JP2000037767A - Marking method for synthetic resin pipe during extrusion molding - Google Patents

Marking method for synthetic resin pipe during extrusion molding

Info

Publication number
JP2000037767A
JP2000037767A JP10209536A JP20953698A JP2000037767A JP 2000037767 A JP2000037767 A JP 2000037767A JP 10209536 A JP10209536 A JP 10209536A JP 20953698 A JP20953698 A JP 20953698A JP 2000037767 A JP2000037767 A JP 2000037767A
Authority
JP
Japan
Prior art keywords
marking
laser
synthetic resin
tubular body
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10209536A
Other languages
Japanese (ja)
Inventor
Kenichiro Hayashi
健一郎 林
Kazuo Masuda
和夫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10209536A priority Critical patent/JP2000037767A/en
Publication of JP2000037767A publication Critical patent/JP2000037767A/en
Pending legal-status Critical Current

Links

Classifications

    • B29C47/92

Abstract

PROBLEM TO BE SOLVED: To provide a method for applying marking to a synthetic resin pipe during extrusion molding in which marking by laser is enabled so as to remove fear for lowering of water quality of transferred fluid and lowering of watertightness in the joining area of the synthetic resin pipe. SOLUTION: In the method in which resin is extruded from an extruder into a tubular shape and the resin tubular body is cooled and then marking is given to the resin tubular body while it is being taken out, laser emitted from a gas laser oscillator 41 is modulated by a modulator 42 in accordance with a marking signal, and the modulated laser is deflected by a rotary polygon mirror 46 and then scanned on the traveling resin tubular body P in the direction nearly orthogonal to the traveling direction. Marks corresponding to the marking signals are applied on the traveling resin tubular body P.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は押出成形中の合成樹
脂管にレ−ザによりマ−キングを施す方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for laser marking a synthetic resin tube during extrusion molding.

【0002】[0002]

【従来の技術】合成樹脂管を押出成形により製造するに
は、押出機から樹脂を管状に押出し、この樹脂管状体を
冷却槽に通して冷却し、引取り機で引取り、更に印刷ロ
−ルに通してマ−クを印刷し、次いでカッタ−により定
尺切断している。このようにして製造された合成樹脂管
の主な用途は流体移送管路であり、所定の接合構造で接
合して使用されている。
2. Description of the Related Art In order to manufacture a synthetic resin tube by extrusion molding, a resin is extruded into a tube from an extruder, the resin tube is cooled through a cooling tank, taken up by a take-up machine, and further printed. The mark is printed through a tool and then cut to a fixed size by a cutter. A main use of the synthetic resin pipe manufactured in this way is a fluid transfer pipe, which is used by being joined with a predetermined joining structure.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記流体移
送管路を電子工業用水または製薬・化粧品用水或いは病
院用水としての純水若しくは超純水の移送に使用する場
合、合成樹脂管の接合方式の如何によっては、例えばゴ
ムパッキング接合方式では、継手内での合成樹脂管表面
が移送流体に接触し、上記マ−キングインキの有機物質
や重金属がが移送流体に溶解して移送流体(純水若しく
は超純水)のTOC(全有機炭素量)の増大、比抵抗値
の低下が招来され純水若しくは超純水の水質低下が懸念
される。
When the above-mentioned fluid transfer pipe is used for transferring pure water or ultrapure water as water for electronics industry, water for pharmaceuticals / cosmetics, or water for hospitals, it is necessary to use a synthetic resin pipe joining method. In some cases, for example, in the rubber packing joining method, the surface of the synthetic resin pipe in the joint comes into contact with the transfer fluid, and the organic substance or heavy metal of the marking ink dissolves in the transfer fluid and the transfer fluid (pure water or pure water). The TOC (total organic carbon content) of ultrapure water is increased, and the specific resistance value is reduced.

