[0002]

【従来の技術】従来この種の配水水質監視システムとし
ては、例えば東京都の自動水質計測システムがあり、
「計測と制御」Vol.33(1994年発行)649ペー
ジにシステムとその時に用いられる水質計の仕様が紹介
されている。
2. Description of the Related Art Conventionally, as this kind of distribution water quality monitoring system, there is an automatic water quality measurement system in Tokyo, for example.
"Measurement and Control" Vol. 33 (issued in 1994), page 649, introduces the specifications of the system and the water quality meter used at that time.

【0003】この配水水質監視システムにおいては、水
質計が事業者側配管網の系統毎に設置され、系統毎の配
水水質を連続的に測定して定期的にテレメータでセンタ
に信号伝送する構成をとっている。また、需要家側の配
水の水質測定手段としては手分析による水質計測または
可搬式の水質計でのオフライン計測が行われていた。こ
のような従来のシステムでは水質計は事業者側の配水系
統毎に配置するので、設置台数が少なくて済み、系統毎
の供給水の平均的な水質が把握できる利点がある反面、
最終的に需要家が飲用する水質が把握できない欠点があ
る。
In this distribution water quality monitoring system, a water quality meter is installed for each system of a company-side piping network, and continuously measures distribution water quality for each system and periodically transmits a signal to a center by a telemeter. I am taking. In addition, as a means of measuring water quality of water distribution on the customer side, water quality measurement by manual analysis or offline measurement with a portable water quality meter has been performed. In such a conventional system, the water quality meter is arranged for each water distribution system on the business side, so that the number of installations is small, and there is an advantage that the average water quality of the supply water for each system can be grasped.
Finally, there is a disadvantage that the quality of water consumed by consumers cannot be grasped.

【0004】配水の水質は配水供給点で計測管理されて
いるが、配水管路網を通過する間に水質が低下する。具
体的には殺菌力を保つための残留塩素濃度が配水設備内
や含有物との化学反応によって低下し、管路内の錆によ
る着色のため色度が上昇し、管壁の付着物の剥離等によ
り濁度が上昇する等の例があげられる。これらは系統の
本管でも起こりうるが、むしろ需要家の配管内でより顕
著にみられる。
[0004] The water quality of distribution water is measured and controlled at the distribution supply point, but the water quality deteriorates while passing through the distribution pipe network. Specifically, the concentration of residual chlorine to maintain sterilization power decreases due to chemical reactions in the water distribution equipment and with the contained substances, the chromaticity increases due to rust in the pipeline, and the adherence on the pipe wall peels off For example, turbidity increases due to the above. These can also occur in the mains of the system, but rather are more pronounced in the customer's plumbing.

【0005】なぜなら残留塩素濃度は滞留時間に比例し
て濃度が低下することが知られており、常時通水のある
系統本管に比べて、末端配管では滞留時間は長くなる結
果、残留塩素濃度は低下し、極端な場合には濃度がゼロ
になり、殺菌力の失われた水を飲用する需要家の場合も
起こり得る。残留塩素濃度が低下すると、水の殺菌力が
低下し、微生物特に病原性微生物(例えばO−157な
ど)が繁殖する可能性があり、安全・健康面で社会的な
問題をひきおこす。また、安全をみて過度の塩素注入を
行うと残留塩素濃度は確保されるものの塩素濃度が高く
なる結果、いわゆる「カルキ」臭が問題になったり、塩
素の副生成物であるトリハロメタンなどの有害物質が生
成されて安全面で課題を残す。
[0005] It is known that the residual chlorine concentration decreases in proportion to the residence time, and as a result, the residence time is longer in the terminal piping than in the system main line with constant water flow. In extreme cases, the concentration is reduced to zero, and it is possible for consumers to drink water that has lost sterilizing power. When the residual chlorine concentration decreases, the bactericidal power of water decreases, and there is a possibility that microorganisms, particularly pathogenic microorganisms (for example, O-157) may proliferate, causing social problems in terms of safety and health. In addition, if chlorine is injected excessively for safety, the residual chlorine concentration will be secured, but the chlorine concentration will increase. As a result, the so-called "kalky" odor becomes a problem, and harmful substances such as trihalomethane, which is a by-product of chlorine Are generated and leave challenges in terms of safety.

【0006】色度,濁度等についても滞留時間が長くな
る結果、同様のことがいえる。特に集合住宅や事業所等
では受水槽があり、その管理が適切でない場合にはこの
問題が顕著に表れる。
The same can be said for chromaticity, turbidity, etc. as a result of the longer residence time. Especially in apartment houses and business establishments, there is a water receiving tank, and this problem becomes prominent when the management is not appropriate.

【0007】このように最終的に需要家が飲用する末端
水の水質を測定してその値が適切であるかどうかを監視
し、適切になるように管理するのが理想的な水質管理で
ある。従来これを実現できなかった背景には次の理由が
あった。
[0007] In this way, the ideal water quality management is to measure the quality of the terminal water finally consumed by the consumer, monitor whether or not the value is appropriate, and manage the value so that it is appropriate. . Conventionally, this could not be realized for the following reasons.

【0008】(1)水質計が大形(例:1.2m×1.8
m×0.6m )のため需要家である家庭や集合住宅には
設置できない。
(1) The water quality meter is large (eg, 1.2 mx 1.8)
mx 0.6m), so it cannot be installed in homes or apartments that are consumers.

【0009】(2)水質計の単価及び工事費用が高価な
ため予算の制約から配備台数には限界がある。
(2) Since the unit price of the water quality meter and the construction cost are high, the number of installed water quality meters is limited due to budget constraints.

【0010】(3)メンテナンスに専門技術を要し、安
全性にも配慮する必要から一般家庭への導入は困難であ
った。
(3) It is difficult to introduce it into ordinary households because maintenance requires special skills and safety needs to be considered.

【0011】一方、手分析や、可搬式の水質計による配
水末端の水質計測では末端の水質が測定できるものの、
結果がでるまでに時間がかかったり、連続的な水質デー
タが得られないために一日の変化範囲や非定常時の挙動
がつかめない欠点がある。
[0011] On the other hand, the water quality at the end of water distribution can be measured by hand analysis or the water quality measurement at the end of distribution using a portable water quality meter.
There is a drawback that it takes a long time to obtain the results, and it is not possible to grasp the range of change in the day or unsteady behavior because continuous water quality data cannot be obtained.

