JP2000038635A - Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistance - Google Patents
Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistanceInfo
- Publication number
- JP2000038635A JP2000038635A JP17598298A JP17598298A JP2000038635A JP 2000038635 A JP2000038635 A JP 2000038635A JP 17598298 A JP17598298 A JP 17598298A JP 17598298 A JP17598298 A JP 17598298A JP 2000038635 A JP2000038635 A JP 2000038635A
- Authority
- JP
- Japan
- Prior art keywords
- hard phase
- powder
- cermet
- core
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、すぐれた耐熱衝
撃性を有し、したがって強い熱衝撃を伴う、例えば高送
りや高切り込みの断続切削を高速で行う切削に用いた場
合にも、切刃に欠けやチッピング(微小欠け)などの欠
損の発生なく、すぐれた切削性能を長期に亘って発揮す
る炭窒化チタン系サーメット製切削工具(以下、サーメ
ット製切削工具と云う)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting edge which is excellent in thermal shock resistance, and therefore has a strong thermal shock, for example, when used for high-speed or high-cut intermittent cutting. The present invention relates to a titanium carbonitride-based cermet cutting tool (hereinafter, referred to as a cermet cutting tool) which exhibits excellent cutting performance for a long period of time without occurrence of chipping or chipping (micro chipping).
【0002】[0002]
【従来の技術】従来、例えば特開平8−192304号
公報に記載されるように、サーメット製切削工具が知ら
れており、これが、走査型電子顕微鏡による組織観察
で、硬質相の割合が80〜95面積%を占め、残りがC
oおよび/またはNiを主成分とする結合相と不可避不
純物からなる組織を示し、前記硬質相が芯部と周辺部か
らなる有芯構造を有し、前記芯部と周辺部のいずれもが
炭窒化チタン(以下、TiCNで示す)におけるTiの
一部をTiを除く周期律表の4a、5a、および6a族
金属のうちの1種以上で置換してなるTi系複合炭窒化
物固溶体[以下、(Ti,M)CNで示す]からなる炭
窒化チタン系サーメット(以下、単にサーメットと云
う)で構成されていることも知られている。また、上記
サーメット製切削工具は、鋼や鋳鉄なとの連続切削は勿
論のこと、良好な耐欠損性を有することから、これらの
断続切削にも広く用いられている。2. Description of the Related Art Conventionally, as described in, for example, JP-A-8-192304, a cutting tool made of cermet is known. Occupies 95% by area, the rest is C
The hard phase has a cored structure consisting of a core and a peripheral portion, and the hard phase has a cored structure composed of a core portion and a peripheral portion. Ti-based composite carbonitride solid solution obtained by substituting a part of Ti in titanium nitride (hereinafter referred to as TiCN) with one or more of metals of groups 4a, 5a and 6a of the periodic table excluding Ti , (Ti, M) CN] is also known as a cermet (hereinafter simply referred to as a cermet). The cermet cutting tool is widely used for interrupted cutting because it has good fracture resistance as well as continuous cutting with steel or cast iron.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の切削加工
の省力化および省エネ化に耐する要求は強く、これに伴
い、切削加工は高速化、並びに高送りや高切り込みなど
の重切削化の傾向にあるが、上記の従来サーメット製切
削工具においては、これを特に強い熱衝撃を伴う切削、
例えば高送りまたは高切り込みの断続切削を高速で行う
切削に用いた場合には、切刃に欠損が発生し易く、比較
的短時間で使用寿命に至るのが現状である。On the other hand, in recent years, there is a strong demand for labor saving and energy saving in cutting work, and accordingly, cutting work has been accelerated and heavy cutting such as high feed and high cutting has been performed. In the above-mentioned conventional cermet cutting tools, there is a tendency to cut this with a particularly strong thermal shock,
For example, when high-feed or high-cut intermittent cutting is used for high-speed cutting, the cutting edge is liable to be damaged, and the service life is relatively short in the present situation.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来サーメット製切削工
具に着目し、これの耐熱衝撃性の向上を図るべく研究を
行った結果、サーメット製切削工具を構成するサーメッ
トの硬質相を、(a)芯部が、TiCNにおけるTiの
一部をTaおよびZrで置換してなるTi系複合炭窒化
物固溶体[以下、(Ti,Ta,Zr)CNで示す]か
らなり、これを組成式:Ti1-(x+y) Tax Zry )C
1-z Nz で表わした場合、いずれも原子比で、x:0.
1〜0.3、y:0.01〜0.2、z:0.2〜0.
6を満足する(Ti,Ta,Zr)CNであるのが望ま
しく、周辺部が、Ti、W、Zr、Mo、Ta、および
Nbの複合炭窒化物固溶体[以下、(Ti,W,Zr,
Mo,Ta,Nb)CNで示す]からなる第一硬質相、
(b)芯部が、TiCNにおけるTiの一部をWおよび
Moで置換してなるTi系複合炭窒化物固溶体[以下、
(Ti,W,Mo)CNで示す]からなり、これを組成
式:Ti1-(a+b) Wa Mob )C1-c Nc で表わした場
合、いずれも原子比で、a:0.1〜0.4、b:0.
