JP2000038614A - Method for melting extra-low carbon steel excellent in cleanliness - Google Patents

Method for melting extra-low carbon steel excellent in cleanliness

Info

Publication number
JP2000038614A
JP2000038614A JP10205293A JP20529398A JP2000038614A JP 2000038614 A JP2000038614 A JP 2000038614A JP 10205293 A JP10205293 A JP 10205293A JP 20529398 A JP20529398 A JP 20529398A JP 2000038614 A JP2000038614 A JP 2000038614A
Authority
JP
Japan
Prior art keywords
content
slag
molten steel
vacuum
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10205293A
Other languages
Japanese (ja)
Other versions
JP3903603B2 (en
Inventor
Takayuki Nishi
隆之 西
Makoto Fukagawa
信 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20529398A priority Critical patent/JP3903603B2/en
Publication of JP2000038614A publication Critical patent/JP2000038614A/en
Application granted granted Critical
Publication of JP3903603B2 publication Critical patent/JP3903603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a melting method of an extra-low carbon steel excellent in the cleanliness while restraining lower oxide content to low level without blowing gaseous oxygen at the time of executing a vacuum decarburizing treatment. SOLUTION: The contents in slag in a ladle before the vacuum treatment are adjusted to 0.6-2.0 CaO/Al2O3 ratio of CaO content to Al2O3 content and 2-10 wt.% the total of FeO and MnO contents, <=12 wt.% SiO2 content and 5-10 wt.% Mg content. Successively, the decarburize-treatment is executed on the molten steel and further, in order to execute deoxidize-treatment, Al is added into the molten steel, and simultaneously or thereafter, the oxide- containing MgO is added into a vacuum vessel to produce the steel having <=0.005 wt.% carbon content.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、清浄性に優れた極
低炭素鋼の溶製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting ultra-low carbon steel having excellent cleanliness.

【0002】[0002]

【従来の技術】表面欠陥が少なくかつ成形性に優れてい
ることが要求される自動車の外装用鋼板には、極低炭素
鋼が用いられており、その素材の溶製の際には、鋼の極
低炭素化および高清浄化対策が採られている。
2. Description of the Related Art Ultra-low carbon steel is used as an exterior steel sheet of an automobile which is required to have a small number of surface defects and excellent formability. Measures for ultra-low carbon and high purification.

【0003】極低炭素鋼を溶製する場合には、真空処理
装置を用いて未脱酸溶鋼の脱炭反応をおこさせる方法が
一般的である。すなわち、転炉等の製鋼炉より炭素含有
率が0.02〜0.1重量%の未脱酸溶鋼を取鍋に出鋼
し、その後に真空処理装置を用いて溶鋼中酸素と炭素と
の反応により炭素含有率0.001〜0.005重量%
まで脱炭する。
[0003] In the case of producing ultra-low carbon steel, a method of decarburizing undeoxidized molten steel using a vacuum processing apparatus is generally used. That is, undeoxidized molten steel having a carbon content of 0.02 to 0.1% by weight is put out from a steelmaking furnace such as a converter into a ladle, and then the oxygen and carbon in the molten steel are separated using a vacuum processing apparatus. 0.001-0.005% by weight carbon content by reaction
Decarburize until.

【0004】上記の反応の際に、十分な脱炭速度を得る
ために必要な酸素含有率は、0.04重量%以上である
ことが知られている。このような酸素含有率の高い溶鋼
を転炉等の製鋼炉で得る場合、スラグ中の低級酸化物で
あるFeOとMnOの含有率の合計が、15〜20重量
%程度と高くなる。
[0004] In the above reaction, it is known that the oxygen content necessary for obtaining a sufficient decarburization rate is 0.04% by weight or more. When such molten steel having a high oxygen content is obtained in a steelmaking furnace such as a converter, the total content of the lower oxides FeO and MnO in the slag is as high as about 15 to 20% by weight.

【0005】真空脱炭処理後にAlにより脱酸処理を行
った極低炭素鋼の溶鋼では、真空処理後から連続鋳造中
の間に、取鍋内溶鋼中のAlとスラグ中の低級酸化物と
が反応する。この反応によりAlの酸化物(Al2
3 )が生成する。この酸化物は、連続鋳造中にタンデイ
ッシュ内や鋳型内の溶鋼から除去されずに鋳片に残存し
て非金属介在物となり、鋼の清浄性を悪化させる。
[0005] In molten steel of ultra-low carbon steel which has been deoxidized with Al after vacuum decarburization, the Al in the molten steel in the ladle and the lower oxide in the slag react during continuous casting after the vacuum treatment. I do. By this reaction, an oxide of Al (Al 2 O)
3 ) Generate. This oxide remains in the slab without being removed from the molten steel in the tundish or the mold during continuous casting and becomes a nonmetallic inclusion, thereby deteriorating the cleanliness of the steel.

【0006】このAl2 3 系非金属介在物は、鋳片の
表面付近に集積しやすく、そのため自動車の外装用鋼板
の表面欠陥となったり、また、連続鋳造中の浸漬ノズル
が閉塞する原因となったりする場合がある。浸漬ノズル
が閉塞すると連々鋳ができなくなり生産性が阻害される
ばかりでなく、ノズル内を通過する溶鋼に偏流が生じて
鋳型内の流動状態が変化し表面欠陥が生じる。さらにこ
のノズル閉塞を防ぐために、ノズルの上部より吹き込ま
れるAr等の不活性ガスの流量を増加する必要が生じ
る。この吹き込まれた不活性ガスも、鋳片の表面近傍に
残留し捕捉された場合には、表面欠陥の一因となる。こ
のような表面欠陥を防止するために、鋳片や熱間圧延し
た鋼板用素材の表面を手入れする場合は、経済性や生産
性の面から問題がある。
The Al 2 O 3 non-metallic inclusions tend to accumulate in the vicinity of the surface of the cast slab, thereby causing surface defects on the exterior steel plate of automobiles and clogging of the immersion nozzle during continuous casting. It may be. If the immersion nozzle is closed, not only the casting cannot be performed successively and productivity is impaired, but also the molten steel passing through the nozzle is deflected to change the flow state in the mold and cause surface defects. Further, in order to prevent the nozzle blockage, it is necessary to increase the flow rate of an inert gas such as Ar blown from the upper portion of the nozzle. If the injected inert gas also remains near the surface of the slab and is captured, it contributes to surface defects. When the surface of a slab or a hot-rolled steel sheet material is to be treated to prevent such surface defects, there are problems in terms of economy and productivity.

