JP2000039425A - Gas physical property-measuring device and method - Google Patents

Gas physical property-measuring device and method

Info

Publication number
JP2000039425A
JP2000039425A JP10207532A JP20753298A JP2000039425A JP 2000039425 A JP2000039425 A JP 2000039425A JP 10207532 A JP10207532 A JP 10207532A JP 20753298 A JP20753298 A JP 20753298A JP 2000039425 A JP2000039425 A JP 2000039425A
Authority
JP
Japan
Prior art keywords
gas
measured
sound speed
calorific value
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10207532A
Other languages
Japanese (ja)
Inventor
Yoji Ohashi
洋史 大橋
Naoya Fujimaru
直也 藤丸
Koichi Sumida
幸一 隅田
Kuniyoshi Okamoto
邦良 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10207532A priority Critical patent/JP2000039425A/en
Publication of JP2000039425A publication Critical patent/JP2000039425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an easy-to-use gas physical property-measuring device where, for example, a timing for replacing operation cannot be limited. SOLUTION: A device is provided with a measurement pipe 70 where a gas to be measured is introduced and flows in the direction of a pipe axis inside, at the same time a detection part of a pair of ultrasonic transceiver 15a in parallel with the flow of the gas to be measured in the measurement pipe while they oppose each other, and a sound speed-deriving means 18 for capturing propagation time where ultrasonic waves are propagated in the flow of the gas to be measured from one ultrasonic transceiver 15a to the other 15a bi-directionally and for obtaining the sound speed of the gas to be measured according to the obtained pair of propagation time. Further, the device is provided with at least one of calory-deriving means 20a for obtaining the amount of generated heat of the gas to be measured according to a sound speed obtained from the sound speed-deriving means 18, a specific gravity-deriving means 20b for obtaining the specific gravity of the gas to be measured, or a Wobbe index-deriving means 20c for obtaining the Wobbe index of the gas to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱量調整された製
品ガスや未熱調ガス(熱量調整されていないガス)を製
造、あるいは、供給する場合に有用に使用できるガス物
性測定装置あるいはその測定方法に関するものであり、
測定対象の物性が、測定対象ガスの発熱量、比重もしく
はウオッベ指数等であるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas physical property measuring apparatus and a measuring method thereof which can be used effectively when producing or supplying calorie-adjusted product gas or unheated gas (non-caloric gas). About the method,
The present invention relates to a substance whose physical properties are a calorific value, a specific gravity or a Wobbe index of a gas to be measured.

【0002】[0002]

【従来の技術】本願の発明者らは、測定対象ガスの音速
を測定することで、その発熱量を測定することを提案し
ている(特願平8−343015号、特願平8−343
019号、特願平8−343020号)。基本的な発熱
量に関する測定原理は、得られる音速から発熱量を求め
るものであり、音速を測定する超音波送受信器を備えた
配管挿入型の音速測定機構の具体構成が実施例に記載さ
れている。この例にあっては、配管の特定部位に、超音
波送受信器の検出部(この検出部には、超音波の送信部
と受信部とが備えられている)を配設する構成を取る。
従って、この構成の場合は、測定対象の配管と同径の管
を用意し、この管の所定部位に、一対の孔を穿孔し、こ
の孔に一対の検出部を位置させて、機構を構築すること
となる。
2. Description of the Related Art The inventors of the present application have proposed to measure the calorific value of a gas to be measured by measuring the sound velocity thereof (Japanese Patent Application Nos. 8-343015 and 8-343).
019, Japanese Patent Application No. 8-343020). The measurement principle regarding the basic calorific value is to determine the calorific value from the obtained sound speed, and the specific configuration of a pipe insertion type sound speed measuring mechanism equipped with an ultrasonic transceiver for measuring the sound speed is described in Examples. I have. In this example, a configuration is adopted in which a detection unit of an ultrasonic transceiver (the detection unit is provided with an ultrasonic transmission unit and a reception unit) is provided at a specific portion of the pipe.
Therefore, in the case of this configuration, a pipe having the same diameter as the pipe to be measured is prepared, a pair of holes are drilled in a predetermined portion of the pipe, and a pair of detection units are positioned in this hole, and a mechanism is constructed. Will be done.

【0003】[0003]

【発明が解決しようとする課題】しかし、この構成で
は、以下のような問題がある。 (1) 既設の配管を取り替える場合、配管の径に合わ
せて、超音波送受信器を備えた配管挿入型の発熱量測定
装置を製作する必要があり、量産に適さない。 (2) 既設の配管を取り替える場合、操作に影響を及
ぼさないように配慮する必要があり、取り替え作業の時
期が制限される。 (3) 配管挿入型では、点検時にガスの流れを止める
必要があり、実操業に影響を及ぼす虞がある。 従って、本発明は、上記のような欠点を克服することを
目的とする。
However, this configuration has the following problems. (1) When replacing an existing pipe, it is necessary to manufacture a pipe insertion type calorific value measuring device equipped with an ultrasonic transceiver in accordance with the diameter of the pipe, which is not suitable for mass production. (2) When replacing existing pipes, care must be taken not to affect the operation, and the time for replacement work will be limited. (3) In the case of the pipe insertion type, it is necessary to stop the gas flow at the time of inspection, which may affect the actual operation. Accordingly, an object of the present invention is to overcome the above disadvantages.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明によるガス測定装置の特徴構成は、測定対象ガ
スが導入されて内部を管軸方向に流れる測定管を備える
とともに、この測定管内に於ける測定対象ガスの流れに
平行に、あるいは、この測定管の管軸方向で対向する両
端部に、一対の超音波送受信器の検出部を互いに対向さ
せて備えた測定管を備える。そして、一方の超音波送受
信器から他方の超音波送受信器へ前記測定対象ガスの流
れ内を超音波が伝播する伝播時間を双方向で捕らえ、得
られる一対の伝播時間から前記測定対象ガスの音速を求
める音速導出手段を備え、この音速導出手段により求ま
る音速から、測定対象ガスの発熱量を求める発熱量導出
手段、測定対象ガスの比重を求める比重導出手段、もし
くは、測定対象ガスのウオッベ指数を求めるウオッベ指
数導出手段のいずれか一つ以上の手段を備えることとす
る。この構成のガス測定装置は、測定管を備え、この測
定管内を管軸方向に測定対象ガスが流れる。そして、一
対の超音波送受信器の検出部が、この管軸方向で互いに
対向した位置とされる。換言すれば、測定対象ガスの流
れ方向に平行に、超音波の伝播方向が設定される。従っ
て、これらの検出部間を、一方の検出部側から他方の検
出部側へと超音波が伝播できる。この構成にあって、超
音波送受信器の一方から、他方へ超音波を相互に送り、
その両方向の伝播時間を検出し、これらの伝播時間の検
出結果に従って、測定対象ガスの音速を求める。これ
が、音速導出手段の役割である。音速が求まると、この
音速から、この測定対象ガスの発熱量、比重、ウオッベ
指数を、それぞれ対応する手段が求め、これらの手段か
ら求まる測定対象ガスの物性量が出力される。ここで、
このガス測定装置の測定対象である、発熱量、比重、ウ
オッベ指数に関しては、これらの数値が、ガスの音速に
関係する数値であるため、ガスの音速より、これらの数
値を求め、様々なガスの物性値を求めることができる。
The gas measuring apparatus according to the present invention for achieving the above object has a characteristic configuration in which a measuring pipe into which a gas to be measured flows is introduced and flows in the axial direction of the pipe. In parallel with the flow of the gas to be measured in the above, or at both ends of the measuring tube facing each other in the tube axis direction, a measuring tube provided with a pair of ultrasonic transmitters and receivers facing each other is provided. Then, the propagation time during which the ultrasonic wave propagates in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver is bidirectionally captured, and the sound velocity of the gas to be measured is obtained from the obtained pair of propagation times. The calorific value deriving means for calculating the calorific value of the gas to be measured, the specific gravity deriving means for calculating the specific gravity of the gas to be measured, or the Wobbe index of the gas to be measured, from the sound speed obtained by the sound speed deriving means, Any one or more of the Wobbe index deriving means to be obtained is provided. The gas measuring device having this configuration includes a measuring tube, and the gas to be measured flows in the measuring tube in the tube axis direction. Then, the detection units of the pair of ultrasonic transceivers are located at positions facing each other in the tube axis direction. In other words, the propagation direction of the ultrasonic wave is set parallel to the flow direction of the gas to be measured. Therefore, the ultrasonic wave can be propagated between these detecting units from one detecting unit side to the other detecting unit side. In this configuration, ultrasonic waves are mutually transmitted from one of the ultrasonic transceivers to the other,
The propagation times in both directions are detected, and the sound speed of the gas to be measured is determined according to the detection results of the propagation times. This is the role of the sound velocity deriving means. When the sound speed is determined, the calorific value, specific gravity, and Wobbe index of the gas to be measured are obtained from the sound speed by the corresponding means, and the physical properties of the gas to be measured obtained from these means are output. here,
Regarding the calorific value, specific gravity, and Wobbe index, which are the measurement targets of this gas measurement device, these values are related to the sound speed of the gas. Can be determined.