05〜0.2、c:0.2〜0.6を満足する(Ti,
W,Mo)CNであるのが望ましく、周辺部が、同じく
(Ti,W,Zr,Mo,Ta,Nb)CN(Ti系複
合炭窒化物固溶体)からなる第二硬質相、以上(a)お
よび(b)の実質的に2種類の有芯構造を有する第一お
よび第二硬質相で構成すると、前記第一硬質相の芯部は
TiCNに比して硬さが高く、一方前記第二硬質相の芯
部はTiCNに比して硬さが低く、この結果前記第一硬
質相の芯部と前記第二硬質相の芯部の硬度差は相対的に
大きなものとなり、このような芯部硬さに大きな硬度差
のある2種類の硬質相が存在するサーメットは、すぐれ
た耐熱衝撃性を具備するようになり、したがってこのサ
ーメットで構成された切削工具は強い熱衝撃の伴う条件
での切削加工でもすぐれた耐欠損性を示し、長期に亘っ
てすぐれた切削性能を発揮するという研究結果を得たの
である。Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, the above-mentioned conventional cermet cutting tool was focused on, and as a result of researching to improve the thermal shock resistance of the cutting tool, the hard phase of the cermet forming the cermet cutting tool was identified as (a) The core portion is made of a Ti-based composite carbonitride solid solution obtained by substituting a part of Ti in TiCN with Ta and Zr [hereinafter, referred to as (Ti, Ta, Zr) CN], and has a composition formula: Ti 1 - (x + y) Ta x Zr y) C
When expressed in 1-z N z, both in terms of atomic ratio, x: 0.
1-0.3, y: 0.01-0.2, z: 0.2-0.
(Ti, Ta, Zr) CN satisfying No. 6 is preferable, and the peripheral portion is a composite carbonitride solid solution of Ti, W, Zr, Mo, Ta, and Nb [hereinafter, (Ti, W, Zr,
Mo, Ta, Nb) CN].
(B) Ti-based composite carbonitride solid solution in which the core part is obtained by substituting part of Ti in TiCN with W and Mo [hereinafter, referred to as “
(Ti, W, Mo) CN], which are represented by the composition formula: Ti 1-(a + b) W a Mo b ) C 1 -c N c , where all are represented by the atomic ratio a : 0.1 to 0.4, b: 0.
0.5 to 0.2, c: 0.2 to 0.6 (Ti,
(W, Mo) CN is preferable, and the peripheral portion is also a second hard phase also made of (Ti, W, Zr, Mo, Ta, Nb) CN (Ti-based composite carbonitride solid solution). When constituted by the first and second hard phases having substantially two types of cored structures of (b) and (b), the core of the first hard phase has a higher hardness than TiCN, while the second hard phase has a higher hardness. The hardness of the core of the hard phase is lower than that of TiCN, and as a result, the hardness difference between the core of the first hard phase and the core of the second hard phase is relatively large. A cermet having two types of hard phases having a large hardness difference in part hardness has excellent thermal shock resistance, and therefore, a cutting tool composed of the cermet can be used under conditions with strong thermal shock. Shows excellent fracture resistance even in cutting work, and excellent cutting performance over a long period of time The than is obtained the results of a study that demonstrated.
【0005】この発明は、上記の研究結果に基づいてな
されたものであって、走査型電子顕微鏡による組織観察
で、硬質相の割合が80〜95面積%を占め、残りがC
oおよび/またはNiを主成分とする結合相と不可避不
純物からなる組織を示し、前記硬質相を、(a)芯部が
(Ti,Ta,Zr)CN、望ましくは組成式:Ti
1-(x+y) Tax Zry )C1-z Nz で表わした場合、い
ずれも原子比で、x:0.1〜0.3、y:0.01〜
0.2、z:0.2〜0.6を満足する(Ti,Ta,
Zr)CNからなり、周辺部が(Ti,W,Zr,M
o,Ta,Nb)CNからなる第一硬質相、(b)芯部
が(Ti,W,Mo)CN、望ましくは組成式:Ti
1-(a+b) WaMob )C1-c Nc で表わした場合、いず
れも原子比で、a:0.1〜0.4、b:0.05〜
0.2、c:0.2〜0.6を満足する(Ti,W,M
o)CNからなり、周辺部が(Ti,W,Zr,Mo,
Ta,Nb)CNからなる第二硬質相、以上(a)およ
び(b)の実質的に2種類の有芯構造を有する第一およ
び第二硬質相で構成し、前記第一硬質相の芯部硬さは前
記第二硬質相の芯部硬さに比して相対的に高く、かつ前
記第一硬質相の割合が硬質相に占める割合で50〜80
面積%であるサーメットで構成してなる、耐熱衝撃性の
すぐれたサーメット製切削工具に特徴を有するものであ
る。The present invention has been made on the basis of the above research results, and the structure of the hard phase accounts for 80 to 95% by area, and the balance is C
FIG. 4 shows a structure composed of a binder phase containing o and / or Ni as main components and unavoidable impurities. The hard phase is composed of (a) a core part of (Ti, Ta, Zr) CN, and preferably a composition formula: Ti
When expressed in 1- (x + y) Ta x Zr y) C 1-z N z, both in terms of atomic ratio, x: 0.1~0.3, y: 0.01~
0.2, z: 0.2 to 0.6 are satisfied (Ti, Ta,
Zr) CN, and the peripheral portion is (Ti, W, Zr, M
o, Ta, Nb) The first hard phase composed of CN, (b) the core part is (Ti, W, Mo) CN, preferably the composition formula: Ti
When expressed in 1- (a + b) W a Mo b) C 1-c N c, both in terms of atomic ratio, a: 0.1~0.4, b: 0.05~
0.2, c: satisfy 0.2 to 0.6 (Ti, W, M
o) Consisting of CN, the periphery of which is (Ti, W, Zr, Mo,
Ta, Nb) A second hard phase composed of CN, a first and a second hard phase having substantially two types of cored structures (a) and (b), and a core of the first hard phase. The partial hardness is relatively higher than the core hardness of the second hard phase, and the ratio of the first hard phase is 50 to 80 in the ratio of the hard phase to the hard phase.