【0012】この種のデータは非定常時の最大値が重要
な意味を持ち、それを最小にするためのシステムの運転
・制御方法の確立が重要である。この意味から上記手分
析や可搬式の水質計では監視システムの水質計としては
利用できない欠点があった。また、希には配水管末端部
分に於いても測定項目及び設置場所を限定(例えば残留
塩素計のみを1万〜数万世帯当たり1台程度設置)して
オンライン計測が行われていた例はあった。
In this type of data, the maximum value in an unsteady state is important, and it is important to establish a system operation / control method to minimize the maximum value. In this sense, there is a drawback that the above-mentioned manual analysis or portable water quality meter cannot be used as a water quality meter of a monitoring system. Also, in rare cases, the measurement items and installation locations are limited even at the end of the water pipe (for example, only one residual chlorine analyzer is installed per 10,000 to tens of thousands of households), and online measurement has been performed. there were.

【0013】しかしながら、従来システムに使用してい
たオンライン水質計は、単項目の測定であっても浄水場
で使用している様な分析計であり、大型且つ高価である
だけでなく設置場所の確保も困難であり、充分な測定項
目・測定個所を確保した木目細かな水質計測が困難であ
った。
[0013] However, the on-line water quality meter used in the conventional system is an analyzer that is used in a water purification plant even for a single item measurement, and is not only large and expensive, but also has a large installation cost. It was also difficult to secure the water quality, and it was difficult to measure the water quality in a fine-grained manner with sufficient measurement items and locations.

【0014】そこで安価で超小形の水質計を実現するた
め、流路を3次元の一体形成流路とした。これには紫外
線硬化形プラスチックを使用し、光造形法で製作した
が、現在使用可能な光造形法用樹脂はエポキシ又はウレ
タンであり、耐食性または抗菌性などに難点があり、信
頼性を損なうことも考えられた。
Therefore, in order to realize an inexpensive and ultra-small water quality meter, the flow path is a three-dimensional integrally formed flow path. For this, UV-curable plastic was used and manufactured by stereolithography, but currently available stereolithography resins are epoxy or urethane, which has problems with corrosion resistance or antibacterial properties, and impairs reliability. Was also considered.

【0015】[0015]

【発明が解決しようとする課題】上水道の需要家側への
供給水質をきめ細かく監視するのに適した超小形水質計
を実現するために、流路を3次元立体流路として光造形
法を実現したが、本形成法では適用できる材質の制約が
ある。
SUMMARY OF THE INVENTION In order to realize an ultra-small water quality meter suitable for finely monitoring the quality of water supplied to a customer side of a water supply system, a stereolithography method using a three-dimensional three-dimensional flow path is realized. However, there are restrictions on applicable materials in the present forming method.

【0016】本発明の目的は、試料水やゼロ水の他に洗
浄液や試薬を使用するため、流体による侵食を受けず、
流路での微生物や菌の発生を抑えるオンライン水質計を
提供することにある。
An object of the present invention is to use a cleaning solution or a reagent in addition to the sample water and zero water, so that it is not eroded by a fluid,
An object of the present invention is to provide an on-line water quality meter that suppresses the generation of microorganisms and bacteria in a flow path.

【0017】[0017]

【課題を解決するための手段】このような従来技術の課
題を解決するために、流体回路の接液部を耐食性材料ま
たは抗菌性材料でコーティングし、光造形法で製作した
3次元立体流路をオンライン水質計用流路として使用可
能にする。
In order to solve the problems of the prior art, a three-dimensional three-dimensional flow channel manufactured by coating a liquid contact portion of a fluid circuit with a corrosion-resistant material or an antibacterial material and manufacturing it by a stereolithography method. Can be used as an on-line water quality meter channel.

【0018】[0018]

【発明の実施の形態】図1は本発明の実施例として、末
端配水監視システムの基本的な構成を示す図である。河
川,湖沼,井戸水等の原水は浄水施設1により飲用に適
した水質に浄化され、配水施設2に送られる。配水施設
2から送出された飲料水は配水本管4,配水系統配管5
から水質計8に入るか、更に水道事業所側配水管6,需
要家側配水管7を通り、水質計8に入る場合がある。飲
料水の水質をオンラインで測定した水質計8の出力は無
線,有線,衛星等のメディアを通じて管理センタ3に送
られ、そこで必要なデータ処理を行って、水質が適正な
値になるように浄水施設,配水施設の運転条件を制御す
る。
FIG. 1 is a diagram showing a basic configuration of a terminal water distribution monitoring system as an embodiment of the present invention. Raw water such as rivers, lakes, wells, etc. is purified by the water purification facility 1 into water suitable for drinking and sent to the water distribution facility 2. Drinking water sent from the water distribution facility 2 is distributed to the main water distribution line 4, the distribution system piping 5
The water quality meter 8 may enter the water quality meter 8 through the water distribution line 6 on the water supply business side and the water distribution line 7 on the customer side. The output of the water quality meter 8, which measures the water quality of drinking water online, is sent to the management center 3 through media such as wireless, wired, and satellite, where necessary data processing is performed to purify the water so that the water quality becomes an appropriate value. Controls operating conditions of facilities and water distribution facilities.

【0019】図2はこのような配水末端監視システムの
需要家における水質計の設置形態例を示す。水道事業者
側の配水系統配管5,6または需要家側配水管7から分
岐した飲料水は、閉止弁10,水道メータ9を経て配水
設備11に入るが、同時に水質計8で複数項目の水質測
定が行われる。配水設備11は配管網より構成され、そ
の内の一箇所から蛇口などの給水栓12を経て飲料水が
需要家に供給される。水質計8は図2の、水道メータ9
前後に取付け、水道メータ収納箱内に設置できる他、マ
ンホール,消火栓,需要家施設内,水道蛇口付近などの
設置にも、容易に設置できる大きさとしている。
FIG. 2 shows an installation example of a water quality meter in a customer of such a distribution end monitoring system. The drinking water branched from the water distribution system pipes 5 and 6 on the water supply company side or the water distribution pipe 7 on the customer side enters the water distribution facility 11 via the shutoff valve 10 and the water meter 9, and at the same time, the water quality of the plurality of items is measured by the water quality meter 8. A measurement is taken. The water distribution facility 11 is composed of a piping network, and drinking water is supplied to a customer from one location through a water tap 12 such as a faucet. The water quality meter 8 is the water meter 9 of FIG.
In addition to being installed in front and rear, it can be installed in a water meter storage box, and has a size that can be easily installed in manholes, fire hydrants, customer facilities, near water taps, and so on.