【0007】そこで、鋼中のAlと反応を起こしやすい
スラグ中のFeOやMnOなどの低級酸化物の含有率
を、転炉等の製鋼炉からの出鋼時、または真空処理前に
下げる対策が採られてきた。
[0007] Therefore, there is a measure to reduce the content of lower oxides such as FeO and MnO in slag which easily reacts with Al in steel at the time of tapping from a steelmaking furnace such as a converter or before vacuum treatment. Has been taken.

【0008】たとえば、特開平5−239537号公報
に開示される方法では、転炉からの出鋼中または出鋼後
の取鍋内のスラグに、スラグ改質剤を添加してスラグ中
のFeOおよびMnOの合計の含有率を5重量%以下に
し、その後、真空脱炭処理前に上吹きランスから真空槽
内の溶鋼の表面に酸素ガスを吹き付け、脱炭処理後のA
l脱酸の後に、上記上吹きランスからCaOを50重量
%以上含有するフラックスを溶鋼表面に吹き付ける方法
を採っている。
For example, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 5-23937, a slag modifier is added to slag in a ladle during or after tapping from a converter to add FeO in the slag. The total content of MnO and MnO is set to 5% by weight or less, and then oxygen gas is blown from the top blowing lance to the surface of the molten steel in the vacuum tank before the vacuum decarburization treatment, and A after the decarburization treatment is performed.
After deoxidation, a method is employed in which a flux containing 50% by weight or more of CaO is blown onto the surface of molten steel from the above-mentioned upper blowing lance.

【0009】この方法では、真空槽内の溶鋼表面に上吹
きランスから酸素ガスを吹き付けることを前提としてい
る。その理由は、スラグ改質により真空処理前のスラグ
中の低級酸化物の含有率を低くするため、脱炭反応に寄
与する低級酸化物からの酸素供給量が低下して、脱炭反
応に必要な酸素が不足するからである。
This method is based on the premise that oxygen gas is blown from a top blowing lance onto the surface of molten steel in a vacuum chamber. The reason is that the slag reforming lowers the content of lower oxides in the slag before vacuum treatment, so the amount of oxygen supplied from the lower oxides that contributes to the decarburization reaction decreases, which is necessary for the decarburization reaction. This is because of insufficient oxygen.

【0010】しかし、真空槽内の溶鋼表面に酸素ガスを
吹き付けることにより、溶鋼中のFeやMnなどが酸化
され、FeOやMnOなどの低級酸化物が発生し、結局
スラグ中の低級酸化物の含有率が高くなる。また、出鋼
後のスラグ中のFeOおよびMnOの合計の含有率を5
%以下にするために、多量の改質剤および造滓剤を出鋼
中に使用するので、溶鋼の温度降下が大きい。
However, when oxygen gas is blown onto the surface of the molten steel in the vacuum chamber, Fe and Mn in the molten steel are oxidized, and lower oxides such as FeO and MnO are generated. The content increases. Further, the total content of FeO and MnO in the slag after tapping was adjusted to 5%.
%, A large amount of a modifier and a slag-making agent are used during tapping, so that the temperature drop of the molten steel is large.

【0011】特開平6−116623号公報では、真空
脱炭処理前にAlを含むスラグ改質剤を取鍋内のスラグ
に添加し、真空脱炭処理開始時にMgOを含有するフラ
ックスを真空槽内に添加し、また酸素ガスを真空槽内の
溶鋼表面に吹き付ける方法が提案されている。しかし、
この方法では、上述の特開平5−239537号公報の
方法と同様の理由により、真空脱炭処理時の酸素ガスの
使用を前提としているので、スラグ中の低級酸化物の含
有率が高くなる。
In Japanese Patent Application Laid-Open No. 6-116623, a slag modifier containing Al is added to slag in a ladle before vacuum decarburization treatment, and a flux containing MgO is introduced into a vacuum chamber at the start of vacuum decarburization treatment. And blowing oxygen gas onto the surface of molten steel in a vacuum chamber has been proposed. But,
In this method, the use of oxygen gas at the time of vacuum decarburization treatment is assumed for the same reason as the method of Japanese Patent Application Laid-Open No. Hei 5-23937, so that the content of the lower oxide in the slag increases.

【0012】[0012]

【発明が解決しようとする課題】本発明は、低級酸化物
の含有率を低く抑えながら、かつ真空脱炭処理時に酸素
ガスを吹き付けないことから、清浄性に優れている極低
炭素鋼の溶製方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for melting ultra-low carbon steel which is excellent in cleanliness, while keeping the content of lower oxides low and not blowing oxygen gas during vacuum decarburization. It is intended to provide a manufacturing method.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、下記の
(1)に示す清浄性に優れた極低炭素鋼の溶製方法にあ
る。
The gist of the present invention resides in a method for melting ultra-low carbon steel excellent in cleanliness as shown in the following (1).