【0004】而るに、上記インキによるマ−キングに代
え、加熱印刷ロ−ルによる刻印でマ−キングを施すこと
が考えられるが、これではマ−キング箇所が上記パッキ
ングの装着箇所に来るときに水密性を保証し難く、問題
がある。本発明の目的は、合成樹脂管の押出成形中にマ
−キングを施す場合、合成樹脂管接合部での移送流体の
水質低下や水密性低下の畏れを排除し得るようにレ−ザ
によるマ−キングを可能とする方法を提供することにあ
る。
[0004] Instead of the above-described marking with ink, it is conceivable to apply marking by engraving with a heating printing roll. In this case, when the marking location comes to the mounting location of the packing. It is difficult to guarantee watertightness, and there is a problem. An object of the present invention is to provide a marking method during extrusion molding of a synthetic resin pipe so as to eliminate the fear of a decrease in water quality and water tightness of a transfer fluid at a joint portion of the synthetic resin pipe. -To provide a method that enables the king.

【0005】[0005]

【課題を解決するための手段】本発明に係る押出成形中
の合成樹脂管のマ−キング方法は、押出機から樹脂を管
状に押出し、この樹脂管状体を冷却のうえ引取りつつマ
−キングを施す方法において、ガスレ−ザ発振器からの
レ−ザをマ−キング信号に対応して変調し、この変調レ
−ザを回転多面ミラ−で偏向のうえ上記の走行樹脂管状
体上に走行方向とほぼ直交方向に走査させて当該走行樹
脂管状体にマ−キング信号に応じたマ−クを付していく
ことを特徴とする構成であり、回転多面ミラ−の回転回
転速度を押出速度に比例させる手段を付加することが望
ましい。
According to the method of the present invention for marking a synthetic resin tube during extrusion molding, a resin is extruded into a tubular shape from an extruder, and the resin tubular body is cooled and taken off while being taken off. In the above method, a laser from a gas laser oscillator is modulated in accordance with a marking signal, and the modulated laser is deflected by a rotating polygon mirror and travels on the traveling resin tubular body. And a mark corresponding to the marking signal is applied to the traveling resin tubular body by scanning in a direction substantially orthogonal to the direction of rotation. The rotational speed of the rotary polygon mirror is set to the extrusion speed. It is desirable to add means for proportioning.

【0006】[0006]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。図1は本発明において使用する
合成樹脂管の押出成形ラインを示し、1は押出機を、2
は冷却水槽を、3は引取り装置を、4はレ−ザマ−キン
グ装置を、5は定尺切断器をそれぞれ示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an extrusion molding line for a synthetic resin tube used in the present invention.
Denotes a cooling water tank, 3 denotes a take-off device, 4 denotes a laser marking device, and 5 denotes a fixed-size cutter.

【0007】図2はレ−ザマ−キング装置の一例を示し
ている。図2において、41はガスレ−ザ発振器であ
り、例えば炭酸ガスレ−ザ発振器が使用される。42は
光変調器であり、レ−ザがマ−ク信号に対応して変調さ
れる。43は位置決め用レ−ザを発振する半導体であ
り、例えば赤色レ−ザ半導体が使用される。44はレン
ズ系、45は鏡、46は等角の回転多面ミラ−であり、
この回転多面ミラ−46が角度θ回転されるとレ−ザが
点a1から点b1に走査される。
FIG. 2 shows an example of a laser marking device. In FIG. 2, reference numeral 41 denotes a gas laser oscillator, for example, a carbon dioxide laser oscillator is used. An optical modulator 42 modulates a laser corresponding to a mark signal. Reference numeral 43 denotes a semiconductor that oscillates a positioning laser, for example, a red laser semiconductor. 44 is a lens system, 45 is a mirror, 46 is a rotating polygon mirror having the same angle,
Is scanned from Zagaten a 1 to the point b 1 - The rotating polygon mirror -46 is when it is rotated an angle θ les.