【0005】このような構成とする場合には、測定管を
独自に備え、測定対象ガスの流れに平行に一対の超音波
送受信器を備えた構造を取ることにより、既設の配管に
捕らわれずに、測定管の仕様、この測定管に取付けられ
る超音波送受信器の取付け仕様等のガス測定装置の仕様
を決定できる。従って、本願のガス測定装置にあって
は、予め決めた仕様のガス測定装置を製作すれば、大量
生産が可能となり、製作の標準化が図れる。また、仕様
として、小型化を図ることにより、既設の配管に影響を
及ぼさず、占有場所の省空間化が図れ、設置場所の選択
肢が広がる。従来型の既存の発熱量測定装置と取り替え
る場合において、既設配管から分岐した小口径の分岐管
に本願のガス測定装置を取り付け、測定対象ガスを導く
構造にしておくことにより、分岐箇所に設けられている
バルブを閉じれば、既設の配管のガスの流れを止めるこ
となく、言い換えると、操業に支障を来すことなく、取
り付けあるいはメインテナンスが可能となり、さらに、
前記作業を行う時期的な制約を解消することができる。
さらに具体的には、その測定管に、例えば、高圧に耐圧
性を持たせ、配管径25A、配管長20cmといった小
型形状の仕様で製作すれば、測定後のガスは圧力損失の
ほとんどない状態とでき、測定後のガスを低圧ラインに
戻すことができ、既存の熱量計で必要であった測定ガス
回収装置が省略できる。また、高圧ラインとは別のライ
ンになるために、高圧ラインを流れるガスを止めること
なく、本願発熱量測定装置のメンテナンスが可能とな
る。
In such a configuration, the measurement pipe is provided independently, and a pair of ultrasonic transceivers are provided in parallel with the flow of the gas to be measured, so that the pipe is not caught by the existing pipe. The specifications of the gas measuring device, such as the specifications of the measuring tube and the mounting specifications of the ultrasonic transceiver mounted on the measuring tube, can be determined. Therefore, in the gas measuring device of the present application, if a gas measuring device having a predetermined specification is manufactured, mass production becomes possible, and standardization of the manufacturing can be achieved. In addition, as a specification, by reducing the size, the existing piping is not affected, the space occupied by the space can be saved, and the options for the installation location can be expanded. When replacing with a conventional existing calorific value measuring device, the gas measuring device of the present application is attached to a small-diameter branch pipe branched from the existing pipe, and a structure for guiding the gas to be measured is provided. If the valve is closed, it can be installed or maintained without interrupting the flow of gas in the existing piping, in other words, without hindering operation, and
It is possible to eliminate the timing restriction for performing the work.
More specifically, if the measuring pipe is made to have a pressure resistance to a high pressure and manufactured in a small-sized specification such as a pipe diameter of 25 A and a pipe length of 20 cm, the gas after the measurement is in a state with almost no pressure loss. The measured gas can be returned to the low-pressure line, and the measurement gas recovery device required for the existing calorimeter can be omitted. In addition, since the line is different from the high-pressure line, maintenance of the calorific value measuring apparatus of the present invention can be performed without stopping gas flowing through the high-pressure line.

【0006】上記構成のガス測定装置を構築するに、測
定管内への測定対象ガスの導入・導出を目的として、測
定管の側管壁部に、前記測定対象ガスを導入する導入口
及び、測定管内をその軸方向に流れた前記測定対象ガス
を導出する導出口を備えた構成とすることが好ましい。
この構成の場合は、測定管内への測定対象ガスの導入、
導出を管側部においておこない、測定管の管軸方向の管
端面を超音波送受信器の検出部の配設部として利用で
き、コンパクト且つ使用勝手のよい測定管を構築でき
る。
In order to construct the gas measuring device having the above configuration, an inlet for introducing the gas to be measured and a measurement port for introducing the gas to be measured into a side wall of the measuring tube for the purpose of introducing and deriving the gas to be measured into the measuring tube. It is preferable that a configuration is provided that includes an outlet that guides out the measurement target gas that has flowed in the pipe in the axial direction.
In the case of this configuration, introduction of the gas to be measured into the measuring tube,
The extraction is performed at the side of the tube, and the tube end face in the tube axis direction of the measurement tube can be used as the arrangement portion of the detection unit of the ultrasonic transceiver, so that a compact and easy-to-use measurement tube can be constructed.

【0007】この装置に於けるガスの所定の物性量(発
熱量、比重もしくはウオッベ指数)の測定方法は、以下
のステップを経て行われることとなる。測定対象ガスが
導入されて内部を流れる直管状の測定管で、前記測定管
の管軸方向で対向する両端部に、一対の超音波送受信器
を、検出部を互いに対向させて備えた測定管を使用し
て、一方の超音波送受信器から他方の超音波送受信器へ
前記測定対象ガスの流れ内を超音波が伝播する伝播時間
を双方向で捕らえ、得られる一対の前記伝播時間から前
記測定対象ガスの音速を求め、求まる音速から、前記測
定対象ガスの発熱量、前記測定対象ガスの比重、もしく
は、前記測定対象ガスのウオッベ指数を求める。
The method of measuring the predetermined physical quantity (heat value, specific gravity or Wobbe index) of the gas in this apparatus is performed through the following steps. A straight measuring tube into which the gas to be measured is introduced and which flows through the inside of the measuring tube. At both ends of the measuring tube facing each other in the tube axis direction, a measuring tube provided with a pair of ultrasonic transceivers, with the detecting portions facing each other. Is used to capture in both directions the propagation time of ultrasonic waves propagating in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver and obtain the measurement from the pair of obtained propagation times The sound speed of the gas to be measured is obtained, and the calorific value of the gas to be measured, the specific gravity of the gas to be measured, or the Wobbe index of the gas to be measured is obtained from the sound speed obtained.