【0014】(1)真空処理装置を用いて、取鍋内の溶
鋼を脱炭処理後に脱酸処理することにより炭素含有率が
0.005重量%以下の極低炭素鋼を溶製する方法にお
いて、真空処理前の取鍋内のスラグ中のCaO含有率と
Al2 3 含有率の重量%の比CaO/Al2 3
0.6以上2.0以下、FeOおよびMnOの含有率の
合計を2重量%以上10重量%以下、SiO2 含有率を
12重量%以下ならびにMgO含有率を5重量%以上1
0重量%以下に調整した後、溶鋼を脱炭処理し、引き続
き溶鋼を脱酸処理するために溶鋼にAlを添加し、それ
と同時にまたはその後に、真空槽内にMgOを含有する
酸化物を添加することによる清浄性に優れた極低炭素鋼
の溶製方法。
(1) A method for melting ultra-low carbon steel having a carbon content of 0.005% by weight or less by deoxidizing molten steel in a ladle using a vacuum processing apparatus after decarburizing the steel. , before the vacuum treatment in the ladle CaO content in the slag and Al 2 O 3 2 wt% ratio CaO / Al content ratio O 3 0.6 to 2.0, the FeO and MnO content ratio The total is 2% by weight to 10% by weight, the SiO 2 content is 12% by weight or less, and the MgO content is 5% by weight to 1%.
After adjusting to 0% by weight or less, the molten steel is decarburized, and then Al is added to the molten steel in order to deoxidize the molten steel, and at the same time or thereafter, an oxide containing MgO is added to the vacuum chamber. Smelting method for ultra-low carbon steel with excellent cleanliness.

【0015】本発明の方法では、真空処理前のスラグ中
のFeOおよびMnOの含有率の合計を適切でかつ低目
の範囲に調整する。これにより、スラグによる溶鋼の再
酸化が抑制される。また、真空脱炭処理時に脱炭速度の
停滞を生じない程度に、FeOおよびMnOの合計の含
有率を確保している。
In the method of the present invention, the sum of the contents of FeO and MnO in the slag before the vacuum treatment is adjusted to an appropriate and lower range. Thereby, reoxidation of molten steel by slag is suppressed. Further, the total content of FeO and MnO is ensured to such an extent that the decarburization rate does not stagnate during the vacuum decarburization treatment.

【0016】さらに、真空処理前のスラグの化学組成
を、上述のFeOおよびMnOの含有率の合計以外に、
CaO/Al2 3 の値、SiO2 含有率、MgO含有
率を適切な値の範囲とすることにより、スラグによる溶
鋼の再酸化を抑制している。以下に、その機構を説明す
る。
Further, the chemical composition of the slag before the vacuum treatment is changed in addition to the above-mentioned total contents of FeO and MnO.
By setting the values of CaO / Al 2 O 3 , SiO 2 content, and MgO content in appropriate ranges, reoxidation of molten steel by slag is suppressed. The mechanism will be described below.

【0017】取鍋内のスラグは、固相と液相に分かれて
おり、このうち、溶鋼と直接接触して溶鋼を再酸化させ
ているのは、液相のスラグである。したがって、スラグ
による溶鋼の再酸化を抑制するには、真空処理後のスラ
グの液相の割合を減らし、固相の割合を増やせばよい。
The slag in the ladle is divided into a solid phase and a liquid phase. Of these, the slag in the liquid phase directly contacts the molten steel and reoxidizes the molten steel. Therefore, in order to suppress the reoxidation of the molten steel by the slag, the ratio of the liquid phase of the slag after the vacuum treatment may be reduced and the ratio of the solid phase may be increased.

【0018】このとき、液相のスラグを完全に固相とす
る必要はなく、液相のスラグの中に10体積%程度の固
相を生成させれば、溶鋼の再酸化を抑制できることが分
かった。
At this time, it is not necessary to completely convert the liquid slag into a solid phase, and it is found that the reoxidation of the molten steel can be suppressed by generating about 10% by volume of the solid phase in the liquid slag. Was.

【0019】真空処理前のスラグの化学組成を上述のよ
うな範囲にした場合、真空処理時のAl脱酸とともにM
gOを主体とする酸化物を真空槽内の溶鋼に添加する
と、液相のスラグ中に、10体積%程度の固相を生成さ
せることができる。
When the chemical composition of the slag before the vacuum treatment is in the above range, M
When an oxide mainly composed of gO is added to molten steel in a vacuum chamber, a solid phase of about 10% by volume can be generated in a liquid slag.

【0020】[0020]

【発明の実施の形態】真空処理前のスラグ組成を適正な
範囲に制御するためには、転炉等の製鋼炉から取鍋に溶
鋼を出鋼するときに、スラグの流出を抑制し、造滓剤と
して生石灰や、Al2 3 またはCaOを主成分とする
フラックスを添加する。また、スラグ中のFeOおよび
MnOの合計の含有率を調整するため、Al灰やAl−
CaO系のスラグ改質剤を添加する。
BEST MODE FOR CARRYING OUT THE INVENTION In order to control the slag composition before the vacuum treatment within an appropriate range, when the molten steel is discharged from a steelmaking furnace such as a converter to a ladle, the outflow of the slag is suppressed, and Quicklime or a flux mainly composed of Al 2 O 3 or CaO is added as a slag. Further, in order to adjust the total content of FeO and MnO in the slag, Al ash or Al-
A CaO-based slag modifier is added.

【0021】本発明の方法では、真空処理前のスラグの
CaO含有率とAl2 3 含有率の重量%の比CaO/
Al2 3 を0.6以上2.0以下とする。CaO/A
23 が0.6未満のスラグでは、真空脱炭処理後の
Al脱酸時に不可避的に生成し、浮上するAl2 3
固定し吸収する能力が不十分である。また、この比が
2.0を超えたスラグは、スラグ中の液相の割合が減少
して流動性が低下する。そのため、Al2 3 を吸収す
る能力が低下するので好ましくない。
In the method of the present invention, the ratio of the CaO content of the slag before the vacuum treatment to the weight percentage of the Al 2 O 3 content CaO /
Al 2 O 3 is set to 0.6 or more and 2.0 or less. CaO / A
In the case of slag having l 2 O 3 of less than 0.6, the ability to inevitably form and absorb floating Al 2 O 3, which is inevitably generated during Al deoxidation after vacuum decarburization treatment, is insufficient. In addition, in the slag in which this ratio exceeds 2.0, the ratio of the liquid phase in the slag decreases and the fluidity decreases. Therefore, the ability to absorb Al 2 O 3 is undesirably reduced.