【0008】すなわち、図3の(イ)において、レ−ザ
が回転多面ミラ−46の角m1に入射すると点a1で結像
され、回転多面ミラ−46の回転に従い結像点がb1
向けて移動され、回転多面ミラ−46の回転が進んでレ
−ザが回転多面ミラ−の次の角m2の直前に入射すると
点b1で結像される。この走査巾wは回転多面ミラ−4
6の一面の角度θや焦点距離により定まる。
[0008] That is, in (a) of FIG. 3, Le - The is imaged in to the point a 1 incident on the corner m 1 of the rotating polygon mirror -46, the imaging point in accordance with rotation of the rotary polygon mirror -46 is b is moved toward the 1, Les progressed rotation of the rotary polygon mirror -46 - the rotation polygon mirror - imaged in the point b 1 when incident on immediately before the next corner m 2. This scanning width w is a rotating multi-surface mirror-4.
6 is determined by the angle θ of one surface and the focal length.

【0009】図2において、Pは押出成形中の合成樹脂
管を示し、その走行速度はvであり、上記レ−ザの走査
線はこの合成樹脂管Pに対しほぼ直交させてある。上記
回転多面ミラ−46の回転速度をn回/単位時間とする
と、回転多面ミラ−46が上記の角度θの回転に要する
時間Δtは、 Δt=θ/(360n) で与えられ、レ−ザは上記点a1から点b1に時間Δtで
走査される。
In FIG. 2, P indicates a synthetic resin tube being extruded, and its traveling speed is v. The scanning line of the laser is substantially perpendicular to the synthetic resin tube P. Assuming that the rotation speed of the rotating polygon mirror 46 is n times / unit time, the time Δt required for the rotating polygon mirror 46 to rotate at the angle θ is given by Δt = θ / (360n). It is scanned in a time Δt to a point b 1 from the point a 1.

【0010】また、回転多面ミラ−が角度θ回転して次
の角m2にレ−ザが入射されたのち、更なる回転多面ミ
ラ−の回転によりレ−ザが図3の(ロ)の点a2から点
2に向け走査される。この点a2と前記点a1との間隔
ΔLは ΔL=v・Δt で与えられ(vは押出速度または製品走行速度)、この
間隔は後述するように分解能等から設定される。
Further, the rotary polygonal mirror - After to The incident, further rotation polygon mirror - - rotates angle θ Les the next corner m 2 by the rotation of the record - is The in FIG. 3 (b) It is scanned toward the point a 2 to point b 2. This point a 2 and distance [Delta] L between the point a 1 is given by ΔL = v · Δt (v is extrusion speed or product travel speed), this interval is set from the resolution or the like as described later.

【0011】上記回転多面ミラ−46の各面の角度は全
て等しくしてあり、図3の(ロ)に示すように、上記の
走査巾w及び走査間隔ΔLでレ−ザの走査が繰り返され
ていく。図2において、レンズ系44はレ−ザの走査速
度を等速運動とし(時間的走査ひずみの補正を行わせ
る)、かつ樹脂管状体Pの表面に焦点を結ばせ得る光学
系に設定してある。
The angles of the respective surfaces of the rotating multi-surface mirror 46 are all equal. As shown in FIG. 3B, laser scanning is repeated with the above-described scanning width w and scanning interval .DELTA.L. To go. In FIG. 2, the lens system 44 is set to an optical system capable of making the scanning speed of the laser uniform (to correct the temporal scanning distortion) and focusing on the surface of the resin tubular body P. is there.

【0012】本発明により上記押出成形中の樹脂管状体
にマ−キングを施すには、図2において、まず半導体レ
−ザ43を作動させ所定の位置に半導体レ−ザを結像さ
せることによってマ−キング開始位置の位置決めを行
う。この位置でガスレ−ザ発振器41を作動させ、光変
調器42に入力されたマ−キング信号に対応してガスレ
−ザをオン・オフさせつつ前記走査で樹脂管状体Pの外
面に照射させていく。従って、マ−キング信号に対応し
たパタ−ンでガスレ−ザが走行中の樹脂管状体Pの外面
に照射されていく。
In order to perform the marking on the resin tubular body during the extrusion molding according to the present invention, first, as shown in FIG. 2, the semiconductor laser 43 is operated to form an image of the semiconductor laser at a predetermined position. The marking start position is determined. At this position, the gas laser oscillator 41 is operated to turn on and off the gas laser in response to the marking signal input to the optical modulator 42, and to irradiate the outer surface of the resin tubular body P by the above-mentioned scanning. Go. Accordingly, the gas laser is irradiated onto the outer surface of the running resin tubular body P in a pattern corresponding to the marking signal.