【0020】図3は水質計の内部構成を示す図で配水管
5,6,7から導入された試料水は試料導入部13,複
数個の測定成分毎の試薬混合部14a〜14cを経て、
複数個の計測分析部15〜17に導入され、項目毎に所
定のシーケンスで測定後、電気信号に変換されて信号処
理・制御部18に伝送される。信号処理・制御部18は
電源部20より電源の供給を受けて動作し、出力/伝送
部19で伝送用の伝送信号に変換された後無線21によ
る伝送またはテレメータにより専用線、または公衆回線
を通じて管理センタに伝送される。
FIG. 3 is a diagram showing the internal structure of the water quality meter. The sample water introduced from the water distribution pipes 5, 6, and 7 passes through a sample introduction section 13 and reagent mixing sections 14a to 14c for a plurality of measurement components.
After being introduced into the plurality of measurement / analysis units 15 to 17 and measured in a predetermined sequence for each item, it is converted into an electric signal and transmitted to the signal processing / control unit 18. The signal processing / control unit 18 operates by receiving power supply from the power supply unit 20, is converted into a transmission signal for transmission by the output / transmission unit 19, and is then transmitted by radio 21 or by a telemeter through a dedicated line or a public line. It is transmitted to the management center.

【0021】図4は水道メータ9と水質計8を一体にし
た実施例で水質計がマイクロファブリケーションにより
小型化されると一体構成も可能となり、需要家への供給
水は配管6と閉止弁10を介して水道メータを流れて流
量が計測されるとともに、その一部は試料導入管22を
介して水質計8に供給される。このような構成をとれ
ば、水道メータと水質計を一体として配管に取付け、水
道メータボックスに収納することも可能になる結果、特
別な設置場所や設置工事がなくなり、水道メータをとり
つけるのと同じ簡便さで取り付けが可能である。
FIG. 4 shows an embodiment in which the water meter 9 and the water quality meter 8 are integrated. When the water quality meter is miniaturized by microfabrication, an integrated structure becomes possible. The flow rate is measured by flowing through the water meter via 10, and a part of the flow rate is supplied to the water quality meter 8 via the sample introduction pipe 22. With this configuration, it is possible to install the water meter and the water quality meter integrally on the pipe and store it in the water meter box.As a result, there is no special installation place or installation work, and it is the same as installing a water meter. Mounting is possible with simplicity.

【0022】前述のごとくマイクロファブリケーション
の採用により超小型の実現にとともに、消費電力の低減
と試料水及び試薬類の使用量の縮減により、電源の電池
化と排水の回収又は蒸発方式の採用が可能となり、加え
てデータ伝送に無線回線を使用し、水質計設置時の配線
及び排水工事を不要にでき、水質計の設置自由度を飛躍
的に向上させる。
As described above, the use of microfabrication has made it possible to achieve ultra-small size, reduce power consumption and reduce the amount of sample water and reagents used, and use batteries as power sources and employ wastewater recovery or evaporation methods. In addition, the use of a wireless line for data transmission eliminates the need for wiring and drainage work when installing a water quality meter, greatly improving the freedom of installation of the water quality meter.

【0023】次に、図5において実施例の具体的構成に
ついて説明する。水道事業者側または需要家側の配水管
51内を流れる飲料水(試料水)52は、配管53を介
してサンプリングされ、手動弁54,配管55,減圧弁
56を経て、更に配管57,手動弁58,排水管59よ
り排水溝60に排水する。
Next, a specific configuration of the embodiment will be described with reference to FIG. Drinking water (sample water) 52 flowing through the water distribution pipe 51 on the water supply company side or the customer side is sampled via a pipe 53, passed through a manual valve 54, a pipe 55, a pressure reducing valve 56, and further connected to a pipe 57, The water is drained from the valve 58 and the drain pipe 59 to the drain groove 60.

【0024】前記配管57より、一定圧に保たれた試料
水52の一部は配管61により分岐され手動弁62を経
て試料水中の大きな異物を除去するフィルタ63を介し
て、分析計本体64中の流路65を介して脱泡槽66に
導かれる。該脱泡槽66の内部で前記試料水52中に含
まれる気泡67は脱泡槽66の上部に溜まり、随時流路
68,電磁弁69,流路70を介して分析計本体64か
ら前記排水溝60に廃棄される。
From the pipe 57, a part of the sample water 52 maintained at a constant pressure is branched by a pipe 61, passes through a manual valve 62, passes through a filter 63 for removing large foreign matter in the sample water, and passes through a filter 63 in the analyzer main body 64. Is led to the defoaming tank 66 through the flow path 65. Bubbles 67 contained in the sample water 52 inside the defoaming tank 66 accumulate in the upper part of the defoaming tank 66, and are discharged from the analyzer main body 64 via a flow path 68, a solenoid valve 69, and a flow path 70 as needed. Discarded in the groove 60.

【0025】一方、前記脱泡槽66中の気泡を取除いた
試料水71は、流路72,電磁弁73を介して定量ポン
プ74に導かれる。更に試料水71は複数個の電磁弁75
a,75b,75cを介して、それぞれが独立した項目
を分析する複数個の分析部76,77,78に選択的に
送出される。該分析部は取付け形状及び配管取り合いが
共通化され、他の分析部と全く同一かあるいは互換性を
有するように、前記分析計本体64に着脱可能に保持さ
れている。
On the other hand, the sample water 71 from which the bubbles in the defoaming tank 66 have been removed is guided to a metering pump 74 via a flow path 72 and an electromagnetic valve 73. Further, the sample water 71 has a plurality of solenoid valves 75.
Via a, 75b, and 75c, items are selectively sent to a plurality of analysis units 76, 77, and 78 that analyze independent items. The analysis section has a common mounting shape and piping arrangement, and is detachably held on the analyzer main body 64 so as to be completely the same or compatible with other analysis sections.