【0022】また、真空処理前のスラグのFeOおよび
MnOの含有率は、合計で2〜10重量%(以下、単に
%と記す)とする。2%未満では、真空脱炭反応に必要
な溶鋼中酸素量0.04%以上を確保できない。また、
これら低級酸化物からの酸素供給量が減少し、真空脱炭
反応速度が遅くなるばかりでなく、極低炭素鋼の溶製が
できない場合がある。
The slag before vacuum treatment has a total content of FeO and MnO of 2 to 10% by weight (hereinafter simply referred to as%). If it is less than 2%, it is impossible to secure 0.04% or more of oxygen in molten steel necessary for the vacuum decarburization reaction. Also,
Not only does the supply of oxygen from these lower oxides decrease, not only does the vacuum decarburization reaction rate slow, but it is sometimes impossible to melt ultra-low carbon steel.

【0023】図1は、真空処理前のスラグ中のFeOお
よびMnOの含有率の合計と、真空脱炭処理時に溶鋼中
のC含有率が0.002%に到達するまでの時間との関
係を示した図である。溶鋼量270tの極低炭素鋼をR
H真空処理装置により溶製した結果であり、その処理条
件は、真空脱炭開始時の溶鋼中のC含有率は0.04〜
0.05%、真空処理前のスラグ中のCaO/Al2
3 は0.8〜1.2、SiO2 含有率は12%以下、M
gO含有率は5〜10%である。
FIG. 1 shows the relationship between the total content of FeO and MnO in slag before vacuum treatment and the time until the C content in molten steel reaches 0.002% during vacuum decarburization treatment. FIG. Ultra low carbon steel with 270t molten steel
This is the result of melting with a H vacuum processing apparatus. The processing conditions are as follows: C content in molten steel at the start of vacuum decarburization is 0.04 to
0.05%, CaO / Al 2 O in slag before vacuum treatment
3 is 0.8 to 1.2, SiO 2 content is 12% or less, M
The gO content is between 5 and 10%.

【0024】図1に示すように、FeOおよびMnOの
含有率の合計が2%未満では、真空脱炭に要する時間が
大幅に延びる。5%以上でこの所要時間は最短となる。
したがって、FeOおよびMnOの含有率の下限は合計
で2%、さらに望ましいのは5%である。
As shown in FIG. 1, when the total content of FeO and MnO is less than 2%, the time required for vacuum decarburization is greatly increased. Above 5%, this time is minimized.
Therefore, the lower limit of the content of FeO and MnO is 2% in total, and more preferably 5%.

【0025】また、FeOおよびMnOの含有率の合計
が10%までは溶鋼の清浄性を確保できる。しかし、1
0%を超えて多量に含有すると、真空槽内にMgOを含
有する酸化物を添加した後にも、スラグによる溶鋼の再
酸化が発生する。したがって、FeOおよびMnOの含
有率の上限は合計で10%とした。
Further, cleanliness of molten steel can be ensured when the total content of FeO and MnO is up to 10%. However, 1
If it is contained in a large amount exceeding 0%, reoxidation of molten steel by slag occurs even after adding an oxide containing MgO into the vacuum chamber. Therefore, the upper limits of the contents of FeO and MnO are set to 10% in total.

【0026】真空処理前のスラグ中のSiO2 含有率
は、12%以下とする。SiO2 は、転炉等の製鋼炉か
らの流出スラグや造滓剤から不可避的に混入する。この
SiO2 が、12%を超えると、脱酸後の溶鋼の再酸化
が発生する。また、脱酸後の液相のスラグに固相を生成
させるために添加するMgOを含有する酸化物の量を増
加させる必要が生じる。
The content of SiO 2 in the slag before the vacuum treatment is 12% or less. SiO 2 is inevitably mixed in from slag or slag-making agent flowing out of a steelmaking furnace such as a converter. If this SiO 2 exceeds 12%, reoxidation of the molten steel after deoxidation occurs. In addition, it is necessary to increase the amount of MgO-containing oxide added to generate a solid phase in the liquid phase slag after deoxidation.

【0027】したがって、SiO2 は12%以下とし、
望ましくは10%以下である。10%以下の場合には、
脱酸時に添加するMgOを含有する酸化物を、さらに減
らすことができる。また、SiO2 による溶鋼の再酸化
も抑制できる。下限については、とくに限定しないが、
脈石として造滓剤に含まれるので、通常1%程度以上と
なる。
Therefore, the content of SiO 2 should be 12% or less,
Desirably, it is 10% or less. If less than 10%,
The oxide containing MgO added at the time of deoxidation can be further reduced. Further, reoxidation of molten steel by SiO 2 can be suppressed. The lower limit is not particularly limited,
Since it is contained in the slag-making agent as gangue, it is usually about 1% or more.

【0028】真空処理前のスラグ中のMgO含有率は5
〜10%とする。5%未満では、脱酸後の液相のスラグ
に固相を生成させるためのMgOを含有する酸化物の添
加量が多くなりすぎ、溶鋼の温度の低下を招く。また、
出鋼時にMgO含有率を減ずるには多量の造滓剤を添加
して希釈する必要があり、溶鋼の温度の低下を招く。一
方、MgO含有率が10%を超えると、取鍋内のスラグ
の固相の割合が増大することに加えて、スラグのAl2
3 を吸収する能力が低下するので好ましくない。
The MgO content in the slag before vacuum treatment is 5
-10%. If it is less than 5%, the added amount of the oxide containing MgO for generating a solid phase in the slag of the liquid phase after deoxidation becomes too large, which causes a decrease in the temperature of the molten steel. Also,
In order to reduce the MgO content during tapping, it is necessary to add and dilute a large amount of slag-making agent, resulting in a decrease in the temperature of the molten steel. On the other hand, when the MgO content exceeds 10%, the ratio of the solid phase of the slag in the ladle increases, and the Al 2 content of the slag increases.
This is not preferred because the ability to absorb O 3 is reduced.

【0029】真空脱炭処理後のAl脱酸時に添加するM
gOを含有する酸化物には、MgO単体、MgO・Ca
O、MgO・Al2 3 などがある。
M added during Al deoxidation after vacuum decarburization treatment
The oxides containing gO include MgO alone, MgO · Ca
O, MgO.Al 2 O 3 and the like.