【0008】さらに、測定対象ガスが、メタンを主成分
とし、メタン以外の炭化水素ガスを含む混合ガスである
ことが好ましい。ここで、対象とする混合ガスは、メタ
ン以外の炭化水素ガスの含有率の増加により、その熱量
が増加する傾向にあり、逆に、音速は減少する。従っ
て、この現象を利用して、測定対象ガスの音速を測定
し、これから物性を求めることができる。例えば、発熱
量を例に取ると、図4に示すように、例えば、天然ガス
にあっては、音速と発熱量は、一次もしくは二次の相関
式とできる。そこで、発熱量の測定にあたっては、予め
求められている関係指標に従って、音速から発熱量を求
めることとなる。比重に関しても、この関係は概略満足
される。さらに、ウオッベ指数は、発熱量と比重とに関
係する指数であるため、このような関係が成り立つ。結
果、都市ガスとして、今日、有用に利用されているこの
種の混合ガスの物性を、良好に測定できるようになっ
た。
Further, the gas to be measured is preferably a mixed gas containing methane as a main component and a hydrocarbon gas other than methane. Here, the target gas mixture tends to increase its calorific value due to an increase in the content of hydrocarbon gas other than methane, and conversely, the sound speed decreases. Therefore, by utilizing this phenomenon, the sound velocity of the gas to be measured can be measured, and the physical properties can be determined from this. For example, taking the calorific value as an example, as shown in FIG. 4, in natural gas, for example, the sound velocity and the calorific value can be expressed by a primary or secondary correlation equation. Therefore, when measuring the calorific value, the calorific value is calculated from the speed of sound according to a relation index determined in advance. Regarding the specific gravity, this relationship is almost satisfied. Further, since the Wobbe index is an index related to the calorific value and the specific gravity, such a relationship holds. As a result, it has become possible to satisfactorily measure the physical properties of this kind of mixed gas, which is usefully used as city gas today.

【0009】[0009]

【発明の実施の形態】本願の実施の形態を、以下、図面
に基づいて説明する。図1は、本願のガス測定装置1を
ガス製造設備2に備えた構成を模式的に描いたものであ
る。このガス製造設備2は、LNGタンク3、LNG気
化器4を上流側に備えた供給流路5を備えるとともに、
この供給流路5に、熱量調整用の石油ガスを添加する調
整用ガス添加機構6と、この調整用ガス添加機構6より
も下流側に備えられる製品ガスのガス物性量(発熱量、
比重、ウオッベ指数)測定用の測定部7を備えている。
この測定部7は、ガス測定装置1に備えられる測定管7
0が配設される部位であり、この測定管70に、ガス供
給流路5から一対の分岐管71を経て、製品ガスが導入
されるとともに、導出される。ここで、この測定管70
内においては、製品ガスがその管軸方向に流れる構造が
採用されている。この製品ガスが本願のガス測定装置1
が測定対象とする測定対象ガスである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically illustrates a configuration in which a gas measuring device 1 of the present application is provided in a gas production facility 2. The gas production facility 2 includes a supply flow path 5 having an LNG tank 3 and an LNG vaporizer 4 on the upstream side,
An adjusting gas addition mechanism 6 for adding a calorie adjusting petroleum gas to the supply flow path 5, and a gas physical quantity (calorific value, calorific value, etc.) of a product gas provided downstream of the adjusting gas addition mechanism 6.
A measuring unit 7 for measuring specific gravity, Wobbe index) is provided.
The measuring section 7 is provided with a measuring pipe 7 provided in the gas measuring device 1.
Reference numeral 0 denotes a portion where the product gas is introduced into the measurement pipe 70 from the gas supply flow path 5 through a pair of branch pipes 71 and is extracted therefrom. Here, this measuring tube 70
Inside, a structure in which the product gas flows in the tube axis direction is adopted. This product gas is the gas measuring device 1 of the present application.
Is a gas to be measured to be measured.

【0010】このガス製造設備2にあっては、測定部7
において得られた測定情報に基づいて、製品ガスのガス
物性量(例えば発熱量)を求め、この発熱量と製品ガス
に求められる発熱量である目標発熱量との関係から、前
記調整用ガス添加機構6に、調整制御指令が発生される
ように構成されている。本願のガス測定装置1にあって
は、測定対象の物性量として、測定対象ガスの発熱量、
比重、ウオッベ指数を測定することが可能である。この
ガス製造設備2は、発熱量に関してフィードバックがか
かる様に構成されており、製品ガスの発熱量品質を良好
に保つことができる。ここで、発熱量制御は、オンライ
ン、オンタイムの連続制御である。
[0010] In this gas production facility 2, the measuring section 7
The gas physical quantity (for example, the calorific value) of the product gas is obtained on the basis of the measurement information obtained in the step (a), and from the relationship between this calorific value and the target calorific value that is the calorific value required for the product gas, the adjustment gas addition The mechanism 6 is configured to generate an adjustment control command. In the gas measuring device 1 of the present application, the calorific value of the gas to be measured,
It is possible to measure specific gravity and Wöbbe index. The gas production facility 2 is configured to provide feedback on the calorific value, so that the calorific value quality of the product gas can be kept good. Here, the heat generation amount control is continuous control of online and on-time.

【0011】さて、上記の制御を可能とするために、前
述の供給流路5で、前記調整用ガス添加機構6の合流部
8より上流側に、天然ガスの流量を測定する天然ガス流
量測定器9が備えられている。一方、前述の調整用ガス
添加機構6は、LPGタンク10、LPG気化器11を
上流側に備えた添加用流路12を備えるとともに、この
添加用流路12に流量制御弁13と石油ガス流量測定器
14を備えている。この設備2にあっては、天然ガスの
流量、これに対する石油ガスの流量が常時モニターさ
れ、供給流路下流側に混合状態で送り出される両者の量
比を検出することができる。本願のように、製品ガスの
発熱量を制御する必要がある場合、この量比が問題とな
るが、天然ガスの供給量を検出しながら、流量制御弁1
3の開度を適切に調整することで、両者の流量比(引い
ては発熱量)を調整することができる。
In order to make the above control possible, a natural gas flow rate measurement for measuring a natural gas flow rate in the supply flow path 5 upstream of the junction 8 of the adjusting gas addition mechanism 6 is described. A vessel 9 is provided. On the other hand, the above-described adjusting gas addition mechanism 6 includes an addition flow path 12 provided with an LPG tank 10 and an LPG vaporizer 11 on the upstream side, and a flow control valve 13 and a petroleum gas flow rate. A measuring device 14 is provided. In the facility 2, the flow rate of the natural gas and the flow rate of the petroleum gas with respect to the natural gas are constantly monitored, and it is possible to detect the quantity ratio of the natural gas and the petroleum gas that is sent out in a mixed state downstream of the supply flow path. When it is necessary to control the calorific value of the product gas as in the present application, this quantity ratio becomes a problem.
By appropriately adjusting the opening degree of No. 3, it is possible to adjust the flow rate ratio between the two (and, consequently, the calorific value).