【0026】また、該分析計本体の外側には液体を内蔵
した複数個カートリッジ79,80,81が着脱可能に
保持されており、該カートリッジ内部の液体を分析計本
体64に供給している。カートリッジ79からの液体8
2は、電磁弁83,定量ポンプ84に導かれ、複数個の
電磁弁85a,85b,85cを介して、前記分析部7
6,77,78に選択的に送出される。同様に、カート
リッジ80内の液体86はポンプ87を経た後、複数個
の電磁弁88a,88b,88cを介して前記分析部
へ、またカートリッジ81内の液体89はポンプ90を
経て電磁弁91a,91b,91cを介して前記分析部7
6,77,78に選択的に送出される。この時、各分析
部の詳細構造は後述するが、マイクロファブリケーショ
ン技術を用いて前記各流体を混合又は選択し反応させる
試薬混合部と計測分析部とから成っており、非常に小型
化された分析計1台分の機能を有している。各分析を終
了した廃液92は前記流路70を経て機外に排出され
る。廃液92が有害な場合や排水設備が無い場合には、
電磁弁93,流路94を介して回収容器95に排出され
る。
A plurality of cartridges 79, 80 and 81 each containing a liquid are detachably held outside the analyzer main body, and the liquid inside the cartridge is supplied to the analyzer main body 64. Liquid 8 from cartridge 79
The analysis unit 7 is guided to a solenoid valve 83 and a metering pump 84 via a plurality of solenoid valves 85a, 85b, 85c.
6, 77, 78. Similarly, the liquid 86 in the cartridge 80 passes through the pump 87 and then to the analysis section via a plurality of solenoid valves 88a, 88b and 88c, and the liquid 89 in the cartridge 81 passes through the pump 90 and the solenoid valves 91a and 91a. The analysis unit 7 is connected to the analysis unit 7 via 91b and 91c.
6, 77, 78. At this time, although the detailed structure of each analysis unit will be described later, it is composed of a reagent mixing unit for mixing or selecting and reacting each of the fluids using a microfabrication technology and a measurement analysis unit, and is extremely miniaturized. It has the function of one analyzer. The waste liquid 92 after the completion of each analysis is discharged out of the apparatus via the flow path 70. If the waste liquid 92 is harmful or there is no drainage system,
It is discharged to the collection container 95 via the electromagnetic valve 93 and the flow path 94.

【0027】上記構成において、飲料水用配水管51か
らサンプリングした試料水52を、複数個のポンプと電
磁弁をシーケンス制御し、複数個のカートリッジ内の液
体と前記分析部内の試薬混合部に導き反応させ、計測分
析部でその結果を計測するものである。この時分析項目
によっては試薬反応を必要としない場合もあり、その場
合には試薬を選択しないようにしてある。
In the above configuration, the sample water 52 sampled from the drinking water distribution pipe 51 is guided to the liquid in the plurality of cartridges and the reagent mixing section in the analysis section by sequence-controlling a plurality of pumps and solenoid valves. The reaction is performed, and the result is measured by the measurement and analysis unit. At this time, a reagent reaction may not be required depending on an analysis item. In this case, no reagent is selected.

【0028】代表的応用例として、試料水52を水道水
とし、カートリッジ79内の液体82に残留塩素に反応
して発色する試薬(例えばDPD又はオルトトリジン)
を用い、カートリッジ80内の液体86には洗浄液(例
えば希塩酸又は中性洗剤)、カートリッジ81内の液体
89には基準液(例えば純水又は校正液)を選択してお
く。これらを所定のタイミングでシーケンス制御し、各
分析部に導く。例えば分析部76を残留塩素計、分析部
77を色度計、分析部78を濁度計として使用する。試
薬を入れた液体82は残留塩素計に割り当てた分析部7
6にのみ使用する。試薬の種類を変えれば、測定項目を
変えることができ、またどの分析部にどの測定項目を割
当てるかの選択も自由である。
As a typical application example, tap water is used as the sample water 52, and a reagent (eg, DPD or ortho-tolidine) that reacts with residual chlorine in the liquid 82 in the cartridge 79 to form a color.
The cleaning liquid (for example, diluted hydrochloric acid or neutral detergent) is selected as the liquid 86 in the cartridge 80, and the reference liquid (for example, pure water or calibration liquid) is selected for the liquid 89 in the cartridge 81. These are sequence-controlled at a predetermined timing and guided to each analysis unit. For example, the analyzer 76 is used as a residual chlorine meter, the analyzer 77 is used as a chromaticity meter, and the analyzer 78 is used as a turbidity meter. The liquid 82 containing the reagent is supplied to the analyzer 7 assigned to the residual chlorine meter.
Use only for 6. If the type of the reagent is changed, the measurement item can be changed, and the selection of which measurement item is assigned to which analysis unit is also free.

【0029】残留塩素計の場合は試薬反応により試料水
の発色の程度を吸光度法で測定し、色度計の場合は試薬
を使用せず試料水そのものの吸光度を測定するが吸光度
が低いため基準液(純水)との比較測定方式とし、所定
の周期で基準液を測定しゼロ点のベースラインの補正を
行う。一方濁度計は、試薬も基準液も使用せず試料水中
の濁質粒子の数を計数し濁度換算を行う方式とした。
In the case of a residual chlorine meter, the degree of color development of the sample water is measured by a reagent reaction by an absorbance method. In the case of a chromaticity meter, the absorbance of the sample water itself is measured without using a reagent, but the absorbance is low. The measurement method is a comparative measurement method with liquid (pure water). The reference liquid is measured at a predetermined cycle, and the baseline of the zero point is corrected. On the other hand, the turbidity meter used a method in which the number of turbid particles in the sample water was counted and the turbidity was converted without using any reagent or reference solution.

【0030】このほか、分析部に電極を内蔵したものを
装着すれば、分析部の構造を変更すること無く導電率計
やpH計の機能を加えることができる。
In addition, if an analyzer having a built-in electrode is attached to the analyzer, the function of a conductivity meter or a pH meter can be added without changing the structure of the analyzer.

【0031】また、洗浄液(液体86)は所定の間隔で
各分析部に導かれ、分析部内の流路やセル,電極などを
洗浄する。洗浄によって生じた異物は、試料水71又は
基準液89で流し去る。
The cleaning liquid (liquid 86) is guided to each analysis section at predetermined intervals, and cleans the flow path, cells, electrodes, etc. in the analysis section. Foreign matter generated by the washing is washed away with the sample water 71 or the reference liquid 89.