【0013】この場合の走査間隔ΔLは、前記式か
ら、 ΔL=v・θ/(360n) であり、ΔLを小さくし過ぎるとマ−クの分解能が低下
し、大きくし過ぎるとマ−クがぼやけるので、回転速度
nに応じΔLは20〜200μmの範囲内で設定するこ
とが適切である(例えば、θ°=45°、ΔL=50〜
100μm、v=最高4000mm/分として、n=1
0000〜5000回転/分に設定することができ
る)。
From the above equation, the scanning interval ΔL in this case is ΔL = v · θ / (360n). When ΔL is too small, the resolution of the mark decreases, and when it is too large, the mark becomes low. It is appropriate to set ΔL in the range of 20 to 200 μm according to the rotation speed n (for example, θ ° = 45 °, ΔL = 50 to 200 μm).
100 μm, v = maximum 4000 mm / min, n = 1
0000-5000 revolutions / minute).

【0014】本発明に係るマ−キング方法においては、
この走査間隔ΔLを押出速度v(樹脂管状体の走行速
度。通常±3%程度の変動)に無関係に一定とすること
が、マ−クの均質上必要であり、図2に示すように、樹
脂管状体Pの走行速度に比例してパルスを発生するロ−
タリ−エンコダ−6を付設し、このパルス数で上記回転
多面ミラ−46の回転速度を比例制御することが有効で
ある。
In the marking method according to the present invention,
It is necessary for the uniformity of the mark to keep the scanning interval ΔL constant irrespective of the extrusion speed v (running speed of the resin tubular body; usually a fluctuation of about ± 3%), and as shown in FIG. A pulse generating a pulse in proportion to the traveling speed of the resin tubular body P;
It is effective to provide a tally encoder 6 and to proportionally control the rotation speed of the rotary polygon mirror 46 with this pulse number.

【0015】また、上記レ−ザの走査巾wを大きく設定
すると、被走査面の曲面に起因する焦点ずれが顕著にな
りマ−キングが不鮮明化するので、マ−キングエリア巾
は50mm以下とすることが好ましい。上記において、
レ−ザマ−キング装置を配設する位置は、図1に示すよ
うに、引取り機と冷却水槽の間とすることが望ましい
が、引取り機と定尺切断器の間とすることも可能であ
る。
When the scanning width w of the laser is set to be large, the defocus caused by the curved surface of the surface to be scanned becomes remarkable, and the marking becomes unclear. Therefore, the width of the marking area is reduced to 50 mm or less. Is preferred. In the above,
The location where the laser marking device is disposed is preferably between the take-off machine and the cooling water tank as shown in FIG. It is.

【0016】本発明に係るマ−キング方法によれば、ガ
スレ−ザ照射による樹脂管状体表面の黄色化でマ−クが
付され、その黄色化は樹脂体の浅い軽度の炭化に起因
し、充分に安定であって水への溶解は実質上生じない
(なお、半導体レ−ザでは強度が弱く、マ−キングは不
可である)。従って、製造した合成樹脂管を接合し、そ
の接合部内においてマ−キング箇所が移送純水や超純水
に接触しても、純水や超純水のTOCの増加や比抵抗値
の低減をよく防止できる。
According to the marking method of the present invention, the surface of the resin tubular body is marked yellow by irradiation with the gas laser, and the yellowing is caused by the shallow light carbonization of the resin body. It is sufficiently stable and practically does not dissolve in water (note that a semiconductor laser has low strength and cannot be marked). Therefore, even if the manufactured synthetic resin pipes are joined and the marking part in the joint part comes into contact with the transfer pure water or the ultrapure water, the TOC of the pure water or the ultrapure water increases and the resistivity decreases. Can be prevented well.