【0030】MgO単体としては、MgOを85%以
上、望ましくは90%以上含有する酸化物で、一般的に
は、天然マグネシアあるいは海水マグネシアと呼ばれる
ものがある。
MgO alone is an oxide containing 85% or more, preferably 90% or more of MgO, which is generally called natural magnesia or seawater magnesia.

【0031】また、MgO・CaOには、ドロマイトと
呼ばれる鉱物があり、MgOを35%、CaOを60%
前後含有するもの、このほかMgO含有率が50%以上
あるいは70%以上のマグネシアドロマイトがある。M
gO含有率が高い方が、添加量を抑えることができるの
で望ましい。マグネシアドロマイトは、レンガ材料とし
て使用されるので、使用済みレンガを適宜破砕、整粒し
たものを用いることができる。
MgO.CaO has a mineral called dolomite, which contains 35% MgO and 60% CaO.
Magnesia dolomite having a MgO content of 50% or more or 70% or more is also included. M
A higher gO content is desirable because the addition amount can be suppressed. Since magnesia dolomite is used as a brick material, used bricks obtained by appropriately crushing and sizing the used bricks can be used.

【0032】MgO・Al2 3 には、MgOを28
%、Al23 を72%含有するスピネルやMgO含有
率が40%以上あるいは60%以上に高めてMgO飽和
組成にしたマグネシアスピネルと呼ばれるものがある。
MgO含有率が高い方が、添加量を抑えることができる
ので望ましい。スピネルも、レンガ材料、不定形耐火物
材料として使用されるので、これらの使用済み材料を適
宜破砕、整粒したものを用いることができる。
MgO.Al 2 O 3 contains 28 MgO.
%, There is a so-called magnesia spinel spinel and MgO content containing Al 2 O 3 72% was in the MgO saturated composition to enhance the 40% or 60%.
A higher MgO content is desirable because the amount of addition can be reduced. Spinel is also used as a brick material and an amorphous refractory material, and thus a used material obtained by appropriately crushing and sizing the used material can be used.

【0033】上述した天然マグネシア、ドロマイト、ス
ピネルの使い分けについては、コスト等の経済性を勘案
するほか、真空脱炭処理前のスラグ組成のCaO/Al
2 3 が0.6以上1.0未満ではスピネルを用い、
1.0〜2.0ではドロマイトを用いるのが望ましい。
また、天然マグネシアは、CaO/Al2 3 が0.6
〜2.0の全ての値のときに用いることができる。その
理由は、CaO/Al23 が0.6以上1.0未満で
は、液相のスラグにMgO・Al2 3 の固相が増加
し、1.0〜2.0では、MgOの固相が増加するため
である。
Regarding the use of natural magnesia, dolomite, and spinel, the cost and other economical factors are taken into consideration, and the slag composition CaO / Al before vacuum decarburization is used.
When 2 O 3 is 0.6 or more and less than 1.0, spinel is used,
In the case of 1.0 to 2.0, it is desirable to use dolomite.
Natural magnesia has CaO / Al 2 O 3 of 0.6.
It can be used for all values of ~ 2.0. The reason is that when CaO / Al 2 O 3 is 0.6 or more and less than 1.0, the solid phase of MgO · Al 2 O 3 increases in the slag of the liquid phase. This is because the solid phase increases.

【0034】これらMgOを含有する酸化物の粒径は、
0.1〜30mmが望ましい。0.1mm未満では、真
空槽内に添加する際に飛散しやすい。30mmを超える
と、添加後に溶鋼に巻き込まれにくく、また溶鋼中に均
一に分散しにくい。そのため、RH真空処理装置の場合
には、下降側浸漬管の外周にかたまって浮上する場合が
ある。粒径は1〜20mmであれば、さらに望ましい。
添加された酸化物が、より均一に溶鋼に巻き込まれるか
らである。
The particle size of these MgO-containing oxides is
0.1-30 mm is desirable. If it is less than 0.1 mm, it is likely to be scattered when added into the vacuum chamber. If it exceeds 30 mm, it is difficult to be caught in the molten steel after addition, and it is difficult to disperse uniformly in the molten steel. For this reason, in the case of the RH vacuum processing apparatus, there is a case where the RH vacuum processing apparatus floats collectively on the outer periphery of the descending dipping tube. More preferably, the particle size is 1 to 20 mm.
This is because the added oxide is more uniformly involved in the molten steel.

【0035】図2は、RH真空処理装置を用いて、真空
脱炭、脱酸処理後に真空槽内に添加した酸化物の粒径と
液相のスラグへの分散率との関係を示す図である。Mg
O75%以上、SrO20%以上からなる酸化物をトレ
ーサーとして、酸化物の分散率を調査した結果である。
分散率とは、RH真空処理後、任意の位置のスラグを2
5箇所の位置にわたって採取し、SrOを含むスラグを
採取した位置の数を、全調査の位置の数で除したもので
ある。酸化物の粒径が0.1〜30mmでは、分散率は
90%以上となり、とくに粒径が1〜20mmでは、分
散率は、95%以上であった。
FIG. 2 is a diagram showing the relationship between the particle size of the oxide added into the vacuum chamber after vacuum decarburization and deoxidation using an RH vacuum processing apparatus and the dispersion ratio of the liquid phase to slag. is there. Mg
It is the result of investigating the dispersion rate of oxides using an oxide composed of 75% or more of O and 20% or more of SrO as a tracer.
Dispersion rate means that slag at any position after RH vacuum treatment is 2
The number of locations where slag containing SrO was collected over five locations was divided by the number of locations for all surveys. When the particle size of the oxide was 0.1 to 30 mm, the dispersion was 90% or more, and particularly when the particle size was 1 to 20 mm, the dispersion was 95% or more.