【0032】次に本実施例に使用している、流路系につ
いて図6に於いて説明する。図5に於いて説明した分析
計64の内部にある全流路(流路65,68,70,7
2,92,94他)は3次元マザーボード101の内部
に立体的に形成されている。該3次元マザーボード10
1の外観は直方体を形成しており、その外周面には、図
5に示した複数個のバルブ,ポンプ,分析計などを配管
を用いずに直接又はシール部剤を介して保持可能なよう
に複数個の流路開口部102やネジ穴103が形成され
ている。
Next, the flow path system used in this embodiment will be described with reference to FIG. All the flow paths (flow paths 65, 68, 70, 7) inside the analyzer 64 described with reference to FIG.
2, 92, 94, etc.) are three-dimensionally formed inside the three-dimensional motherboard 101. The three-dimensional motherboard 10
1 has a rectangular parallelepiped shape, and its outer peripheral surface can hold a plurality of valves, pumps, analyzers, etc. shown in FIG. 5 directly or through a sealant without using piping. Are formed with a plurality of flow path openings 102 and screw holes 103.

【0033】この3次元マザーボード101の内部流路
は、樹脂の部分を除去し流路部分のみを立体的に表記す
ると図7の様になる。従来この様な3次元の立体流路は
実現が困難であり、強いて製作しようとすれば2次元流
路を機械加工した複数枚の板を重ねて接合することによ
り形成していた。本実施例では、紫外線硬化形プラスチ
ックを使用し、液体の樹脂に紫外線レーザ光を選択的に
照射し、光の当たった部分のみを硬化させて形状を形成
せしめる光造形法を採用した。
The internal flow path of the three-dimensional motherboard 101 is shown in FIG. 7 when the resin is removed and only the flow path is three-dimensionally represented. Conventionally, it is difficult to realize such a three-dimensional three-dimensional channel, and if it is to be forcibly manufactured, the two-dimensional channel has been formed by overlapping a plurality of machined plates and joining them. In this embodiment, an ultraviolet curable plastic is used, and a laser molding method is employed in which a liquid resin is selectively irradiated with an ultraviolet laser beam, and only a portion irradiated with the light is cured to form a shape.

【0034】この光造形法で流路に当たる部分には光を
当てず未硬化の液体のまま残し、成形後未硬化樹脂を洗
い流すことによって任意の立体流路を形成可能にしてい
る。使用した樹脂は紫外線硬化形で透明のエポキシ系樹
脂を使用し、流路内部の状態が外部より観察できる様に
した。また光造形法は、特別の成形型を必要とせずCA
D(computer aided design )の3次元の設計データの
みで安価で迅速に実現でき、配管系接続部の信頼性を向
上できる長所がある。
In this stereolithography method, an uncured liquid is left as it is without irradiating light to a portion corresponding to the flow path, and after molding, the uncured resin is washed away to form an arbitrary three-dimensional flow path. The resin used was an ultraviolet-curing transparent epoxy resin, so that the inside of the flow path could be observed from the outside. Also, stereolithography does not require a special mold
D (computer aided design) can be realized quickly and inexpensively with only three-dimensional design data, and has the advantage of improving the reliability of the piping connection.

【0035】次に図8に於いて、図5で示した分析部
(76,77,78)の詳細について説明する。各分析
部は、測定目的により測定原理は異なるが(残留塩素計
及び色度計は所定波長光に対する吸光度測定、濁度計は
散乱光の変化回数を測定する微粒子数係数法式を採用し
ている。またこのほか導電率やpHの測定用に電極を内
蔵した分析部を取付けることも可能である)、取り付け
寸法及び流路の取合いは共通であり、モジュール化され
ている。
Next, referring to FIG. 8, the details of the analyzers (76, 77, 78) shown in FIG. 5 will be described. Although each analyzer has a different measurement principle depending on the purpose of measurement (residual chlorine meter and chromaticity meter adopt absorbance measurement for light of a predetermined wavelength, and turbidity meter adopts a particle number coefficient formula for measuring the number of changes of scattered light. In addition, it is also possible to mount an analysis section having a built-in electrode for measuring conductivity and pH), the mounting dimensions and the flow path are common, and the module is modularized.

【0036】前記マザーボード101の上には3個の分
析部がシール部材を介して着脱可能に構成されており、
図5で説明したどの項目の分析部をどこに配置するかは
自由である。測定目的に合わせた分析部選択と液体供給
及び計測のシーケンスを選択することにより、所定の用
途の分析機能を持たせることを可能にしている。これら
の組み合わせの他の応用例として、同一種類の分析部を
3個配置することも可能である。例えば同一種類の超小
型分析部を3個配置し、同時測定し測定値の信頼性を向
上させるとか、故障したら次の分析部を使用して装置全
体の長寿命化を図るなどの応用も期待できる。
On the motherboard 101, three analysis sections are configured to be detachable via a sealing member.
It is optional to place the analysis unit of any item described in FIG. 5 where. By selecting an analysis unit selection and a liquid supply and measurement sequence according to the measurement purpose, it is possible to provide an analysis function for a predetermined use. As another application example of these combinations, three analysis units of the same type can be arranged. For example, three micro analyzers of the same type are arranged and measured at the same time to improve the reliability of measured values, or if a failure occurs, the next analyzer is used to extend the life of the entire device. it can.

【0037】まず分析部76を残留塩素計として使用す
る場合について説明する。分析部76は試薬混合部20
1と計測分析部202とからなっている。試薬混合部2
01の詳細構造を図9に於いて説明する。試薬混合部2
01はシリコンの基板301,パイレックスガラスのカ
バー302の2層構造になっており、マイクロファブリ
ケーション技術で製作してある。基板301は高純度の
シリコンウエハを異方性エッチングにより逆S字形を
し、所定の角度を有する斜面303と平らな底面304
を有する流路305を形成してある。
First, the case where the analyzing section 76 is used as a residual chlorine meter will be described. The analysis unit 76 includes the reagent mixing unit 20
1 and a measurement analysis unit 202. Reagent mixing section 2
The detailed structure of No. 01 will be described with reference to FIG. Reagent mixing section 2
Numeral 01 has a two-layer structure of a silicon substrate 301 and a Pyrex glass cover 302, and is manufactured by a microfabrication technique. The substrate 301 is made of a high-purity silicon wafer in an inverted S shape by anisotropic etching, and has a slope 303 having a predetermined angle and a flat bottom 304.
Is formed.