The present invention is characterized by a cutting tool made of cermet having excellent thermal shock resistance and composed of cermet having an area%.
【0006】また、この発明のサーメット製切削工具に
おいて、これを構成するサーメットの成分組成を上記の
通りに限定したのは以下に示す理由によるものである。 (a)硬質相の割合 その割合が80面積%未満では相対的に結合相の割合が
高くなりすぎて、所望のすぐれた耐摩耗性を確保するこ
とができず、一方その割合が95面積%を越えると、反
対に結合相の割合が低くなりすぎて、所望の焼結性が得
られず、この結果切削工具に要求される強度を確保する
のが困難になることから、その割合を80〜95面積
%、望ましくは85〜90面積%と定めた。Further, in the cermet cutting tool of the present invention, the component composition of the cermet constituting the cermet is limited as described above for the following reason. (A) Proportion of hard phase If the proportion is less than 80 area%, the proportion of the binder phase is relatively too high, and it is not possible to secure desired excellent wear resistance, while the proportion is 95 area%. On the contrary, if the ratio exceeds 80%, on the contrary, the ratio of the binder phase becomes too low, and the desired sinterability cannot be obtained. As a result, it becomes difficult to secure the strength required for the cutting tool. 9595% by area, preferably 85 to 90% by area.
【0007】(b)第一硬質相の割合 上記の通り硬質相が実質的に有芯構造を有するサーメッ
トにおいては、芯部が相対的に硬質の第一硬質相と軟質
の第二硬質相の共存によってすぐれた耐熱衝撃性を具備
するようになるものである。この場合第一硬質相の芯部
にTiCNのもつ硬さに比して高い所望の高硬度を確保
するには、これを組成式:Ti1-(x+y) Tax Zry )
C1-z Nz で表わした場合、いずれも原子比で、x:
0.1〜0.3、y:0.01〜0.2、z:0.2〜
0.6を満足するのが望ましいことは上記の通りであ
り、その理由は、x値およびy値のいずれか一方でも
x:0.1未満およびy:0.01未満になると、所望
の硬さ向上効果が得られず、またx値およびy値のいず
れか一方でもx:0.3およびy:0.2を越えると、
硬くなり過ぎて、これがチッピング発生の原因となるこ
とにあり、さらにC成分には硬さを、N成分には靭性を
確保する作用があり、したがってz値が0.2未満にな
ると相対的にC成分の割合が多くなり過ぎて靭性不足と
なり、反対にz値が0.6を越えると、相対的にC成分
の割合が少なくなり過ぎて硬さ不足となり、所望の硬さ
と靭性を具備することが困難になることにある。また、
第二硬質相の芯部にTiCNのもつ硬さに比して相対的
に低い所望の硬さを確保するには、これを組成式:Ti
1-(a+b) Wa Mob )C1-c Nc で表わした場合、いず
れも原子比で、a:0.1〜0.4、b:0.05〜
0.2、c:0.2〜0.6を満足するのが望ましいこ
とは上記の通りであり、その理由は、a値およびb値の
いずれか一方がa:0.1未満およびy:0.05未満
になっても、所望の硬さ低下効果が得られず、またa値
およびb値のいずれか一方でもa:0.4およびb:
0.2を越えると、芯部の硬さが低くなり過ぎて、これ
が摩耗進行を促進する原因になることにあり、さらにC
成分およびN成分については上記の理由と同じ理由によ
るものである。さらに前記第一硬質相の割合が硬質相に
占める割合で50面積%未満であったり、また80面積
%を越えたりすると、相対的に前記第二硬質相の割合が
50面積%を越えたり、20面積%未満になったりする
が、この場合には所望のすぐれた耐熱衝撃性は得られな
いことが経験的に判明しており、この結果に基づいて前
記第一硬質相の割合を硬質相に占める割合で50〜80
面積%、望ましくは60〜70面積%と定めた。(B) Proportion of the first hard phase As described above, in the cermet in which the hard phase has a substantially cored structure, the first hard phase having a relatively hard core and the second hard phase having a soft core are relatively hard. Coexistence provides excellent thermal shock resistance. In this case, to ensure the desired high hardness higher than the hardness with the TiCN to the core of the first hard phase, this composition formula: Ti 1- (x + y) Ta x Zr y)
When represented by C 1-z N z , all of them are represented by atomic ratio and x:
0.1-0.3, y: 0.01-0.2, z: 0.2-
As described above, it is desirable to satisfy 0.6, because when either x value or y value is less than x: 0.1 or less than y: 0.01, the desired hardness is obtained. When the effect of improving the height is not obtained and one of the x value and the y value exceeds x: 0.3 and y: 0.2,