【0036】MgOを含有する酸化物の添加量は、真空
処理前のスラグの組成、スラグ量などにもよるが、Mg
O純分で0.4〜3.2kg/steel−ton程度
が望ましい。これにより、脱酸後の液相のスラグ中に1
0体積%程度以上の固相を生成させることができる。
The amount of the MgO-containing oxide depends on the composition of the slag before the vacuum treatment, the amount of the slag, and the like.
About 0.4 to 3.2 kg / steel-ton in O pure content is desirable. As a result, 1 is contained in the liquid phase slag after deoxidation.
A solid phase of about 0% by volume or more can be generated.

【0037】[0037]

【実施例】転炉およびRH真空処理装置を用いて、27
0tの極低炭素鋼を溶製した。転炉では、C含有率0.
02〜0.06%、Mn含有率0.01〜0.2%、S
i含有率0.01〜0.03%に精錬し、1660〜1
690℃の溶鋼を取鍋に出鋼した。出鋼に際し、転炉か
らのスラグ流出を極力抑制するようにした。出鋼直後の
取鍋内の溶融スラグに、造滓剤として生石灰、Al2
3 系フラックス、CaO系フラックスを、スラグ改質剤
として、Al灰、Al−CaO系フラックスを添加し
た。
EXAMPLE Using a converter and an RH vacuum processing apparatus, 27
0 t of ultra low carbon steel was melted. In the converter, the C content was 0.1%.
02-0.06%, Mn content 0.01-0.2%, S
Refined to an i content of 0.01-0.03%, 1660-1
The molten steel at 690 ° C. was tapped into a ladle. In tapping, slag outflow from the converter was minimized. Quick lime and Al 2 O are added to the molten slag in the ladle immediately after tapping as a slag-making agent.
Al-ash and Al-CaO-based flux were added as a slag modifier using a 3- system flux and a CaO-based flux.

【0038】次に、RH真空処理装置を用いて、溶鋼中
の炭素含有率が0.005%以下となるまで真空脱炭を
行った。その後に、真空槽内にAlを添加して脱酸を行
い、溶鋼中のAl含有率を0.03〜0.08%に調整
した。
Next, vacuum decarburization was performed using a RH vacuum processing apparatus until the carbon content in the molten steel became 0.005% or less. Thereafter, Al was added into the vacuum chamber to perform deoxidation, and the Al content in the molten steel was adjusted to 0.03 to 0.08%.

【0039】Al添加から約2分後にMgOを含有する
酸化物の粒を添加した。酸化物としては、MgOを92
%以上含有するマグネシアクリンカーと、MgOを52
%、CaOを44%含有するマグネシアドロマイトクリ
ンカーと、MgOを58%、Al2 3 を33%含有す
るマグネシアスピネルクリンカーを用いた。酸化物の粒
径は、1〜20mmの範囲に約95%含む粒径とした。
これらのMgOを含有する酸化物は、RH真空槽の合金
添加シュートを利用して、槽内の溶鋼に添加した。酸化
物の添加後、5分以上の環流時間を確保した。なお、後
述する比較例の試験の一部では、これら酸化物を添加し
ない試験も実施した。
About 2 minutes after the addition of Al, MgO-containing oxide particles were added. As an oxide, MgO is 92
% Or more of magnesia clinker and MgO
% Magnesia dolomite clinker containing 44% CaO and magnesia spinel clinker containing 58% MgO and 33% Al 2 O 3 were used. The particle size of the oxide was set to a particle size containing about 95% in the range of 1 to 20 mm.
These MgO-containing oxides were added to molten steel in the RH vacuum chamber using an alloy addition chute. After the addition of the oxide, a reflux time of at least 5 minutes was ensured. In addition, in some of the tests of Comparative Examples described later, tests in which these oxides were not added were also performed.

【0040】真空処理の後の溶鋼を、厚み250mm、
幅1250mmの形状のスラブ鋳片に連続鋳造した。得
られたスラブ鋳片から横断面サンプルを採取し、全酸素
量および非金属介在物を検査し、鋼の清浄性を調査し
た。
After the vacuum treatment, the molten steel has a thickness of 250 mm.
Continuous casting was performed on a slab slab having a width of 1250 mm. A cross section sample was taken from the obtained slab slab, the total oxygen content and nonmetallic inclusions were inspected, and the cleanliness of the steel was investigated.

【0041】全酸素量は、スラブ鋳片の横断面サンプル
の表面直下、1/4厚および1/2厚の位置から試料を
採取し、3個の全酸素量の平均値とした。
The total oxygen content was determined by taking samples from the 1 / thickness and 1 / thickness positions immediately below the surface of the cross section sample of the slab cast slab, and taking the average value of the three total oxygen contents.

【0042】鋳片の清浄度は、鋳片の表面から表面直下
10mm以内の10cm2 の被顕面積を400倍の倍率
の顕微鏡観察により調査した。後述する本発明例の試験
No.1の清浄度の調査結果を指数1.00として、他
の試験の清浄度の調査結果を指数化して表示した。
The cleanliness of the slab was examined by observing a 10 cm 2 sensitive area within 10 mm immediately below the surface of the slab by a microscope with a magnification of 400 times. Test No. of the present invention example described later. The inspection result of the cleanliness of 1 was set as an index of 1.00, and the inspection results of the cleanliness of other tests were indexed and displayed.

【0043】また、鋳型内に溶鋼を供給する浸漬ノズル
の内面へのAl2 3 の付着状況を調査した。連続鋳造
終了後に浸漬ノズルを回収し、高さ方向の中央部の横断
面の孔の空隙の断面積を測定した。未使用の浸漬ノズル
の同様な位置の横断面の孔の空隙の面積を、使用後の孔
の空隙の断面積で除した値を調査した。後述する本発明
例の試験No.1の浸漬ノズルの詰まり発生状況、すな
わち上述の面積の比の値を指数1.00として、他の試
験の浸漬ノズルの使用後の状況を指数化して表示した。
The adhesion of Al 2 O 3 to the inner surface of the immersion nozzle for supplying molten steel into the mold was investigated. After the end of the continuous casting, the immersion nozzle was recovered, and the cross-sectional area of the void in the cross section at the center in the height direction was measured. The value obtained by dividing the area of the void of the hole in the cross section at the same position of the unused immersion nozzle by the sectional area of the void of the hole after use was investigated. Test No. of the present invention example described later. The condition of occurrence of clogging of the immersion nozzle of No. 1, that is, the value of the above-described area ratio was set to an index of 1.00, and the status after use of the immersion nozzle of another test was indexed and displayed.