【0038】さらに裏面からも異方性エッチングし、角
型をした複数個の貫通穴306,307,308,30
9と、数十μmの微細な穴が100から200μmピッ
チでメッシュ状に並んでいるメッシュ穴310が形成し
てある。これら複数個の穴は、表面で前記流路によって
連結されている。また該基板301の表面には前記カバ
ー302が陽極接合(アノーディック ボンディング)
により接合されている。両者の接合はウエハサイズのま
ま高温真空中で所定電圧を印加することにより行い、接
合後使用サイズに切断して使用する。
Further, a plurality of rectangular through holes 306, 307, 308, and 30 are also anisotropically etched from the back surface.
9 and mesh holes 310 in which fine holes of several tens of μm are arranged in a mesh at a pitch of 100 to 200 μm. The plurality of holes are connected by the flow path on the surface. The cover 302 is anodically bonded to the surface of the substrate 301 (anodic bonding).
It is joined by. Bonding of both is performed by applying a predetermined voltage in a high-temperature vacuum while maintaining the wafer size.

【0039】前記3次元マザーボード101から複数種
類の液体(試料水71,試薬82,洗浄液86,基準液
89)の選択的な供給を受け、貫通穴306には基準水
86,貫通穴307には洗浄液89、貫通穴308には
試料水71、メッシュ穴310には試薬82が供給され
る。供給された液体は流路305内を流れ流路内の直線
部であるセル部311に導かれ、貫通穴309を経て前
記3次元マザーボード101に排出される。
A plurality of types of liquids (sample water 71, reagent 82, cleaning liquid 86, reference liquid 89) are selectively supplied from the three-dimensional motherboard 101, the reference water 86 is supplied to the through hole 306, and the reference water 86 is supplied to the through hole 307. The cleaning liquid 89, the sample water 71 is supplied to the through hole 308, and the reagent 82 is supplied to the mesh hole 310. The supplied liquid flows through the flow path 305 and is guided to the cell portion 311 which is a linear part in the flow path, and is discharged to the three-dimensional mother board 101 through the through hole 309.

【0040】残留塩素測定の場合、洗浄液86,基準水
89を停止した状態で試料水71と試薬82を所定の流
量比で供給し、流路305内で混合する。この時試薬8
2は試料水71の中にメッシュ穴310を介して注入さ
れる。この為試薬82は試料水中に細かく均一に注入さ
れるので短時間で拡散し、残留塩素濃度に対応した発色
反応をする。発色した反応液312は前記セル部311
に導かれその発色度を光学的に計測される。計測時は計
測値を安定させるため一時的に流体を停止する。計測後
反応液312は貫通穴309より排出される。
In the case of the residual chlorine measurement, the sample water 71 and the reagent 82 are supplied at a predetermined flow ratio while the cleaning liquid 86 and the reference water 89 are stopped, and are mixed in the flow path 305. At this time, reagent 8
2 is injected into the sample water 71 through the mesh hole 310. Therefore, since the reagent 82 is finely and uniformly injected into the sample water, it diffuses in a short time, and performs a color-forming reaction corresponding to the residual chlorine concentration. The colored reaction solution 312 is stored in the cell section 311.
And the degree of color development is optically measured. During measurement, the fluid is temporarily stopped to stabilize the measured value. After the measurement, the reaction solution 312 is discharged from the through hole 309.

【0041】感度又はゼロ点の校正をする場合は、試料
水71の代わりに予め塩素濃度を測定してある基準液8
9を供給し、同様の手順で計測し、その測定値を基準値
として以後の測定値を補正する。洗浄液86は試薬混合
部201(特にセル部311)の鉱物性あるいは植物性の
汚れを除去するために、所定の周期又は汚れの程度に応
じて供給され、洗浄される。
When calibrating the sensitivity or the zero point, instead of the sample water 71, the reference solution 8 in which the chlorine concentration is measured in advance is used.
9 is supplied, measurement is performed in the same procedure, and the measured values are corrected using the measured values as reference values. The cleaning liquid 86 is supplied and washed in accordance with a predetermined cycle or the degree of contamination in order to remove mineral or vegetable stains in the reagent mixing section 201 (particularly, the cell section 311).

【0042】図9(a),(b)に戻って、計測分析部2
02について説明する。計測分析部202にはLEDま
たはレーザダイオードから成る発光素子203と、該発
光素子203の光を集光して前記セル部311の斜面3
03に光を集めるレンズ系204,光量変化をモニタす
る受光素子205が配置されている。また前記セル部3
11内を透過した光206は前記斜面303の対向せる
斜面303′に反射し、前記計測分析部202のほうに
戻ってくる。
Returning to FIGS. 9A and 9B, the measurement / analysis unit 2
02 will be described. The measurement / analysis unit 202 includes a light emitting element 203 composed of an LED or a laser diode, and condenses light from the light emitting element 203 to form a slope 3 of the cell unit 311.
A lens system 204 for collecting light and a light receiving element 205 for monitoring a change in light amount are arranged at 03. The cell unit 3
The light 206 transmitted through the inside 11 is reflected on the slope 303 ′ opposite the slope 303 and returns to the measurement and analysis unit 202.

【0043】この光207の光量を測定する受光素子2
08を前記計測分析部202の一部に配置した。これら
発光素子203,受光素子205,208、レンズ系2
04と前記セル部311は、互いの相対位置を固定する
ために分析部ベース209に保持され、更に該分析部ベ
ース209は前記3次元マザーボード101に着脱可能
に保持されている。
Light receiving element 2 for measuring the amount of light 207
08 is arranged in a part of the measurement and analysis unit 202. These light emitting element 203, light receiving elements 205 and 208, lens system 2
The cell part 311 and the cell part 311 are held by an analysis part base 209 in order to fix their relative positions, and the analysis part base 209 is held detachably on the three-dimensional motherboard 101.

【0044】他の分析部(色度,濁度)については、分
析部の詳細についての説明は割愛するが、取付け寸法及
び流路の取合いについてはモジュール化し共通である。
As for the other analysis units (chromaticity and turbidity), the details of the analysis units are omitted, but the mounting dimensions and the arrangement of the flow paths are modularized and common.

【0045】また、本実施例ではバルブやポンプなどを
3次元マザーボード上に配置したが、これらはマイクロ
ファブリケーションの更なる進歩により試薬混合部と共
に、同一のシリコンウエハ上に形成することが可能であ
り、本分析計の更なる小型化の手段となる。この場合で
も各分析部をモジュール化しておくことは全体の標準化
と機能の拡張性に大いに効果がある。
In this embodiment, the valves and the pumps are arranged on the three-dimensional mother board. However, these can be formed on the same silicon wafer together with the reagent mixing section by the further progress of microfabrication. Yes, it is a means of further downsizing the analyzer. Even in this case, modularizing each analysis unit has a great effect on overall standardization and expandability of functions.