【0012】ガス製造設備2は、メタンを主成分とする
ベースガス原料(この例では天然ガス)が流れる供給流
路5を備え、この供給流路内にあるベースガス原料に、
メタンより発熱量の大きい熱量調整用ガス原料(この例
では石油ガス)を、添加量を調整しながら添加する調整
用ガス添加機構6を備え、熱量調整された製品ガスを得
る構成となっている。そして、この調整用ガス添加機構
6に対する発熱量制御装置100が備えられている。こ
れは、図1、2に示すように、測定部7に備えられる超
音波送受信器を備える超音波流速計15、温度計16
a、圧力計16bと、これらの計器からの測定情報に従
って、前記調整制御指令を生成する手段とから構成され
ている。この手段は、マイクロコンピュータや半導体メ
モリ等を主要な機器として構築される。この手段につい
て簡単に説明すると、図1に示すように、記憶手段17
a、指標生成手段17b、前記超音波流速計15及び音
速導出手段18を備えた音速測定手段19、発熱量導出
手段20a、比重導出手段20b、ウオッベ指数導出手
段20c、調整制御指令生成手段21を備えている。こ
こで、記憶手段17aは発熱量、比重の導出に必要な情
報を記憶したものであり、指標生成手段17bは記憶手
段17aに記憶された情報から音速−発熱量関係指標、
音速−比重関係指標を生成するものであり、音速測定手
段19は製品ガスの音速を求めるものである。前記発熱
量導出手段20aは音速測定手段19により求められた
音速から発熱量を導出するものであり、前記比重導出手
段20bは音速測定手段19により求められた音速から
比重を導出するものであり、前記ウオッベ指数導出手段
20cは前記発熱量導出手段20aにより導出される発
熱量、及び前記比重導出手段20cにより導出される比
重から、ウオッベ指数を導出するものである。さらに、
前記調整制御指令生成手段21は、求められた発熱量か
ら調整制御指令を生成するものである。本願のガス測定
装置1には、前記調整制御指令生成手段21を除く、全
ての手段が備えられる。
The gas production facility 2 is provided with a supply passage 5 through which a base gas raw material containing methane as a main component (natural gas in this example) flows.
An adjusting gas addition mechanism 6 for adding a calorie adjusting gas raw material (in this example, petroleum gas) having a larger calorific value than methane while adjusting the addition amount is provided to obtain a calorie-adjusted product gas. . Further, a heat generation amount control device 100 for the adjustment gas addition mechanism 6 is provided. As shown in FIGS. 1 and 2, the ultrasonic flow meter 15 having the ultrasonic transmitter / receiver provided in the measurement unit 7 and the thermometer 16
a, a pressure gauge 16b, and means for generating the adjustment control command according to measurement information from these instruments. This means is constructed using a microcomputer, a semiconductor memory, and the like as main devices. Briefly describing this means, as shown in FIG.
a, an index generating means 17b, a sound velocity measuring means 19 provided with the ultrasonic current meter 15 and a sound velocity deriving means 18, a calorific value deriving means 20a, a specific gravity deriving means 20b, a Wobbe index deriving means 20c, and an adjustment control command generating means 21. Have. Here, the storage unit 17a stores information necessary for deriving the calorific value and the specific gravity, and the index generating unit 17b uses the information stored in the storage unit 17a to calculate a sound speed-calorific value related index,
A sound speed-specific gravity relationship index is generated, and the sound speed measuring means 19 obtains a sound speed of the product gas. The calorific value deriving means 20a derives a calorific value from the sound velocity obtained by the sound velocity measuring means 19, and the specific gravity deriving means 20b derives specific gravity from the sound velocity obtained by the sound velocity measuring means 19, The Wobbe index deriving unit 20c derives a Wobbe index from the calorific value derived by the calorific value deriving unit 20a and the specific gravity derived by the specific gravity deriving unit 20c. further,
The adjustment control command generation means 21 generates an adjustment control command from the obtained heat value. The gas measuring device 1 of the present application is provided with all means except the adjustment control command generating means 21.

【0013】以下、それぞれの手段の構成、働きについ
てさらに詳細に説明する。前記記憶手段17aは、ベー
スガスと熱量調整用ガスが異なった割合で混合された複
数の標準ガス各々の音速と発熱量及び比重との関係から
求まる音速−発熱量関係指標、音速−比重関係指標を導
出できる情報を記憶している。このような音速−発熱量
関係指標の一例を図4に示した。同図において、実線及
び破線で示されている相関線(1次相関式及び2次相関
式で表せる)が、この指標に相当する。この音速−発熱
量関係指標は、記憶手段17aに記憶された情報から、
製品ガスの温度と圧力との測定結果に基づいて、指標生
成手段17bにより自動生成される。これらの温度圧力
情報は、温度計16a及び圧力計16bから得ることが
できる。同様に、音速−発熱量関係指標も、指標生成手
段17bにより自動生成される。この目的から、前述の
記憶手段17には、予め発熱量及び比重が判明している
複数の標準ガスに関する音速−温度−圧力の関係指標
(図3に示す・同図には発熱量のみが示されているが、
発熱量と比重は互換的(同一のガスに対しては、それぞ
れ一義的に決まる)である)が記憶されており、この記
憶情報から指標生成手段17bが、製品ガスの温度、圧
力に従って、複数の音速−温度−圧力の関係指標から、
この状態に於ける音速と発熱量また比重との関係指標
(音速−発熱量関係指標を図4に示す)を自動生成す
る。即ち、図3に示す各音速−温度−圧力の関係パネル
上から、各発熱量を有する標準ガスに対する音速を求
め、これが、発熱量と音速に関して整理されて、図4に
示すような音速−発熱量関係指標として生成される。こ
の指標を使用することにより、例えば、音速が求まった
場合、同図矢印付一点鎖線で示すように、音速からガス
の発熱量を導き出すことができる。比重についても同様
な処理が可能である。
Hereinafter, the configuration and operation of each means will be described in more detail. The storage means 17a stores a sound speed-calorific value relationship index, a sound speed-specific gravity relationship index obtained from a relationship between a sound speed, a calorific value, and a specific gravity of each of a plurality of standard gases in which a base gas and a calorific value adjusting gas are mixed at different ratios. Is stored. FIG. 4 shows an example of such a sound speed-calorific value relation index. In the figure, a correlation line (represented by a first-order correlation expression and a second-order correlation expression) indicated by a solid line and a broken line corresponds to this index. The sound velocity-calorific value relation index is obtained from the information stored in the storage unit 17a.
It is automatically generated by the index generation means 17b based on the measurement result of the temperature and pressure of the product gas. These temperature and pressure information can be obtained from the thermometer 16a and the pressure gauge 16b. Similarly, the sound speed-calorific value relation index is automatically generated by the index generation means 17b. For this purpose, the storage means 17 stores in the storage means 17 a sound speed-temperature-pressure relationship index for a plurality of standard gases whose calorific values and specific gravities are known in advance (shown in FIG. 3. Has been
The calorific value and specific gravity are interchangeable (they are uniquely determined for the same gas), and the index generation unit 17b uses the stored information to determine a plurality of values according to the temperature and pressure of the product gas. From the sound velocity-temperature-pressure relationship index of
In this state, a relation index between the sound speed and the heat value or specific gravity (a sound speed-heat value relation index is shown in FIG. 4) is automatically generated. That is, the sound speed with respect to the standard gas having each calorific value is obtained from the sound speed-temperature-pressure relationship panel shown in FIG. 3, and the sound speed and the heat speed are arranged as shown in FIG. Generated as a quantity-related index. By using this index, for example, when the sound speed is determined, the calorific value of the gas can be derived from the sound speed as shown by the dashed line with the arrow in FIG. Similar processing is possible for specific gravity.

【0014】前記音速測定手段19は、前述の超音波流
速計15及び音速導出手段18を備えている。超音波流
速計15からは、測定管70内を流れる製品ガスの流速
が得られるとともに、この流速の測定にあたって、一対
の伝播時間T21、T12が得られる。超音波流速計1
5の詳細構成について、図2に基づいて説明すると、こ
れは、測定対象ガスが内部をその管軸方向に流れる直管
上の測定管70を備えており、この測定管70の管軸方
向で対向する両端部に、互いにその検出部を対向させ
て、一対の超音波送受信器15aを備えている。ここ
で、一対の超音波送受信器15aは、流路の軸Z方向で
異なった位置に配設されるため、両者間を渡る超音波は
流速vの影響を受け、上流側から下流側に伝播される超
音波の伝播時間は加速され、逆の場合は減速される。こ
の測定管70内への測定対象ガスの導入構成に関して説
明すると、前記分岐管71は、測定管70の側壁に設け
られた導入口72、導出口73にそれぞれ、独立に接続
されており、導入口72から流入する測定対象ガスが測
定管70内を流れて導出口73を介して、本管側へ戻る
ように構成されている。この流速計15においては、一
方の超音波送受信器15aから他方の超音波送受信器1
5aへ超音波が前記製品ガスの流れ内を伝播する伝播時
間を双方向で捕らえ(上流側にあるものから下流側にあ
るものへの超音波の伝播時間T21と、逆方向で伝播す
る超音波の伝播時間T12)、得られる一対の伝播時間
から製品ガスの流速を測定する。従って、この超音波流
速計15においては、その測定情報として、流速vと、
前記一対の伝播時間T21、T12が得られている。
The sound velocity measuring means 19 includes the above-described ultrasonic velocity meter 15 and the sound velocity deriving means 18. From the ultrasonic flow meter 15, the flow velocity of the product gas flowing in the measurement tube 70 is obtained, and a pair of propagation times T21 and T12 are obtained in measuring the flow velocity. Ultrasonic current meter 1
2 will be described with reference to FIG. 2. The measuring device 5 includes a measuring tube 70 on a straight pipe through which a gas to be measured flows in the direction of the tube axis. A pair of ultrasonic transceivers 15a are provided at opposite ends so that the detection units face each other. Here, since the pair of ultrasonic transceivers 15a are disposed at different positions in the axis Z direction of the flow path, the ultrasonic waves passing between the two are affected by the flow velocity v and propagate from the upstream side to the downstream side. The propagation time of the ultrasonic wave is accelerated, and vice versa. The configuration for introducing the gas to be measured into the measuring pipe 70 will be described. The branch pipe 71 is independently connected to an inlet 72 and an outlet 73 provided on the side wall of the measuring pipe 70. The measurement target gas flowing from the port 72 flows through the measurement pipe 70 and returns to the main pipe side via the outlet port 73. In the current meter 15, one ultrasonic transceiver 15a is connected to the other ultrasonic transceiver 1a.
5a captures the propagation time of the ultrasonic wave propagating in the flow of the product gas in two directions (the ultrasonic wave propagation time T21 from the upstream to the downstream, and the ultrasonic wave propagating in the opposite direction). , The flow velocity of the product gas is measured from the pair of obtained propagation times. Therefore, in the ultrasonic current meter 15, as the measurement information, the flow velocity v,
The pair of propagation times T21 and T12 are obtained.

【0015】上記の音速導出手段18は、測定された製
品ガスの一対の伝播時間から、製品ガスの音速を導出で
きる構成とされている。この導出過程は、前記一対の伝
播時間T21、T12から音速Cを求めるものである。
前述の超音波流速計15に備えられる一対の超音波送受
信器15aの位置関係が固定されているため、相互に送
受信器間を伝播する伝播時間T12、T21は、式1、
式2のように記載できる。ここで、Lは図2に示す伝播
経路の半分の距離であり、Cは音速を、vは製品ガスの
流速を、示している。
The above-mentioned sound velocity deriving means 18 is configured to be able to derive the sound velocity of the product gas from a pair of measured propagation times of the product gas. In this derivation process, the sound velocity C is obtained from the pair of propagation times T21 and T12.
Since the positional relationship between the pair of ultrasonic transceivers 15a provided in the above-described ultrasonic velocity meter 15 is fixed, the propagation times T12 and T21 that propagate between the transceivers are expressed by the following formulas (1) and (2).
Equation 2 can be described. Here, L is half the distance of the propagation path shown in FIG. 2, C is the speed of sound, and v is the flow velocity of the product gas.

【0016】[0016]

【数1】 (Equation 1)

【0017】式1、式2は、2元連立方程式であるた
め、式3、式4に示すように、音速C及び流速vを、一
対の伝播時間T12、T21から求めることができる。
即ち、前述の音速導出手段は、式3の処理を行うことに
より、一対の伝播時間T12、T21から音速Cを求め
る。
Since Equations 1 and 2 are simultaneous equations, as shown in Equations 3 and 4, the sound velocity C and the flow velocity v can be obtained from the pair of propagation times T12 and T21.
That is, the above-described sound velocity deriving means obtains the sound velocity C from the pair of propagation times T12 and T21 by performing the processing of Expression 3.

【0018】[0018]

【数2】 (Equation 2)

【0019】次に、発熱量導出手段20の役割について
説明する。図4に矢印付一点鎖線で示すように、別途、
音速測定手段20により求められる製品ガスの音速か
ら、記憶手段17に記憶された情報から自動生成される
音速−発熱量相関指標に基づいて、この製品ガスの発熱
量を求める。
Next, the role of the calorific value deriving means 20 will be described. As shown by an alternate long and short dash line with an arrow in FIG.
From the sound speed of the product gas obtained by the sound speed measuring means 20, the calorific value of the product gas is obtained based on a sound speed-calorific value correlation index automatically generated from the information stored in the storage means 17.

【0020】以上が、主に発熱量に関する説明である
が、以下、比重と、ウオッベ指数に関して説明する。先
に説明した、前記音速−発熱量関係指標の代わりに、音
速−比重関係指標は、発熱量を比重に置き換えること
で、同様に得ることができる。即ち、記憶手段17a
に、予め比重が判明している複数の標準ガスに関する音
速−温度−圧力の関係指標を記憶しておき、これらの記
憶情報から指標生成手段17bが、製品ガスの温度、圧
力に従って、複数の音速−温度−圧力の関係指標から、
この状態に於ける音速と比重との関係指標を自動生成す
る。そして、先に説明した比重導出手段20bが、別
途、音速測定手段20により求められる製品ガスの音速
から、音速−比重相関指標に基づいて、この製品ガスの
比重を求めることができる。このようにして、オンタイ
ムの製品ガスの比重を、測定することができる。
The above description is mainly about the calorific value. Hereinafter, the specific gravity and the Wobbe index will be described. Instead of the above-described sound velocity-heat generation amount relation index, the sound velocity-specific gravity relation index can be similarly obtained by replacing the heat generation amount with the specific gravity. That is, the storage unit 17a
In addition, a sound velocity-temperature-pressure relation index relating to a plurality of standard gases whose specific gravities are known in advance is stored, and based on the stored information, the index generation unit 17b generates a plurality of sound velocity based on the temperature and pressure of the product gas. From the temperature-pressure relationship index,
The relation index between the sound speed and the specific gravity in this state is automatically generated. Then, the specific gravity deriving means 20b described above can calculate the specific gravity of the product gas from the sound velocity of the product gas separately obtained by the sound velocity measuring means 20, based on the sound velocity-specific gravity correlation index. In this way, the specific gravity of the on-time product gas can be measured.

【0021】さらに、製品ガスの発熱量と比重が判明す
ると、これらの物性量を使用して、発熱量を、比重の平
方根で除算した値として、製品ガス(測定対象ガス)の
ウオッベ指数を求めることができる。この演算導出は、
ウオッベ指数導出手段20cによりおこなわれる。即
ち、発熱量導出手段20a、比重導出手段20bのそれ
ぞれから求まる、発熱量、比重に基づいて、測定対象ガ
スのウオッベ指数がもとめられる。
Further, when the calorific value and specific gravity of the product gas are determined, the Wobbe index of the product gas (gas to be measured) is determined by using these physical properties and dividing the calorific value by the square root of the specific gravity. be able to. This operation derivation is
This is performed by the Wobbe index deriving means 20c. That is, the Wobbe index of the gas to be measured is determined based on the calorific value and the specific gravity obtained from each of the calorific value deriving means 20a and the specific gravity deriving means 20b.

【0022】このようにして求められた製品ガスの発熱
量は、製品ガスの目標発熱量と比較され、先に説明した
調整制御指令が生成される。この生成の役割を調整制御
指令生成手段21が果たす。一方、求められた物性値
は、必要に応じて出力される。以上が、ガス製造設備2
の基本構成である。
The calorific value of the product gas thus determined is compared with the target calorific value of the product gas, and the above-described adjustment control command is generated. The adjustment control command generation means 21 plays the role of this generation. On the other hand, the obtained physical property values are output as needed. The above is the gas production facility 2
This is the basic configuration.

【0023】従って、この設備2の発熱量測定及び発熱
量制御は、ベースガスと熱量調整用ガスとが異なった割
合で混合された複数の標準ガス各々の音速と発熱量との
関係である音速−発熱量関係指標を予め求めておき、製
品ガスの音速を求め、求められた製品ガス(測定対象ガ
ス)の音速から、前記音速−発熱量関係指標に基づいて
製品ガスの発熱量を求めるとともに(ここまでが発熱量
測定)、求められた製品ガスの発熱量と目標発熱量との
差に基づいて、ベースガス原料に対する熱量調整用ガス
原料の添加量を制御するものとなっている。なお、本願
が対象とするガス測定装置1は、上記のように熱量調整
を伴って製造される熱量調整済の製品ガスを対象とでき
る他、調整用ガス添加機構6をバイパスして発熱量制御
を行うことなく未熱調ガスを製造する製造設備における
製造ガスの発熱量測定にも使用できることは言うまでも
ない。
Therefore, the calorific value measurement and calorific value control of the facility 2 are performed by controlling the sonic velocity, which is the relationship between the sonic velocity of each of a plurality of standard gases in which the base gas and the calorific value adjusting gas are mixed at different ratios, and the calorific value. A calorific value-related index is determined in advance, the sound velocity of the product gas is determined, and the calorific value of the product gas is determined from the determined sound velocity of the product gas (gas to be measured) based on the sound velocity-calorific value relation index. Based on the difference between the calorific value of the product gas thus obtained and the target calorific value, the amount of the calorie-adjusting gas material added to the base gas material is controlled. In addition, the gas measuring device 1 to which the present invention is directed can be applied to the calorie-adjusted product gas manufactured with the calorific value adjustment as described above, and can also control the calorific value by bypassing the adjusting gas addition mechanism 6. Needless to say, it can also be used for measuring the calorific value of the production gas in the production facility for producing the unheated gas without performing the above.

【0024】以下、本願の測定手法を採用するにあた
り、発明者らが行った実験及び実際の測定結果について
説明する。 1 音速−温度−圧力の関係指標(テーブル) この指標は、図3に示すような関係指標であり、この関
係指標を得るのに、パラメータとしての発熱量、比重に
関しては、原則的に9種のガスを標準ガスとして使用し
た。これらの標準ガスの組成(%)、発熱量及び比重を
表1に示した。
In the following, experiments and actual measurement results performed by the inventors when the measurement method of the present application is adopted will be described. 1. Sound velocity-temperature-pressure relation index (table) This index is a relation index as shown in FIG. 3, and in order to obtain this relation index, nine kinds of heat values and specific gravities are used in principle as parameters. Was used as a standard gas. Table 1 shows the composition (%), calorific value and specific gravity of these standard gases.

【0025】[0025]

【表1】 [Table 1]

【0026】これら標準ガスは、その主成分として80
%以上のメタンを含有するものであり、このベースガス
(メタン)に発熱量の調整用に熱量調整用ガス(炭素数
2以上の炭化水素ガス)が添加、混合された混合ガスで
ある。これらの混合ガスを使用して、所定の状態(温度
・圧力状態)での音速を測定できる。上記の標準ガス夫
々に関して、温度に関しては4状態(5、15、25、
35℃)、圧力に関しても4状態(10、20、30、
40kgf/cm2 )の各状態(16状態)について、
音速を求めた。結果、図3、各テーブルに示すように、
音速は、圧力をパラメータとして温度の一次関係式で表
現できるものであった。従って、以下の表2に示すよう
に、この音速と温度の一次関係の係数a、bを各標準ガ
ス、各圧力に関して求め、これらの情報を、先に説明し
た記憶手段17aに記憶させた。従って、記憶手段17
aには、図3に相当する関係指標が記憶格納され、この
指標を利用して、音速−発熱量関係指標、音速−比重関
係指標の導出をおこなうことができる。
These standard gases contain 80 as their main components.
% Of methane, and is a mixed gas obtained by adding and mixing a calorific value adjusting gas (hydrocarbon gas having 2 or more carbon atoms) to the base gas (methane) to adjust the calorific value. The sound velocity in a predetermined state (temperature / pressure state) can be measured using these mixed gases. For each of the above standard gases, four states (5, 15, 25,
35 ° C), and 4 states (10, 20, 30,
40 kgf / cm 2 ) for each state (16 states)
I asked for the speed of sound. As shown in FIG. 3 and each table,
The speed of sound could be expressed by a linear relation of temperature with pressure as a parameter. Therefore, as shown in Table 2 below, the coefficients a and b of the linear relationship between the sound speed and the temperature were obtained for each standard gas and each pressure, and the information was stored in the storage means 17a described above. Therefore, the storage means 17
The relation index corresponding to FIG. 3 is stored and stored in “a”, and using this index, a sound velocity-calorific value relation index and a sound velocity-specific gravity relation index can be derived.

【0027】[0027]

【表2】 [Table 2]

【0028】2 音速−発熱量関係指標(テーブル) この指標は、先に説明した指標生成手段17bによって
自動生成される。この処理にあっては、上記のようにし
て得られている音速−温度−圧力の関係指標(テーブ
ル)において、特定の温度・圧力を指定する。そして、
異なった発熱量の各標準ガスに対応する異なった各テー
ブルから、音速を呼び出す。そして、図3の各テーブル
間に渡って(テーブルの重なり方向で)、特定の温度・
圧力での音速を読み取ることで、図4の関係指標を得
る。但し、同図では、縦軸と横軸は逆転している。この
ようにして、音速と発熱量とに関してその相関線(図4
の実線(一次相関式)、破線(二次相関式))を得るこ
とで、特定の温度・圧力状態での両者の関係指標が得ら
れる。
2. Sound velocity-calorific value relation index (table) This index is automatically generated by the index generation means 17b described above. In this process, a specific temperature / pressure is specified in the sound velocity-temperature-pressure relation index (table) obtained as described above. And
Recall the speed of sound from each different table corresponding to each standard gas with a different calorific value. Then, across each table in FIG. 3 (in the direction in which the tables overlap), a specific temperature
By reading the speed of sound at the pressure, the related index of FIG. 4 is obtained. However, in the figure, the vertical axis and the horizontal axis are reversed. In this manner, the correlation line between the sound speed and the heat value (FIG. 4)
By obtaining the solid line (first-order correlation equation) and the broken line (second-order correlation equation), the relationship index between the two in a specific temperature and pressure state can be obtained.

【0029】この音速−発熱量関係指標を使用すると、
製品ガスの温度、圧力、音速が判明すれば、ガスの発熱
量を求めることができる。このような手法によって得ら
れた発熱量の誤差は、発熱量が9500〜10500k
cal/Nm3 の範囲にあるもので、15kcal/N
3 程度とすることができ、従来の比重計を使用する手
法に対して、同等以上の精度を得ることができた。
Using this sound speed-calorific value relation index,
If the temperature, pressure, and sound speed of the product gas are known, the calorific value of the gas can be obtained. The error of the calorific value obtained by such a method is as follows.
cal / Nm 3 , 15 kcal / N
m 3, which is equivalent to or better than the conventional method using a hydrometer.

【0030】3 音速−比重関係指標(テーブル) この指標も、先に説明した指標生成手段17bによって
自動生成される。この処理にあっては、上記と同様に得
られている音速−温度−圧力の関係指標(テーブル)に
おいて、特定の温度・圧力を指定する。そして、異なっ
た比重の各標準ガスに対応する異なった各テーブルか
ら、音速を呼び出す。図3(但し、発熱量は比重で置き
換えられている)の各テーブル間に渡って(テーブルの
重なり方向で)、特定の温度・圧力での音速を読み取る
ことで、図4に対応した比重の関係指標を得ることがで
きる。このようにして、音速と比重とに関してその相関
線を得ることで、特定の温度・圧力状態での両者の関係
指標が得られる。
3. Sound velocity-specific gravity relation index (table) This index is also automatically generated by the index generation means 17b described above. In this process, a specific temperature / pressure is designated in the sound velocity-temperature-pressure relation index (table) obtained in the same manner as described above. Then, the speed of sound is called from each of the different tables corresponding to each standard gas having a different specific gravity. By reading the sound speed at a specific temperature and pressure across each table (in the direction of table overlap) in FIG. 3 (however, the calorific value is replaced by the specific gravity), the specific gravity corresponding to FIG. A relation index can be obtained. In this way, by obtaining a correlation line between the sound speed and the specific gravity, a relation index between the two at a specific temperature and pressure state can be obtained.