It becomes too hard, which causes chipping. Further, the C component has an effect of securing hardness, and the N component has an effect of securing toughness. When the ratio of the C component is too large, the toughness is insufficient. On the contrary, when the z value exceeds 0.6, the ratio of the C component is relatively too small, the hardness is insufficient, and the desired hardness and toughness are provided. It can be difficult. Also,
In order to secure a desired hardness relatively lower than the hardness of TiCN in the core of the second hard phase, it is necessary to use the composition formula: Ti
When expressed in 1- (a + b) W a Mo b) C 1-c N c, both in terms of atomic ratio, a: 0.1~0.4, b: 0.05~
As described above, it is desirable to satisfy 0.2 and c: 0.2 to 0.6 because one of the a value and the b value is less than a: 0.1 and y: If it is less than 0.05, the desired hardness lowering effect cannot be obtained, and either one of the a value and the b value is a: 0.4 and b:
If it exceeds 0.2, the hardness of the core becomes too low, which may promote the progress of wear.
The component and the N component are for the same reason as described above. Further, when the proportion of the first hard phase is less than 50 area% or more than 80 area% in the proportion of the hard phase, the proportion of the second hard phase relatively exceeds 50 area%, Although it is less than 20 area%, it has been empirically found that in this case, the desired excellent thermal shock resistance cannot be obtained. 50-80%
Area%, desirably 60 to 70 area%.
【0008】[0008]
【発明の実施の態様】つぎに、この発明のサーメット製
切削工具を実施例により具体的に説明する。第一硬質相
芯部形成用原料粉末として、いずれも0.5〜2μmの
範囲内の所定の平均粒径を有する、 (a)(Ti0.70Ta0.20Zr0.10)C N 粉末
(以下、a粉末と云う)、 (b)(Ti0.89Ta0.10Zr0.01)C N 粉末
(以下、b粉末と云う)、 (c)(Ti0.50Ta0.30Zr0.20)C N 粉末
(以下、c粉末と云う)、 (d)(Ti0.70Ta0.10Zr0.20)C N 粉末
(以下、d粉末と云う)、 (e)(Ti0.69Ta0.30Zr0.01)C N 粉末
(以下、e粉末と云う)、 同じく第二硬質相芯部形成用原料粉末として、いずれも
0.5〜2μmの範囲内の所定の平均粒径を有する、 (ア)(Ti0.60W0.30Mo0.10)C N 粉末
(以下、ア粉末と云う)、 (イ)(Ti0.85W0.10Mo0.05)C N 粉末
(以下、イ粉末と云う)、 (ウ)(Ti0.40W0.40Mo0.20)C N 粉末
(以下、ウ粉末と云う)、 (エ)(Ti0.70W0.10Mo0.20)C N 粉末
(以下、エ粉末と云う)、 (オ)(Ti0.55W0.40Mo0.05)C N 粉末
(以下、オ粉末と云う) [以上の組成式はいずれも原子比で示す]、さらに第一
および第二硬質相周辺部形成用原料粉末として、いずれ
も0.5〜2μmの範囲内の所定の平均粒径を有する、
TaC粉末、NbC粉末、WC粉末、およびMo2 C粉
末、そして結合相形成用原料粉末とCo粉末およびNi
粉末を用意し、これら原料粉末をそれぞれ表1に示され
る配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、1ton/cm2 の圧力で所定形状に
プレス成形し、圧粉体A〜Pを形成した。ついで、前記
圧粉体A〜Pを以下の焼結条件、すなわち、10tor
rの窒素雰囲気中、室温から5℃/min.の昇温速度
で1350℃まで昇温し、1350℃に1.5時間保持
した後、同じ昇温速度で1500〜1600℃の範囲内
の所定の焼結温度まで昇温し、前記焼結温度に1.5時
間保持し、炉冷する焼結条件で焼結することによりIS
O規格CNMG120408のスローアウエイチップ形
状をもった本発明サーメット製切削工具(以下、本発明
サーメット工具と云う)1〜10、比較サーメット製切
削工具(以下、比較サーメット工具と云う)1〜6をそ
れぞれ製造した。Next, the cermet cutting tool of the present invention will be described in detail with reference to examples. (A) (Ti 0.70 Ta 0.20 Zr 0.10 ) C N powder (hereinafter a powder), each having a predetermined average particle size in the range of 0.5 to 2 μm as the raw material powder for forming the first hard phase core portion. (B) (Ti 0.89 Ta 0.10 Zr 0.01 ) C N powder (hereinafter referred to as b powder), (c) (Ti 0.50 Ta 0.30 Zr 0.20 ) C N powder (hereinafter referred to as c powder), (D) (Ti 0.70 Ta 0.10 Zr 0.20 ) C N powder (hereinafter referred to as d powder), (e) (Ti 0.69 Ta 0.30 Zr 0.01 ) C N powder (hereinafter referred to as e powder), and similarly second hard (A) (Ti 0.60 W 0.30 Mo 0.10 ) C N powder (hereinafter referred to as “a powder”) having a predetermined average particle size in a range of 0.5 to 2 μm as a raw material powder for forming a phase core portion. , (i) (Ti 0.85 W 0.10 Mo 0.05 ) C N powder (hereinafter, referred to as Lee powder), (c (Ti 0.40 W 0.40 Mo 0.20) C N powder (hereinafter, referred to as c powder), (d) (Ti 0.70 W 0.10 Mo 0.20 ) C N powder (hereinafter, referred to as d powder), (e) (Ti 0.55 W 0.40 Mo 0.05 ) C N powder (hereinafter referred to as “o powder”) [All of the above composition formulas are represented by atomic ratios], and further, as a raw material powder for forming the first and second hard phase peripheral portions, both are 0.5 Having a predetermined average particle size in the range of 22 μm,
TaC powder, NbC powder, WC powder, and Mo 2 C powder, and a raw material powder for forming a binder phase, Co powder, and Ni
Powders are prepared, and each of these raw material powders is blended in the composition shown in Table 1, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a predetermined shape at a pressure of 1 ton / cm 2 to obtain a green compact. AP were formed. Then, the green compacts A to P were sintered under the following sintering conditions, that is, 10 torr.
r in a nitrogen atmosphere at room temperature to 5 ° C./min. After the temperature was raised to 1350 ° C. at a temperature rising rate of 1350 ° C. and maintained at 1350 ° C. for 1.5 hours, the temperature was raised to a predetermined sintering temperature in the range of 1500 to 1600 ° C. at the same temperature rising rate, For 1.5 hours and sintering under furnace-cooling sintering conditions.
Cermet cutting tools of the present invention (hereinafter, referred to as the present cermet tool) 1 to 10 and comparative cermet cutting tools (hereinafter, referred to as comparative cermet tools) 1 to 6 each having a throwaway tip shape of O standard CNMG120408, respectively. Manufactured.
【0009】つぎに、この結果得られた各種のサーメッ
ト工具について、これを構成するサーメットの組織を、
まずオージェ電子分光装置を用いて観察し、硬質相個々
の芯部の組成を測定して種別けし(この場合第一硬質相
芯部および第二硬質相芯部とも実質的に原料粉末の組成
と同じ組成を有し、その周辺部はいずれも(Ti,W,
Zr,Mo,Ta,Nb)CNからなることを確認し
た)、ついで走査型電子顕微鏡および画像解析装置を用
いて前記種別けした硬質相毎の割合を測定した。これら
の測定結果を表2に示した。また、上記のサーメットの
組織観察では、本発明サーメット工具3、5、7、およ
び9に、また比較サーメット工具2、4、および5に、
それぞれ結合相中に未反応の微細な炭化物が僅かな割合
(微細なためその割合を測定することはできないもので
あった)ではあるが分散分布する組織が見られた。Next, regarding the various cermet tools obtained as a result, the cermet structures constituting the cermet tools are described as follows.
First, observation is performed using an Auger electron spectrometer, and the composition of each core of the hard phase is measured and classified (in this case, the first hard phase core and the second hard phase core are substantially the same as the composition of the raw material powder). It has the same composition, and all its peripheral parts are (Ti, W,
Zr, Mo, Ta, Nb) CN were confirmed), and the ratio of each of the classified hard phases was measured using a scanning electron microscope and an image analyzer. Table 2 shows the results of these measurements. In the above-mentioned cermet structure observation, the cermet tools 3, 5, 7, and 9 of the present invention, and the comparative cermet tools 2, 4, and 5,
Microstructures in which the unreacted fine carbides were dispersed in a small proportion (the proportions could not be measured due to the fineness) were observed in the respective binder phases.
【0010】さらに、上記の各種サーメット工具につい
て、耐熱衝撃性を評価する目的で、強い熱衝撃を伴う切
削条件、すなわち、 被削材:JIS・SNCM439の長さ方向等間隔4本
縦溝入り丸棒、 切削速度:350m/min.、 送り:0.15mm/rev.、 切り込み:2.5mm.、 切削時間:3分、 の条件で鋼の乾式高切り込み高速断続切削試験、並び
に、 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:350m/min.、 送り:0.35mm/rev.、 切り込み:1.0mm.、 切削時間:3分、 の条件で鋼の乾式高送り高速断続切削試験を行い、いず
れの切削試験でも切刃の逃げ面摩耗幅を測定した。これ
らの測定結果を表2に示した。Further, in order to evaluate the thermal shock resistance of the above various cermet tools, cutting conditions accompanied by a strong thermal shock, that is, a work material: JIS SNCM439, a circle with four longitudinal grooves at regular intervals in the longitudinal direction. Rod, cutting speed: 350 m / min. Feed: 0.15 mm / rev. Notch: 2.5 mm. , Cutting time: 3 minutes, Dry high-incision high-speed intermittent cutting test of steel under the following conditions: Work material: JIS S45C, 4 longitudinally spaced round bars with equally spaced longitudinal grooves, Cutting speed: 350 m / min. Feed: 0.35 mm / rev. Notch: 1.0 mm. Under the conditions of cutting time: 3 minutes, a dry high-feed high-speed intermittent cutting test of steel was performed, and the flank wear width of the cutting edge was measured in each cutting test. Table 2 shows the results of these measurements.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【発明の効果】表2に示される結果から、本発明サーメ
ット工具1〜10は、いずれも相対的に硬質の第一硬質
相と軟質の第二硬質相の共存によって、すぐれた耐熱衝
撃性を具備したものになっているいるので、上記の通り
の強い熱衝撃を伴う切削でも切刃に欠けやチッピングの
発生なく、すぐれた耐摩耗性を示すのに対して、硬質相
が第一硬質相または第二硬質相のいずれか1種からなる
比較サーメット工具1〜6は、切削時に発生する熱衝撃
によって切刃に欠けやチッピングが発生し、比較的短時
間で使用寿命に至ることが明らかである。上述のよう
に、この発明のサーメット製切削工具は、すぐれた耐熱
衝撃性を有するので、例えば鋼の連続切削は勿論のこ
と、断続切削を高速で、かつ重切削条件で行った場合に
も切刃に欠けやチッピングなどの発生なく、すぐれた切
削性能を長期に亘って発揮するものであり、したがって
切削加工の省力化および省エネ化に大いに寄与するもの
である。From the results shown in Table 2, the cermet tools 1 to 10 of the present invention have excellent thermal shock resistance due to the coexistence of the relatively hard first hard phase and the soft second hard phase. Since it is equipped, it shows excellent wear resistance without chipping or chipping of the cutting edge even in cutting with strong thermal shock as described above, whereas the hard phase is the first hard phase Alternatively, it is clear that the comparative cermet tools 1 to 6 made of any one of the second hard phases cause chipping or chipping of the cutting edge due to thermal shock generated during cutting, leading to a relatively short service life. is there. As described above, the cermet cutting tool of the present invention has excellent thermal shock resistance. Therefore, for example, not only continuous cutting of steel but also intermittent cutting at high speed under heavy cutting conditions can be performed. Excellent cutting performance is exhibited over a long period of time without chipping or chipping of the blade, and therefore greatly contributes to labor saving and energy saving in cutting.
【手続補正書】[Procedure amendment]
【提出日】平成10年8月3日(1998.8.3)[Submission date] August 3, 1998 (1998.8.3)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0008】[0008]
【発明の実施の態様】つぎに、この発明のサーメット製
切削工具を実施例により具体的に説明する。第一硬質相
芯部形成用原料粉末として、いずれも0.5〜2μmの
範囲内の所定の平均粒径を有する、 (a)(Ti0.70Ta0.20Zr0.10)C0.50N0.50 粉末
(以下、a粉末と云う)、 (b)(Ti0.89Ta0.10Zr0.01)C0.70N0.30 粉末
(以下、b粉末と云う)、 (c)(Ti0.50Ta0.30Zr0.20)C0.50N0.50 粉末
(以下、c粉末と云う)、 (d)(Ti0.70Ta0.10Zr0.20)C0.80N0.20 粉末
(以下、d粉末と云う)、 (e)(Ti0.69Ta0.30Zr0.01)C0.40N0.60 粉末
(以下、e粉末と云う)、 同じく第二硬質相芯部形成用原料粉末として、いずれも
0.5〜2μmの範囲内の所定の平均粒径を有する、 (ア)(Ti0.60W0.30Mo0.10)C0.50N0.50 粉末
(以下、ア粉末と云う)、 (イ)(Ti0.85W0.10Mo0.05)C0.70N0.30 粉末
(以下、イ粉末と云う)、 (ウ)(Ti0.40W0.40Mo0.20)C0.50N0.50 粉末
(以下、ウ粉末と云う)、 (エ)(Ti0.70W0.10Mo0.20)C0.50N0.50 粉末
(以下、エ粉末と云う)、 (オ)(Ti0.55W0.40Mo0.05)C0.70N0.30 粉末
(以下、オ粉末と云う) [以上の組成式はいずれも原子比で示す]、さらに第一
および第二硬質相周辺部形成用原料粉末として、いずれ
も0.5〜2μmの範囲内の所定の平均粒径を有する、
TaC粉末、NbC粉末、WC粉末、およびMo2 C粉
末、そして結合相形成用原料粉末とCo粉末およびNi
粉末を用意し、これら原料粉末をそれぞれ表1に示され
る配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、1ton/cm2 の圧力で所定形状に
プレス成形し、圧粉体A〜Pを形成した。ついで、前記
圧粉体A〜Pを以下の焼結条件、すなわち、10tor
rの窒素雰囲気中、室温から5℃/min.の昇温速度
で1350℃まで昇温し、1350℃に1.5時間保持
した後、同じ昇温速度で1500〜1600℃の範囲内
の所定の焼結温度まで昇温し、前記焼結温度に1.5時
間保持し、炉冷する焼結条件で焼結することによりIS
O規格CNMG120408のスローアウエイチップ形
状をもった本発明サーメット製切削工具(以下、本発明
サーメット工具と云う)1〜10、比較サーメット製切
削工具(以下、比較サーメット工具と云う)1〜6をそ
れぞれ製造した。Next, the cermet cutting tool of the present invention will be described in detail with reference to examples. (A) (Ti 0.70 Ta 0.20 Zr 0.10 ) C 0.50 N 0.50 powder (hereinafter, referred to as “first hard phase core portion forming raw material powder”), each having a predetermined average particle size in the range of 0.5 to 2 μm. a powder), (b) (Ti 0.89 Ta 0.10 Zr 0.01 ) C 0.70 N 0.30 powder (hereinafter referred to as b powder), (c) (Ti 0.50 Ta 0.30 Zr 0.20 ) C 0.50 N 0.50 powder (hereinafter, referred to as c) powder; (d) (Ti 0.70 Ta 0.10 Zr 0.20 ) C 0.80 N 0.20 powder (hereinafter referred to as d powder); (e) (Ti 0.69 Ta 0.30 Zr 0.01 ) C 0.40 N 0.60 powder (hereinafter, referred to as d powder). e) as raw material powders for forming the second hard phase core portion, each having a predetermined average particle size in the range of 0.5 to 2 μm. (A) (Ti 0.60 W 0.30 Mo 0.10 ) C 0.50 N 0.50 powder (hereinafter, referred to as a powder), (b) (Ti 0.85 W 0.10 Mo 0.05 C 0.70 N 0.30 powder (hereinafter, referred to as Lee powder), (c) (Ti 0.40 W 0.40 Mo 0.20 ) C 0.50 N 0.50 powder (hereinafter, referred to as c powder), (d) (Ti 0.70 W 0.10 Mo 0.20 ) C 0.50 N 0.50 powder (hereinafter referred to as “E powder”), (E) (Ti 0.55 W 0.40 Mo 0.05 ) C 0.70 N 0.30 powder (hereinafter referred to as “O powder”) [All the above composition formulas are represented by atomic ratio. ], And as the first and second hard phase peripheral part forming raw material powders, each has a predetermined average particle size in the range of 0.5 to 2 μm,
TaC powder, NbC powder, WC powder, and Mo 2 C powder, and a raw material powder for forming a binder phase, Co powder, and Ni
Powders are prepared, and each of these raw material powders is blended in the composition shown in Table 1, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a predetermined shape at a pressure of 1 ton / cm 2 to obtain a green compact. AP were formed. Then, the green compacts A to P were sintered under the following sintering conditions, that is, 10 torr.
r in a nitrogen atmosphere at room temperature to 5 ° C./min. After the temperature was raised to 1350 ° C. at a temperature rising rate of 1350 ° C. and maintained at 1350 ° C. for 1.5 hours, the temperature was raised to a predetermined sintering temperature in the range of 1500 to 1600 ° C. at the same temperature rising rate, For 1.5 hours and sintering under furnace-cooling sintering conditions.
Cermet cutting tools of the present invention (hereinafter, referred to as the present cermet tool) 1 to 10 and comparative cermet cutting tools (hereinafter, referred to as comparative cermet tools) 1 to 6 each having a throwaway tip shape of O standard CNMG120408, respectively. Manufactured.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高岡 秀充 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 辻崎 久史 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 野中 勝尚 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C046 FF34 FF38 FF39 FF40 FF44 FF45 FF48 FF51 FF53 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hidemitsu Takaoka 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture Inside the Tsukuba Works, Mitsubishi Materials Corp. 1511 Mitsubishi Materials Corporation Tsukuba Works (72) Inventor Katsuhisa Nonaka 1511 Furusagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture Mitsubishi Materials Corporation Tsukuba Works F-term (reference)
Claims (1)
質相の割合が80〜95面積%を占め、残りがCoおよ
び/またはNiを主成分とする結合相と不可避不純物か
らなる組織を示し、前記硬質相を、 (a)芯部が、炭窒化チタンにおけるTiの一部をTa
およびZrで置換してなるTi系複合炭窒化物固溶体か
らなり、周辺部が、Ti、W、Zr、Mo、Ta、およ
びNbの複合炭窒化物固溶体からなる第一硬質相、 (b)芯部が、炭窒化チタンにおけるTiの一部をWお
よびMoで置換してなるTi系複合炭窒化物固溶体から
なり、周辺部が、Ti、W、Zr、Mo、Ta、および
Nbの複合炭窒化物固溶体からなる第二硬質相、以上
(a)および(b)の実質的に2種類の有芯構造を有す
る第一および第二硬質相で構成し、前記第一硬質相の芯
部硬さは前記第二硬質相の芯部硬さに比して相対的に高
く、かつ前記第一硬質相の割合が硬質相に占める割合で
50〜80面積%である炭窒化チタン系サーメットで構
成したことを特徴とする耐熱衝撃性のすぐれた炭窒化チ
タン系サーメット製切削工具。1. Observation of a structure by a scanning electron microscope shows a structure in which the proportion of a hard phase occupies 80 to 95 area%, and the balance is composed of a binder phase containing Co and / or Ni as a main component and unavoidable impurities, (A) The core part is a part of Ti in titanium carbonitride
A first hard phase composed of a Ti-based composite carbonitride solid solution substituted with Zr and Zr, and having a peripheral portion composed of a composite carbonitride solid solution of Ti, W, Zr, Mo, Ta, and Nb; Part is composed of a Ti-based composite carbonitride solid solution in which part of Ti in titanium carbonitride is replaced by W and Mo, and the peripheral part is a composite carbonitride of Ti, W, Zr, Mo, Ta and Nb. A second hard phase composed of a solid solution, a first and a second hard phase having substantially two types of cored structures (a) and (b), and a core hardness of the first hard phase. Was composed of a titanium carbonitride-based cermet having a relative hardness higher than the core hardness of the second hard phase and a proportion of the first hard phase in the hard phase of 50 to 80 area%. Titanium carbonitride-based cermet cutting with excellent thermal shock resistance tool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17598298A JP2000038635A (en) | 1998-05-20 | 1998-06-23 | Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistance |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-138003 | 1998-05-20 | ||
JP13800398 | 1998-05-20 | ||
JP17598298A JP2000038635A (en) | 1998-05-20 | 1998-06-23 | Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000038635A true JP2000038635A (en) | 2000-02-08 |
Family
ID=26471161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17598298A Withdrawn JP2000038635A (en) | 1998-05-20 | 1998-06-23 | Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000038635A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016087742A (en) * | 2014-11-05 | 2016-05-23 | 株式会社タンガロイ | Cermet tool and surface-coated cermet tool |
-
1998
- 1998-06-23 JP JP17598298A patent/JP2000038635A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016087742A (en) * | 2014-11-05 | 2016-05-23 | 株式会社タンガロイ | Cermet tool and surface-coated cermet tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4778521A (en) | Tough cermet and process for producing the same | |
KR101267151B1 (en) | Cermet insert and cutting tool | |
US5059491A (en) | Cermet blade member for cutting-tools and process for producing same | |
JPH10219385A (en) | Cutting tool made of composite cermet, excellent in wear resistance | |
JP7185844B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP5284684B2 (en) | Super hard alloy | |
JPH10110234A (en) | Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance | |
JP2012193430A (en) | Cemented carbide | |
JPS633017B2 (en) | ||
JP2000038635A (en) | Cutting tool made of titanium carbonitride series cermet excellent in thermal impact resistance | |
JP2000054055A (en) | Cutting tool made of titanium carbonitride cermet excellent in thermal impact resistance | |
JP3319246B2 (en) | Cermet cutting tool with excellent fracture resistance | |
JP3493587B2 (en) | Titanium carbonitride-based cermet cutting tool with excellent wear resistance | |
JPH07224346A (en) | Titanium carbon nitride cement excellent in toughness | |
JPH08176719A (en) | Nitrogen-containing sintered hard alloy | |
JP3483162B2 (en) | Titanium carbonitride cermet cutting tool with excellent toughness and wear resistance | |
JP2536536B2 (en) | Cermet cutting tip | |
JP2697553B2 (en) | Titanium carbonitride cermet cutting tool with excellent toughness | |
JP4154643B2 (en) | Cemented carbide square end mill with excellent chipping resistance with high-speed cutting. | |
WO2019159781A1 (en) | Tin-based sintered body and cutting tool made of tin-based sintered body | |
JPH0471986B2 (en) | ||
JP2000073136A (en) | Production of cutting tool made of titanium base multiple metallic carbonitride cermet excellent in chipping resistance | |
JP2023095013A (en) | Cermet compact | |
JPH0681071A (en) | Titanium carbonitride base cermet excellent in toughness | |
JPH08246090A (en) | Titanium carbon nitride base cermet excellent in toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050906 |