【0046】図10において、本発明のマザーボード1
01内部の流路313の詳細を説明する。光造形法によ
り一体形成したマザーボード内の流路を流体314が流
れる。流路内面の接液部315では流体による侵食を受
けず、流路での微生物や菌の発生を抑えるため耐食性ま
たは抗菌性を向上させる必要がある。そのため、耐食性
材料(ふっ素系樹脂,液状ゴム,無電解メッキ等)また
は抗菌性材料(銀,酸化銅,酸化チタン等)316を流
路にまんべんなく流した後、熱を加え数μmの厚さにコ
ーティングを行い、光造形法の材質的な制約から生じる
適用可能流体の範囲の拡大を可能にした。
In FIG. 10, the motherboard 1 of the present invention is shown.
The details of the flow path 313 inside 01 will be described. The fluid 314 flows through a flow path in the motherboard integrally formed by the optical shaping method. The liquid contact portion 315 on the inner surface of the flow path is not eroded by the fluid, and it is necessary to improve corrosion resistance or antibacterial property in order to suppress the generation of microorganisms and bacteria in the flow path. Therefore, after a corrosion-resistant material (fluororesin, liquid rubber, electroless plating, etc.) or an antibacterial material (silver, copper oxide, titanium oxide, etc.) 316 is flowed evenly through the flow path, heat is applied to a thickness of several μm. Coating was performed to expand the range of applicable fluids arising from material limitations of stereolithography.

【0047】[0047]

【発明の効果】このように本発明によれば、流体による
侵食を受けず、流路での微生物や菌の発生を抑え、耐食
性または抗菌性に優れた流路が実現できる。
As described above, according to the present invention, a flow path which is not eroded by a fluid, suppresses the generation of microorganisms and bacteria in the flow path, and has excellent corrosion resistance or antibacterial property can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるオンライン水質計のシス
テムの構成図。
FIG. 1 is a configuration diagram of an online water quality meter system according to an embodiment of the present invention.

【図2】本発明の実施例であるオンライン水質計のシス
テムの分析計設置例を示す図。
FIG. 2 is a diagram showing an example of an analyzer installed in an online water quality meter system according to an embodiment of the present invention.

【図3】本発明の分析計の実施例を示す内部構成図。FIG. 3 is an internal configuration diagram showing an embodiment of the analyzer of the present invention.

【図4】本発明の分析計の実施例の設置例を示す図。FIG. 4 is a diagram showing an installation example of an embodiment of the analyzer of the present invention.

【図5】本発明の分析計の実施例の内部詳細を示す構成
図。
FIG. 5 is a configuration diagram showing internal details of an embodiment of the analyzer of the present invention.

【図6】本発明の分析計の流路系マザーボードの外観
図。
FIG. 6 is an external view of a channel motherboard of the analyzer of the present invention.

【図7】図6の内部流路の立体図。FIG. 7 is a three-dimensional view of the internal flow path of FIG. 6;

【図8】本発明の分析部の断面構造図。FIG. 8 is a sectional structural view of an analysis unit of the present invention.

【図9】(a)及び(b)は本発明の試薬混合部の平面
図及び断面図。
FIGS. 9A and 9B are a plan view and a sectional view of a reagent mixing section of the present invention.

【図10】(a)及び(b)は本発明のマザーボード内
部の流路の詳細図。
10A and 10B are detailed views of a flow path inside a motherboard of the present invention.

【符号の説明】[Explanation of symbols]