【0031】従って、この音速−比重関係指標を使用す
ると、製品ガスの温度、圧力、音速が判明すれば、ガス
の比重を求めることができる。このような手法によって
得られた比重の誤差は、比重が0.555〜0.713
(単位:無次元)の範囲にあるもので、±0.4(単
位:%)程度とすることができ、従来の比重計を使用す
る手法に対して、同等以上の精度を得ることができた。
Therefore, if the temperature, pressure, and sound speed of the product gas are determined by using the sound speed-specific gravity relationship index, the specific gravity of the gas can be obtained. The error of the specific gravity obtained by such a method is that the specific gravity is 0.555 to 0.713.
(Unit: dimensionless) within the range of about ± 0.4 (unit:%), and can achieve the same or better accuracy than the conventional method using a hydrometer. Was.

【0032】〔別実施の形態〕 (イ) 上記の実施の形態においては、予め求められて
いる音速−温度−圧力の関係指標から音速−発熱量関係
指標、音速−比重関係指標を自動生成するものとした
が、(温度、圧力)に応じた音速−発熱量関係指標、音
速−比重関係指標を記憶しておいて、この指標を使用す
るものとしてもよい。 (ロ) 上記の実施の形態においては、ベースガスがメ
タンを主体とするガス(例えば天然ガス)で、熱量調整
用ガスがこれより発熱量の多いガス(例えば石油ガス)
としたが、このようなガス種は、その種別を問うもので
はない。従って、この場合、当然、メタンを主成分と
し、これにメタンより炭素数が多い炭化水素ガスを含有
しているものを対象とできる。さらに、先に言い添えた
ように、熱量調整を経た製品ガス、熱量調整を行わない
所謂、未熱調ガスをも測定対象とすることができる。
[Another Embodiment] (a) In the above embodiment, a sound velocity-heat generation amount relation index and a sound velocity-specific gravity relation index are automatically generated from a sound velocity-temperature-pressure relation index previously obtained. However, a sound speed-calorific value relationship index and a sound speed-specific gravity relationship index corresponding to (temperature, pressure) may be stored, and these indices may be used. (B) In the above embodiment, the base gas is a gas mainly composed of methane (eg, natural gas), and the calorific value adjusting gas is a gas having a larger calorific value (eg, petroleum gas).
However, such a gas type does not matter. Therefore, in this case, it is a matter of course that a gas containing methane as a main component and a hydrocarbon gas having more carbon atoms than methane can be used. Further, as described above, it is possible to measure a product gas that has undergone calorific value adjustment and a so-called unheated gas that does not have calorific value adjustment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願のガス測定装置を設備したガス製造設備の
ブロック構成図
FIG. 1 is a block diagram of a gas production facility equipped with a gas measurement device of the present application.

【図2】測定装置の基本構造を示す図FIG. 2 is a diagram showing a basic structure of a measuring device.

【図3】発熱量をパラメータとする圧力−温度−音速の
関係指標を示す図
FIG. 3 is a diagram showing a pressure-temperature-sound speed relationship index using a heat value as a parameter;

【図4】音速から発熱量を導出する場合の音速−発熱量
関係指標を示す図
FIG. 4 is a diagram showing a sound speed-heat generation amount relationship index when a heat generation amount is derived from a sound speed.

【符号の説明】[Explanation of symbols]

1 発熱量制御装置 2 ガス製造設備 15 超音波流速計 15a 超音波送受信器 17a 記憶手段 17b 指標生成手段 18 音速導出手段 19 音速測定手段 20a 発熱量導出手段 20b 比重導出手段 20c ウオッベ指数導出手段 DESCRIPTION OF SYMBOLS 1 Heat generation amount control device 2 Gas production equipment 15 Ultrasonic current meter 15a Ultrasonic transceiver 17a Storage means 17b Index generation means 18 Sound velocity derivation means 19 Sound velocity measurement means 20a Heat generation amount derivation means 20b Specific gravity derivation means 20c Wobbe index derivation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隅田 幸一 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 岡本 邦良 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 2G047 AA01 BA01 BC02 CA01 CB01 EA16 GG27  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Koichi Sumida 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Kuniyoshi Okamoto Hirano-cho, Chuo-ku, Osaka-shi, Osaka F-term (reference) in Osaka Gas Co., Ltd. 1-2-2 chome 2G047 AA01 BA01 BC02 CA01 CB01 EA16 GG27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 測定対象ガスが導入されて内部を管軸方
向に流れる測定管を備えるとともに、前記測定管内に於
ける測定対象ガスの流れに平行に、一対の超音波送受信
器の検出部を互いに対向させて備え、一方の超音波送受
信器から他方の超音波送受信器へ前記測定対象ガスの流
れ内を超音波が伝播する伝播時間を双方向で捕らえ、得
られる一対の伝播時間から前記測定対象ガスの音速を求
める音速導出手段を備え、前記音速導出手段により求ま
る音速から、前記測定対象ガスの発熱量を求める発熱量
導出手段、前記測定対象ガスの比重を求める比重導出手
段、もしくは、前記測定対象ガスのウオッベ指数を求め
るウオッベ指数導出手段のいずれか一つ以上の手段を備
えたガス物性測定装置。
1. A measuring pipe into which a gas to be measured is introduced and which flows through the inside of the measuring pipe in an axial direction, and a detecting unit of a pair of ultrasonic transceivers is provided in parallel with the flow of the gas to be measured in the measuring pipe. It is provided to face each other, and captures the propagation time of the ultrasonic wave propagating in the flow of the measurement target gas from one ultrasonic transceiver to the other ultrasonic transceiver in both directions, and performs the measurement from the pair of obtained propagation times. A sound speed deriving unit for obtaining a sound speed of the target gas, a calorific value deriving unit for obtaining a calorific value of the measurement target gas from a sound speed obtained by the sound speed deriving unit, a specific gravity deriving unit for obtaining a specific gravity of the measurement target gas, or A gas property measuring device comprising one or more means of Wobbe index deriving means for obtaining a Wobbe index of a gas to be measured.
【請求項2】 測定対象ガスが導入されて内部を管軸方
向に流れる測定管を備えるとともに、前記測定管の管軸
方向で対向する両端部に、一対の超音波送受信器の検出
部を互いに対向させて備え、一方の超音波送受信器から
他方の超音波送受信器へ前記測定対象ガスの流れ内を超
音波が伝播する伝播時間を双方向で捕らえ、得られる一
対の伝播時間から前記測定対象ガスの音速を求める音速
導出手段を備え、前記音速導出手段により求まる音速か
ら、前記測定対象ガスの発熱量を求める発熱量導出手
段、前記測定対象ガスの比重を求める比重導出手段、も
しくは、前記測定対象ガスのウオッベ指数を求めるウオ
ッベ指数導出手段のいずれか一つ以上の手段を備えたガ
ス物性測定装置。
2. A measuring pipe into which a gas to be measured is introduced and flowing in the pipe axis direction, and detection sections of a pair of ultrasonic transceivers are attached to both ends of the measuring pipe opposite to each other in the pipe axis direction. Provided facing each other, capture the propagation time of the ultrasonic wave propagating in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver in two directions, and obtain the measurement object from the pair of propagation times obtained. A sound speed deriving unit that obtains a sound speed of the gas; a calorific value deriving unit that obtains a calorific value of the gas to be measured from a sound speed obtained by the sound speed deriving device; a specific gravity deriving unit that obtains a specific gravity of the gas to be measured; or A gas property measuring device comprising one or more means of Wobbe index deriving means for obtaining a Wobbe index of a target gas.
【請求項3】 前記測定管の側管壁部に、前記測定対象
ガスを導入する導入口、及び、測定管内をその軸方向に
流れた前記測定対象ガスを導出する導出口を備えた請求
項1記載のガス物性測定装置。
3. A side pipe wall portion of the measurement tube, comprising an inlet for introducing the gas to be measured, and an outlet for guiding the gas to be measured flowing in the measurement tube in the axial direction. 2. The gas property measuring device according to 1.
【請求項4】 測定対象ガスが導入されて内部を流れる
直管状の測定管で、前記測定管の管軸方向の対向する両
端部に、一対の超音波送受信器の検出部を互いに対向さ
せて備えた測定管を使用して、 一方の超音波送受信器から他方の超音波送受信器へ前記
測定対象ガスの流れ内を超音波が伝播する伝播時間を双
方向で捕らえ、 得られる一対の前記伝播時間から前記測定対象ガスの音
速を求め、 求まる音速から、前記測定対象ガスの発熱量、前記測定
対象ガスの比重、もしくは、前記測定対象ガスのウオッ
ベ指数を求めるガス物性測定方法。
4. A straight measuring tube into which a gas to be measured is introduced and which flows through the inside of the measuring tube. The detecting portions of a pair of ultrasonic transceivers are opposed to each other at opposite ends in the tube axis direction of the measuring tube. Using a measurement tube provided, the two-way capture of the propagation time of ultrasonic waves propagating in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver, and a pair of the obtained propagation A gas property measurement method for determining a sound speed of the measurement target gas from time, and determining a calorific value of the measurement target gas, a specific gravity of the measurement target gas, or a Wobbe index of the measurement target gas from the obtained sound speed.
【請求項5】 前記測定対象ガスが、メタンを主成分と
し、メタン以外の炭化水素ガスを含む混合ガスである請
求項4記載のガス物性測定方法。
5. The method according to claim 4, wherein the gas to be measured is a mixed gas containing methane as a main component and a hydrocarbon gas other than methane.
JP10207532A 1998-07-23 1998-07-23 Gas physical property-measuring device and method Pending JP2000039425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207532A JP2000039425A (en) 1998-07-23 1998-07-23 Gas physical property-measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207532A JP2000039425A (en) 1998-07-23 1998-07-23 Gas physical property-measuring device and method

Publications (1)

Publication Number Publication Date
JP2000039425A true JP2000039425A (en) 2000-02-08

Family

ID=16541295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207532A Pending JP2000039425A (en) 1998-07-23 1998-07-23 Gas physical property-measuring device and method

Country Status (1)

Country Link
JP (1) JP2000039425A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059416A (en) * 2008-08-08 2010-03-18 Osaka Gas Co Ltd Biogas supply method and biogas supply system
JP2010237006A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system and heat value calculating method
WO2012066828A1 (en) * 2010-11-15 2012-05-24 理研計器株式会社 Specific gravity measuring method and specific gravity measuring device for combustible gas, and wobbe index measuring device therefor
JP2013210343A (en) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd Gas meter
JP2013210344A (en) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd Gas meter
JP2016095308A (en) * 2014-11-14 2016-05-26 メムス アクチェンゲゼルシャフトMems Ag Method and measuring apparatus for determining specific quantities associated with gas quality
JP2016200471A (en) * 2015-04-09 2016-12-01 東京瓦斯株式会社 Calorific value derivation device and calorific value derivation method
CN107532932A (en) * 2015-04-23 2018-01-02 东京瓦斯株式会社 Gas meter, flow meter system and caloric value deriving method
CN112740027A (en) * 2018-09-26 2021-04-30 Abb瑞士股份有限公司 Non-invasive monitoring of a mixing process in a container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059416A (en) * 2008-08-08 2010-03-18 Osaka Gas Co Ltd Biogas supply method and biogas supply system
JP2010237006A (en) * 2009-03-31 2010-10-21 Yamatake Corp Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system and heat value calculating method
WO2012066828A1 (en) * 2010-11-15 2012-05-24 理研計器株式会社 Specific gravity measuring method and specific gravity measuring device for combustible gas, and wobbe index measuring device therefor
JP2013210343A (en) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd Gas meter
JP2013210344A (en) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd Gas meter
JP2016095308A (en) * 2014-11-14 2016-05-26 メムス アクチェンゲゼルシャフトMems Ag Method and measuring apparatus for determining specific quantities associated with gas quality
JP2016200471A (en) * 2015-04-09 2016-12-01 東京瓦斯株式会社 Calorific value derivation device and calorific value derivation method
EP3282253A4 (en) * 2015-04-09 2018-04-04 Tokyo Gas Co., Ltd. Heating value derivation device and heating value derivation method
US20180100831A1 (en) * 2015-04-09 2018-04-12 Tokyo Gas Co., Ltd. Heating value derivation device and heating value derivation method
US10613056B2 (en) 2015-04-09 2020-04-07 Tokyo Gas Co., Ltd. Heating value derivation device and heating value derivation method
CN107532932A (en) * 2015-04-23 2018-01-02 东京瓦斯株式会社 Gas meter, flow meter system and caloric value deriving method
EP3287751A4 (en) * 2015-04-23 2018-04-11 Tokyo Gas Co., Ltd. Gas meter system and heating-value derivation method
CN107532932B (en) * 2015-04-23 2019-09-17 东京瓦斯株式会社 Gas meter, flow meter system and calorific value deriving method
US10655068B2 (en) 2015-04-23 2020-05-19 Tokyo Gas Co., Ltd. Gas meter system and heating value derivation method
CN112740027A (en) * 2018-09-26 2021-04-30 Abb瑞士股份有限公司 Non-invasive monitoring of a mixing process in a container

Similar Documents

Publication Publication Date Title
US7201071B2 (en) Wide range continuous diluter
US4590790A (en) Method for determining the accuracy of a gas measurement instrument
CN103003766A (en) Calibration method and flow-rate measurement method for flow-rate controller of gas supplying apparatus
JP5782454B2 (en) Specific gravity measuring method, specific gravity measuring apparatus and Wobbe index measuring apparatus for combustible gas
CA2489944A1 (en) Venturi augmented flow meter
KR20020086656A (en) Equipment and method for measuring concentration and flow rate of gas ultrasonically
JP2000039425A (en) Gas physical property-measuring device and method
EP1213566A2 (en) Method for determination of mass flow and density of a process stream
JP3611416B2 (en) Calorific value measuring method and calorific value measuring device
CN111683691B (en) Method and device for detecting a non-condensable portion of an at least partially gaseous medium
Van Putten et al. Flow meter performance under CO 2 gaseous conditions
US2703079A (en) Method of and apparatus for determining the oxygen content of a gas
JP2000039426A (en) Gas physical property measurement method and device
US20210072060A1 (en) Real-time measurement of two-phase mass flow rate and enthalpy using pressure differential devices
JPH10185886A (en) Method and device for controlling calorific value, and gas manufacturing equipment
JP6596225B2 (en) Mixed gas preparation apparatus and mixed gas preparation method
Celenza et al. Critical aspects of new domestic static gas meter
CN220153865U (en) Simple electromagnetic valve flow testing device
Heinig et al. Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters–experiences and perspectives
Abe Novel flow measurement/control system in magnetic suspension balance/diffusion-tube humidity generator
CN106643934A (en) Calculation method for gas sound velocity
CN117269010A (en) Experimental device and method for measuring retention efficiency of aerosol in gap
Lecardonnel et al. Two-phase flow metering of maldistribution inside a header by means of venturi flowmeter solely
Peignelin Calibration of High Pressure Gas Meters with Sonic Nozzles
CN113933211A (en) Ternary mixed gas mixing ratio measuring method and device based on gas substitution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060126