【0044】試験の条件および試験結果を表1に示す。Table 1 shows the test conditions and test results.

【0045】[0045]

【表1】 [Table 1]

【0046】本発明例の試験No.1〜No.11の真
空処理前のスラグ組成は、本発明で規定する範囲内であ
る。また、脱酸処理後にMgOを含有する酸化物を、M
gO純分で0.40〜3.2kg/steel−ton
添加した。
Test No. of the present invention example 1 to No. The slag composition before the vacuum treatment of No. 11 is within the range specified in the present invention. Further, the oxide containing MgO after the deoxidation treatment was replaced with M
0.40 to 3.2 kg / steel-ton in pure gO
Was added.

【0047】スラブ鋳片の全酸素量は、本発明例の試験
No.1〜11では、すべて25ppm以下で清浄性が
良好であることが裏付けられた。また、鋳片の清浄度
は、本発明例の試験No.1〜11では、指数0.88
〜1.01程度で良好な清浄度であった。さらに、浸漬
ノズルの内面の孔の詰まり状況は、本発明例の試験N
o.1〜11では、指数0.88〜1.00程度で、浸
漬ノズルの閉塞はほとんど発生せず、良好な結果であっ
た。いずれの本発明例の試験も、脱酸後のスラグによる
溶鋼の再酸化を抑制し、Al2 3 などの非金属介在物
の生成が抑制できた。そのため、清浄度が向上するとと
もに浸漬ノズルの詰まりも抑制できた。
The total oxygen content of the slab slab was determined by the test No. of the present invention. In Examples 1 to 11, it was confirmed that the cleanliness was good at 25 ppm or less. The cleanliness of the cast slab was determined by the test No. of the present invention. For 1 to 11, the index is 0.88
Good cleanliness was about 1.01. Further, the state of clogging of the holes on the inner surface of the immersion nozzle was determined by the test N
o. In the case of 1 to 11, the index was about 0.88 to 1.00, and almost no blockage of the immersion nozzle occurred, which was a good result. In all tests of the present invention, reoxidation of molten steel by slag after deoxidation was suppressed, and generation of nonmetallic inclusions such as Al 2 O 3 was able to be suppressed. Therefore, the cleanliness was improved and clogging of the immersion nozzle was also suppressed.

【0048】比較例の試験No.12は、スラブ鋳片の
全酸素量が33ppm、また鋳片の清浄度は指数1.8
9で、いずれも悪かった。さらに、浸漬ノズルの詰まり
状況は指数1.80で詰まりが発生した。これらの原因
は、真空処理前のスラグ組成は本発明で規定する範囲内
であったが、MgOを含有する酸化物の粒を添加しなか
ったため、スラグによる溶鋼の再酸化が顕著であったこ
とによる。
Test No. of Comparative Example 12, the total oxygen content of the slab slab was 33 ppm, and the cleanness of the slab slab was an index of 1.8.
9 was bad. Furthermore, the clogging condition of the immersion nozzle was clogged with an index of 1.80. The cause was that the slag composition before the vacuum treatment was within the range specified in the present invention, but the reoxidation of molten steel by the slag was remarkable because no oxide particles containing MgO were added. by.

【0049】比較例の試験No.13〜No.18で
は、スラブ鋳片の全酸素量が27〜34ppmで清浄性
が悪く、また鋳片の清浄度は、指数1.54〜2.03
で悪かった。さらに、浸漬ノズルの詰まり状況は指数
1.50〜1.80で詰まりの発生が多かった。比較例
で清浄性が悪く、ノズルが詰まりやすかった理由は次の
とおりである。
Test No. of Comparative Example 13-No. In No. 18, the cleanliness was poor when the total oxygen content of the slab slab was 27 to 34 ppm, and the cleanness of the slab slab was an index of 1.54 to 2.03.
Was bad. Further, the clogging condition of the immersion nozzle was index 1.50 to 1.80, and the clogging occurred frequently. The reason why the cleanliness was poor in the comparative example and the nozzle was easily clogged is as follows.

【0050】試験No.13および試験No.16は、
真空処理前のスラグのCaO/Al2 3 が2.09、
またはMgO含有率を10.8%と、それぞれ本発明で
規定する範囲の上限を外れていたため、スラグの固相が
多くなり、スラグのAl2 3 吸収能力が低下したこと
による。
Test No. 13 and test no. 16 is
CaO / Al of slag before vacuum treatmentTwoOThreeIs 2.09,
Or, the MgO content is set to 10.8% in the present invention.
The solid phase of the slag was out of the upper limit of the specified range.
Increased slag AlTwoO ThreeDecreased absorption capacity
by.

【0051】一方、試験No.14は、真空処理前のス
ラグのCaO/Al2 3 が0.55で、本発明で規定
する範囲の下限を外れていたため、スラグのCaO分が
少なく、スラグのAl2 3 吸収能力が低下したことに
よる。
On the other hand, Test No. In No. 14, CaO / Al 2 O 3 of the slag before the vacuum treatment was 0.55, which was out of the lower limit of the range specified in the present invention. Therefore, the CaO content of the slag was small, and the slag had a capacity to absorb Al 2 O 3. Due to the decline.

【0052】試験No.15および試験No.18は、
真空処理前のスラグのFeOおよびMnOの含有率の合
計が10.8%、またはSiO2 含有率が12.7%
で、それぞれ本発明で規定する範囲の上限を外れていた
ため、スラグによる溶鋼の再酸化が顕著であった。
Test No. 15 and test no. 18 is
The total content of FeO and MnO in the slag before vacuum treatment is 10.8%, or the content of SiO 2 is 12.7%.
Therefore, the re-oxidation of the molten steel by the slag was remarkable because the respective values were outside the upper limits of the ranges specified in the present invention.