1…浄水施設、2…配水施設、3…管理センタ、4…配
水本管、5…配水系統本管、6…水道事業者側配水管、
7…需要家側配水管、8…水質計、9…水道メータ、1
0…閉止弁、11…配水設備、12…給水栓、13…試
料導入部、14a,14b,14c,201…試薬混合
部、15,16,17,76,77,78…分析部、1
8…信号処理・制御部、19…出力/伝送部、20…電
源部、21…無線、22…試料導入管、51…配水管、
52…飲料水、53,55,57,61…配管、54,
58,62…手動弁、56…減圧弁、59…排水管、6
0…排水溝、63…フィルタ、64…分析計本体、6
5,68,70,72,94,305,313…流路、
66…脱泡槽、67…気泡、69,73,75a,75
b,75c,83,85a,85b,85c,88a,
88b,88c,91a,91b,91c,93…電磁
弁、71…試料水、74,84…定量ポンプ、79,8
0,81…カートリッジ、82,86,89…液体、8
7,90…ポンプ、92…廃体、95…回収容器、10
1…3次元マザーボード、102…流路開口部、103
…ネジ穴、202…計測分析部、203…発光素子、2
04…レンズ系、205,208…受光素子、206,
207…光、209…分析部ベース、301…基板、3
02…カバー、303…斜面、304…底面、306,
307,308,309…貫通穴、310…メッシュ
穴、311…セル部、312…反応液、314…流体、
315…接液部、316…耐食性材料または抗菌性材
料。
1 ... water purification facility, 2 ... water distribution facility, 3 ... management center, 4 ... water distribution main pipe, 5 ... water distribution system main pipe, 6 ... water supply company side water pipe,
7: Consumer side water pipe, 8: Water quality meter, 9: Water meter, 1
0 ... shut-off valve, 11 ... water distribution equipment, 12 ... water tap, 13 ... sample introduction part, 14a, 14b, 14c, 201 ... reagent mixing part, 15, 16, 17, 76, 77, 78 ... analysis part, 1
8: signal processing / control unit, 19: output / transmission unit, 20: power supply unit, 21: wireless, 22: sample introduction pipe, 51: water distribution pipe,
52: drinking water, 53, 55, 57, 61: piping, 54,
58, 62: manual valve, 56: pressure reducing valve, 59: drain pipe, 6
0: drain, 63: filter, 64: analyzer body, 6
5, 68, 70, 72, 94, 305, 313 ... flow path,
66: deaeration tank, 67: bubble, 69, 73, 75a, 75
b, 75c, 83, 85a, 85b, 85c, 88a,
88b, 88c, 91a, 91b, 91c, 93: solenoid valve, 71: sample water, 74, 84: metering pump, 79, 8
0, 81: cartridge, 82, 86, 89: liquid, 8
7, 90: pump, 92: waste, 95: collection container, 10
1 ... three-dimensional motherboard, 102 ... channel opening, 103
... Screw hole, 202 ... Measurement / analysis unit, 203 ... Light emitting element, 2
04: lens system, 205, 208: light receiving element, 206,
207: light, 209: analysis base, 301: substrate, 3
02: cover, 303: slope, 304: bottom, 306,
307, 308, 309: through hole, 310: mesh hole, 311: cell part, 312: reaction liquid, 314: fluid,
315: Liquid contact part, 316: Corrosion resistant material or antibacterial material.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531F Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/50 531 C02F 1/50 531F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】河川,湖沼,井戸水等の原水を飲料に適し
た水質に浄化する浄水施設と、該浄水施設で得られた浄
水を需要家に供給する配水施設と、該配水施設の配水状
態を監視し必要に応じて該浄水施設および配水施設の運
転制御システムにフィードバックする役割を果たす管理
センタと、該配水施設の一部である水道事業者側配水管
と、該配水管に接続された需要家側配水施設および配水
管と、配水管内の水の水質を測定する水質計とで構成さ
れた水道配水システムにおいて、該水質計内の流路を3
次元の一体形成したマザーボードで構成し、該マザーボ
ード内の流路内面の接液部を耐食性材料または抗菌性材
料で形成することを特徴としたオンライン水質計。
1. A water purification facility for purifying raw water such as rivers, lakes, wells and the like into water suitable for drinking, a water distribution facility for supplying purified water obtained by the water purification facility to consumers, and a water distribution state of the water distribution facility. And a management center that plays a role of monitoring and feeding back to the operation control system of the water purification facility and the distribution facility as necessary, a water supply company side distribution pipe that is a part of the water distribution facility, and connected to the distribution pipe. In a water supply distribution system including a customer-side water distribution facility and a distribution pipe, and a water quality meter that measures the quality of water in the distribution pipe, a flow path in the water quality meter is set to 3
An on-line water quality meter comprising a three-dimensional integrally formed motherboard, wherein a liquid contact portion on an inner surface of a flow passage in the motherboard is formed of a corrosion-resistant material or an antibacterial material.
【請求項2】請求項1において、流路内面の接液部を耐
食性材料または抗菌性材料でコーティングすることを特
徴としたオンライン水質計。
2. The on-line water quality meter according to claim 1, wherein the liquid contact portion on the inner surface of the flow channel is coated with a corrosion-resistant material or an antibacterial material.
【請求項3】請求項2において、直径4mm以下の複数流
路を内蔵する流体回路の流路内面の接液部を耐食性材料
または抗菌性材料でコーティングすることを特徴とした
オンライン水質計。
3. An on-line water quality meter according to claim 2, wherein the liquid contact portion on the inner surface of the flow path of the fluid circuit having a plurality of flow paths having a diameter of 4 mm or less is coated with a corrosion-resistant material or an antibacterial material.
【請求項4】請求項2において、3次元の光造形法によ
り一体形成したマザーボード内の直径4mm以下の複数流
路を内蔵する流体回路の流路内面の接液部を耐食性材料
または抗菌性材料でコーティングすることを特徴とした
オンライン水質計。
4. A corrosion-resistant material or an antibacterial material according to claim 2, wherein a liquid contact portion on the inner surface of the flow path of the fluid circuit containing a plurality of flow paths having a diameter of 4 mm or less in a mother board integrally formed by three-dimensional stereolithography is formed. Online water quality meter characterized by coating with.
【請求項5】請求項1から4のいずれか1項記載におい
て、少なくとも耐食性材料では、ふっ素系樹脂,液状ゴ
ム,無電解メッキ、また抗菌性材料では、銀,酸化銅,
酸化チタンの1つを選択し、コーティングすることを特
徴としたオンライン水質計。
5. The method according to claim 1, wherein at least the corrosion-resistant material is a fluororesin, a liquid rubber, or electroless plating, and the antibacterial material is silver, copper oxide, or the like.
An online water quality meter characterized by selecting and coating one of the titanium oxides.
JP20748998A 1998-07-23 1998-07-23 On-line water quality meter Pending JP2000039431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20748998A JP2000039431A (en) 1998-07-23 1998-07-23 On-line water quality meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20748998A JP2000039431A (en) 1998-07-23 1998-07-23 On-line water quality meter

Publications (1)

Publication Number Publication Date
JP2000039431A true JP2000039431A (en) 2000-02-08

Family

ID=16540586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20748998A Pending JP2000039431A (en) 1998-07-23 1998-07-23 On-line water quality meter

Country Status (1)

Country Link
JP (1) JP2000039431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128643A (en) * 2006-11-16 2008-06-05 Railway Technical Res Inst Method and instrument for continuously measuring concentration of ions contained in ground water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128643A (en) * 2006-11-16 2008-06-05 Railway Technical Res Inst Method and instrument for continuously measuring concentration of ions contained in ground water

Similar Documents

Publication Publication Date Title
CA2563667C (en) Sterilizing device and a method for sterilizing of fluids
CA2483477C (en) Apparatus for mixing and/or testing small volumes of fluids
JP2000131310A (en) Self-diagnostic function for water quality meter
JP3551073B2 (en) Water quality meter and water quality monitoring system
RU2495496C2 (en) Water vending machine
CN101770824B (en) On-line cleaning and demarcating system of density type boron concentration meter
CN101598719B (en) Waste flow quantity, ammonia nitrogen concentration and ammonia nitrogen total content water quality on-line combined tester
JP2000275241A (en) Small sized on-line water quality meter
JP3832123B2 (en) Water quality meter
JP2001083139A (en) Water quality monitoring system
US20070127028A1 (en) Optical measuring device
JP2000039431A (en) On-line water quality meter
CN102151678A (en) Liquid supply system and liquid supply method
CN212610016U (en) Online automatic control system of recirculated cooling water
JP3575341B2 (en) Water quality meter, water quality measurement method, and water quality monitoring system
JP2000028049A (en) Synthetic resin flow passage member
JP2001242160A (en) Water quality meter
CN201331932Y (en) Cleaning and calibrating device for density type boron concentration instrument
US20210086138A1 (en) Vanox Hot Water Cart Conditioning Method
JP2001083140A (en) Water quality meter
JP3491573B2 (en) Water quality meter
JP3843853B2 (en) Online water quality meter
CN207404979U (en) A kind of medical waste water processing system and wastewater treatment equipment
CN212658620U (en) Sensor system for wastewater determination and cleaning assembly thereof
CN219469727U (en) Pesticide drinking water supply device capable of accurately adding medicament