【0017】このことは次の実施例と比較例との対比か
らも確認できる。
This can be confirmed from the comparison between the following examples and comparative examples.

【0018】[0018]

【実施例】〔実施例〕口径16mmφの塩化ビニル樹脂
管を製品速度3m/分で押出成形し、引取り機の直後で
CO2レ−ザ12W(波長10.6μm)、走査巾50
mm、走査間隔50μm、八面回転ミラ−の回転速度3
400回転/分でマ−キングした。
EXAMPLES EXAMPLES diameter vinyl chloride resin pipe extruded product speed 3m / min diameter of 16 mm, CO 2 Les immediately after the take-up machine - The 12W (wavelength 10.6 [mu] m), the scanning width 50
mm, scanning interval 50 μm, octahedral rotation mirror rotation speed 3
Marking was performed at 400 revolutions / minute.

【0019】このようにして得た塩化ビニル樹脂管のマ
−キング箇所を超純水に浸漬してTOC及び比抵抗値を
測定したところ、マ−キングに起因するTOC及び比抵
抗値の変動は実質上認められなかった。 〔比較例〕マ−キングをインキを用い印刷ロ−ルにより
付した以外、実施例と同様にして塩化ビニル樹脂管を製
作し、実施例と同様にしてマ−キングによる超純水のT
OC及び比抵抗値の変化を測定したところ、マ−キング
に起因する超純水の顕著な水質低下が認められた。
When the marked portion of the vinyl chloride resin tube thus obtained was immersed in ultrapure water to measure the TOC and the specific resistance value, the TOC and the specific resistance value caused by the marking were changed. Virtually not observed. [Comparative Example] A vinyl chloride resin tube was manufactured in the same manner as in the example, except that the marking was applied with a printing roll using ink.
When the changes in the OC and the specific resistance were measured, a marked decrease in the water quality of the ultrapure water caused by the marking was observed.

【0020】[0020]

【発明の効果】本発明によれば、押出成形中の合成樹脂
管にレ−ザによりマ−キングを施すことが可能になり、
合成樹脂管接合部で移送純水または超純水が管外面のマ
−キング箇所に接触しても、その移送流体の水質を安定
に維持できるクリ−ンパイプを良好に製造できる。
According to the present invention, it is possible to apply marking to a synthetic resin tube during extrusion molding by a laser.
Even if pure water or ultrapure water comes into contact with the marking portion on the outer surface of the tube at the joint portion of the synthetic resin tube, a clean pipe that can stably maintain the water quality of the transferred fluid can be satisfactorily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する合成樹脂管の製造ライ
ンの一例を示す図面である。
FIG. 1 is a drawing showing an example of a production line for synthetic resin tubes used in the present invention.

【図2】本発明において使用するレ−ザマ−キング装置
の一例を示す図面である。
FIG. 2 is a drawing showing an example of a laser marking device used in the present invention.

【図3】本発明において使用するレ−ザマ−キング装置
の作動状態を示す図面である。
FIG. 3 is a view showing an operation state of a laser marking device used in the present invention.

【符号の説明】[Explanation of symbols]

1 押出機 2 冷却水槽 3 引取り機 4 レ−ザマ−キング装置 41 ガスレ−ザ発振器 42 光変調器 44 レンズ系 45 鏡 46 多面回転ミラ− 6 ロ−タリ−エンコダ− REFERENCE SIGNS LIST 1 extruder 2 cooling water tank 3 take-off machine 4 laser marking device 41 gas laser oscillator 42 optical modulator 44 lens system 45 mirror 46 multi-plane rotating mirror 6 rotary encoder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】押出機から樹脂を管状に押出し、この樹脂
管状体を冷却のうえ引取りつつマ−キングを施す方法に
おいて、ガスレ−ザ発振器からのレ−ザをマ−キング信
号に対応して変調し、この変調レ−ザを回転多面ミラ−
で偏向のうえ上記の走行樹脂管状体上に走行方向とほぼ
直交方向に走査させて当該走行樹脂管状体にマ−キング
信号に応じたマ−クを付していくことを特徴とする押出
成形中の合成樹脂管のマ−キング方法。
1. A method of extruding a resin from an extruder into a tube and performing marking while cooling and taking up the resin tube, wherein a laser from a gas laser oscillator corresponds to a marking signal. And modulate this modulation laser with a rotating polygon mirror.
Extrusion molding wherein scanning is performed on the running resin tubular body in a direction substantially perpendicular to the running direction after the deflection, and the running resin tubular body is marked according to a marking signal. Marking method for the synthetic resin tube inside.
【請求項2】回転多面ミラ−の回転回転速度を押出速度
に比例させる手段を付加した請求項1記載の押出成形中
の合成樹脂管のマ−キング方法。
2. A method for marking a synthetic resin tube during extrusion molding according to claim 1, further comprising means for making the rotational speed of the rotary multi-surface mirror proportional to the extrusion speed.
JP10209536A 1998-07-24 1998-07-24 Marking method for synthetic resin pipe during extrusion molding Pending JP2000037767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10209536A JP2000037767A (en) 1998-07-24 1998-07-24 Marking method for synthetic resin pipe during extrusion molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10209536A JP2000037767A (en) 1998-07-24 1998-07-24 Marking method for synthetic resin pipe during extrusion molding

Publications (1)

Publication Number Publication Date
JP2000037767A true JP2000037767A (en) 2000-02-08

Family

ID=16574438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10209536A Pending JP2000037767A (en) 1998-07-24 1998-07-24 Marking method for synthetic resin pipe during extrusion molding

Country Status (1)

Country Link
JP (1) JP2000037767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266804A1 (en) * 2008-04-24 2009-10-29 Costin Darryl J Combination extrusion and laser-marking system, and related method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266804A1 (en) * 2008-04-24 2009-10-29 Costin Darryl J Combination extrusion and laser-marking system, and related method

Similar Documents

Publication Publication Date Title
EP2491583B1 (en) Apparatus for processing continuous lengths of flexible foil
EP0047165A1 (en) Improvements relating to rotary printing presses
DE69328604T2 (en) Ink, ink jet recording method and apparatus using the same
JPS58205561A (en) Method and device for coating
ATE150365T1 (en) METHOD AND DEVICE FOR PRODUCING A SCREEN PRINTING STENCIL
JPS6369624A (en) Noncontact node forming method of winding of high-modulus thermoplastic film
US7369152B2 (en) Laser marking method
JP2000037767A (en) Marking method for synthetic resin pipe during extrusion molding
US20180311813A1 (en) Robot And Printer
JP2009006712A (en) Measuring field for determining smudge limitation in printing
JP2003241397A (en) Method and apparatus for manufacturing seamless sleeve body for printing
BR112021006474A2 (en) print application system using an externally generated reference
US20030124466A1 (en) Preparation of gravure and intaglio printing elements using direct thermally imageable media
US5566618A (en) Method and apparatus for use in offset printing
JP2003303523A (en) Electric wire indication mark, marking device, and electric wire indicated with electric wire indication mark
JPH047967Y2 (en)
US6969541B2 (en) Method and device for structuring a surface to form hydrophilic and hydrophobic regions
US20220269021A1 (en) Fiber carrying structure having indicia induced by lasers and related method
JP2000071588A (en) Method for discriminating defective position of ink ribbon and raw roll of ink ribbon
GB2459154A (en) Cylindrical Laser Process Drum
JPH0321987Y2 (en)
JPH10272826A (en) Form with variable information and forming method of variable information
JPS61120005A (en) Measuring instrument for diameter of cylindrical plastic film
JPH10272865A (en) Upper sheet for pressure sensitive copying and pressure sensitive copy cut form with the sheet
JP2001129772A (en) Marking method onto polyvinyl chloride product