【0053】試験No.17は、真空処理前のスラグの
MgO含有率が4.6%で、本発明で規定する範囲の下
限を外れおり、スラグ量も多く、MgO純分の添加量が
少なかったため、スラグによる溶鋼の再酸化が顕著であ
った。
Test No. No. 17, the MgO content of the slag before the vacuum treatment was 4.6%, which was out of the lower limit of the range specified in the present invention, the slag amount was large, and the addition amount of the pure MgO was small, so that the molten steel by the slag was small. Reoxidation was significant.

【0054】[0054]

【発明の効果】本発明の方法の適用により、清浄性に優
れた極低炭素鋼の溶製が可能である。
According to the method of the present invention, it is possible to melt ultra-low carbon steel having excellent cleanliness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スラグ中のFeOおよびMnOの含有率の合計
と真空脱炭処理時C含有率が0.002%に到達する時
間との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the total content of FeO and MnO in slag and the time required for the C content to reach 0.002% during vacuum decarburization treatment.

【図2】真空槽内に添加した酸化物の粒径と液相のスラ
グへの酸化物の分散率との関係を示す図である。
FIG. 2 is a graph showing the relationship between the particle size of oxide added to a vacuum chamber and the dispersion ratio of oxide in a liquid slag.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K013 AA07 AA09 BA02 BA08 CB09 CE06 CE08 DA03 DA05 DA08 DA10 DA12 EA01 EA03 EA05 EA19 FA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K013 AA07 AA09 BA02 BA08 CB09 CE06 CE08 DA03 DA05 DA08 DA10 DA12 EA01 EA03 EA05 EA19 FA05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空処理装置を用いて、取鍋内の溶鋼を脱
炭処理後に脱酸処理することにより炭素含有率が0.0
05重量%以下の極低炭素鋼を溶製する方法において、
真空処理前の取鍋内のスラグ中のCaO含有率とAl2
3 含有率の重量%の比CaO/Al2 3 を0.6以
上2.0以下、FeOおよびMnOの含有率の合計を2
重量%以上10重量%以下、SiO2 含有率を12重量
%以下ならびにMgO含有率を5重量%以上10重量%
以下に調整した後、溶鋼を脱炭処理し、引き続き溶鋼を
脱酸処理するために溶鋼にAlを添加し、それと同時に
またはその後に、真空槽内にMgOを含有する酸化物を
添加することを特徴とする清浄性に優れた極低炭素鋼の
溶製方法。
(1) The molten steel in a ladle is decarburized and then deoxidized by using a vacuum processing apparatus to reduce the carbon content to 0.04.
In a method of melting extremely low carbon steel of not more than 05% by weight,
CaO content and Al 2 in slag in ladle before vacuum treatment
The CaO / Al 2 O 3 ratio of the weight percentage of the O 3 content is 0.6 or more and 2.0 or less, and the total content of FeO and MnO is 2
To 10 wt%, a SiO 2 content of 12 wt% or less and the MgO content of 5 wt% to 10 wt%
After the following adjustments, the molten steel is decarburized, and subsequently, Al is added to the molten steel to deoxidize the molten steel, and at the same time or thereafter, the oxide containing MgO is added to the vacuum chamber. Melting method of ultra low carbon steel with excellent cleanliness.
JP20529398A 1998-07-21 1998-07-21 Melting method of ultra-low carbon steel with excellent cleanability Expired - Fee Related JP3903603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20529398A JP3903603B2 (en) 1998-07-21 1998-07-21 Melting method of ultra-low carbon steel with excellent cleanability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20529398A JP3903603B2 (en) 1998-07-21 1998-07-21 Melting method of ultra-low carbon steel with excellent cleanability

Publications (2)

Publication Number Publication Date
JP2000038614A true JP2000038614A (en) 2000-02-08
JP3903603B2 JP3903603B2 (en) 2007-04-11

Family

ID=16504580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20529398A Expired - Fee Related JP3903603B2 (en) 1998-07-21 1998-07-21 Melting method of ultra-low carbon steel with excellent cleanability

Country Status (1)

Country Link
JP (1) JP3903603B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523105B1 (en) * 2001-07-04 2005-10-19 주식회사 포스코 Method of refining extra low carbon ferritic stainless steel
JP2014025111A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Method for producing high cleanliness steel
JP2015183259A (en) * 2014-03-25 2015-10-22 新日鐵住金株式会社 Method for melting high cleanliness steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523105B1 (en) * 2001-07-04 2005-10-19 주식회사 포스코 Method of refining extra low carbon ferritic stainless steel
JP2014025111A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Method for producing high cleanliness steel
JP2015183259A (en) * 2014-03-25 2015-10-22 新日鐵住金株式会社 Method for melting high cleanliness steel

Also Published As

Publication number Publication date
JP3903603B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
EP2208799A1 (en) Steel for steel pipes excellent in sour resistance and process for manufacturing the same
EP3572534B1 (en) Desulfurization processing method of molten steel, and desulfurization agent
JP3896713B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
KR100941841B1 (en) A method of manufacturing austenite stainless steel
KR20130047559A (en) Method of producing steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP3903603B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JP2000119732A (en) Melting method for high cleanliness extra-low carbon steel
CN114836593A (en) Smelting process of low-carbon aluminum-containing cold forging steel
KR100388239B1 (en) Method for producing low sulfer, low carbon steel using eaf-vtd process
JP3719056B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JPH10298631A (en) Method for melting clean steel
JP2004277830A (en) Steelmaking method in converter
KR910006640B1 (en) Making process for high pure steel
JP2000129338A (en) Melting method for extra-low carbon steel excellent in cleanliness
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2001032014A (en) Method for manufacturing steel plate for sheet steel
US20030209104A1 (en) Compositions and method for the deoxidation of steel
JPH1068011A (en) Production of oxide-dispersed steel
KR100925596B1 (en) Method for refining molten steel for ultra low carbon steel
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees