JP2000034198A - Silicon carbide single crystal and its production - Google Patents

Silicon carbide single crystal and its production

Info

Publication number
JP2000034198A
JP2000034198A JP19729598A JP19729598A JP2000034198A JP 2000034198 A JP2000034198 A JP 2000034198A JP 19729598 A JP19729598 A JP 19729598A JP 19729598 A JP19729598 A JP 19729598A JP 2000034198 A JP2000034198 A JP 2000034198A
Authority
JP
Japan
Prior art keywords
sic
single crystal
crystal
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19729598A
Other languages
Japanese (ja)
Other versions
JP2917149B1 (en
Inventor
Kichiya Yano
吉弥 谷野
Masanobu Hiramoto
雅信 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP19729598A priority Critical patent/JP2917149B1/en
Application granted granted Critical
Publication of JP2917149B1 publication Critical patent/JP2917149B1/en
Publication of JP2000034198A publication Critical patent/JP2000034198A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a large, high purity, high-quality single crystal hardly containing grain boundary, micropipe defect, etc. SOLUTION: This single crystal is produced by preparing a complex M in which a β-SiC polycrystalline layer 2 is formed on the surface of a β-SiC single crystal substrate 1 by the thermal CVD method, by heat-treating the complex M at 2,100-2,400 deg.C to recrystallize a polycrystal of the layer 2 and to transform it into a single crystal and by making single crystals, including the above single crystal and α-SiC single crystal substrate 1, in a state that their crystal axes are oriented in the same direction, grow a lot in a unified state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶SiCおよ
びその製造方法に関するもので、詳しくは、発光ダイオ
ードや電子デバイスの基板ウエハなどとして用いられる
単結晶SiCおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal SiC and a method of manufacturing the same, and more particularly, to a single crystal SiC used as a light emitting diode or a substrate wafer of an electronic device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】SiC(炭化珪素)は、耐熱性および機
械的強度に優れているだけでなく、放射線にも強く、さ
らに不純物の添加によって電子や正孔の価電子制御が容
易である上、広い禁制帯幅を持つ(因みに、6H型のS
iC単結晶で約3.0eV、4H型のSiC単結晶で
3.26eV)ために、Si(シリコン)やGaAs
(ガリウムヒ素)などの既存の半導体材料では実現する
ことができない大容量、高周波、耐圧、耐環境性を実現
することが可能で、次世代のパワーデバイス用半導体材
料として注目され、かつ期待されている。
2. Description of the Related Art SiC (silicon carbide) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation. In addition, it is easy to control valence electrons and holes by adding impurities. Has a wide forbidden band (By the way, 6H type S
about 3.0 eV for an iC single crystal and 3.26 eV for a 4H type SiC single crystal), such as Si (silicon) or GaAs.
(Gallium arsenide) and other materials that can not be realized with existing semiconductor materials, can achieve high capacity, high frequency, withstand voltage and environmental resistance, and are attracting attention and expected as next-generation semiconductor materials for power devices I have.

【0003】この種のSiC単結晶の成長(製造)方法
として、従来、黒鉛るつぼ内で原料のSiC粉末を昇華
させ、その昇華ガスを閉鎖空間内で拡散輸送させてるつ
ぼ内の低温部に配置した種結晶上に再結晶させる改良型
昇華再結晶法(改良レーリー法)や、高温下でSi(シ
リコン)基板上に化学気相成長法(CVD法)を用いて
エピタキシャル成長させることにより立方晶のSiC単
結晶を成長させる高温エピタキシャル法等が知られてい
る。
As a method of growing (manufacturing) this kind of SiC single crystal, conventionally, a raw material SiC powder is sublimated in a graphite crucible, and the sublimation gas is diffused and transported in a closed space, and is placed in a low-temperature portion of the crucible. Sublimation recrystallization method (improved Rayleigh method) in which recrystallization is performed on the seed crystal, or cubic crystal is formed by epitaxial growth using a chemical vapor deposition method (CVD method) on a Si (silicon) substrate at a high temperature. A high temperature epitaxial method or the like for growing a SiC single crystal is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法のうち、改良レーリー法にあっては、
結晶成長速度の進展および大型単結晶成長が可能になっ
てきているものの、マイクロパイプ欠陥と呼ばれ半導体
デバイスを作製した際の漏れ電流等の原因となる結晶の
成長方向に貫通する直径数ミクロンのピンホールが10
0〜1000/cm2 程度成長結晶中に残存しやすく
て、半導体デバイスとしての要求を満たすに足りる品質
を持つ単結晶SiCが得られていない。また、高温エピ
タキシャル法は、基板温度が高い上に、基板が高温なた
め再蒸発量も多く、高純度の還元性雰囲気を作ることも
必要で設備的に非常に困難であり、さらに、エピタキシ
ャル成長のため結晶成長速度にも自ずと限界があって、
単結晶SiCの生産性が非常に悪いという問題があり、
このことが既述のようにSiやGaAsなどの既存の半
導体材料に比べて多くの優れた特徴を有しながらも、そ
の実用化を阻止する要因になっている。
However, among the above-mentioned conventional manufacturing methods, the improved Rayleigh method has the following disadvantages.
Although the growth rate of crystal growth and the growth of large single crystals have become possible, micro-pipe defects with a diameter of several microns that penetrate the crystal in the direction of crystal growth that cause leakage current when manufacturing semiconductor devices 10 pinholes
About 0 to 1000 / cm 2, single crystal SiC which easily remains in the grown crystal and has a quality sufficient to satisfy the requirements as a semiconductor device has not been obtained. In addition, the high-temperature epitaxial method requires a high substrate temperature, a large amount of re-evaporation due to the high temperature of the substrate, and it is necessary to create a high-purity reducing atmosphere. Therefore, the crystal growth rate is naturally limited,
There is a problem that productivity of single crystal SiC is very poor,
Although this has many excellent features as compared with existing semiconductor materials such as Si and GaAs as described above, it is a factor that hinders its practical use.

【0005】上記実情に鑑みて、本出願人は、α−Si
C単結晶基材の表面に熱化学的蒸着法などによりβ−S
iC層を形成してなる複合体を熱処理することにより、
β−SiC層の多結晶体をα−SiCに転化させるとと
もに、α−SiC単結晶基材の結晶軸と同方位に配向さ
れた単結晶を一体に成長させるという全く新しい単結晶
SiCの製造方法を開発し特許出願として既に提案して
いる。この既に提案している製造方法によれば、特殊な
設備を要することなく、単に高温熱処理を施すだけで、
結晶粒界やマイクロパイプ欠陥等の非常に少ない高品質
な単結晶SiCを生産性よく製造することができて、半
導体材料として実用化を促進できるという技術レベルま
で到達している。
In view of the above circumstances, the present applicant has proposed α-Si
Β-S on the surface of C single crystal substrate by thermochemical vapor deposition
By heat-treating the composite formed with the iC layer,
A completely new method for producing single-crystal SiC, in which a polycrystalline body of the β-SiC layer is converted into α-SiC and a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal base material is integrally grown. Has been developed and has already been proposed as a patent application. According to this already proposed manufacturing method, simply performing high-temperature heat treatment without requiring special equipment,
A high-quality single crystal SiC having very few crystal grain boundaries and micropipe defects can be manufactured with high productivity, and the technology has reached a technical level where practical application as a semiconductor material can be promoted.

【0006】本出願人は、既に提案している上記の製造
方法について、更に研究を進めた結果、種結晶となる単
結晶基材としてα−SiC単結晶基材を用いる場合は、
該単結晶基材自体の膜厚や面積に制限があって、最終製
品である単結晶SiCとして大型のものが得にくい。ま
た、α−SiC単結晶は高温下で育成されるものである
ために、それの育成過程において不純物などが入り込み
やすくて高純度が得にくく、品質の面で改良の余地があ
るという課題を知見した。
As a result of further research on the above-mentioned manufacturing method which has been already proposed, the applicant has found that when an α-SiC single crystal base material is used as a single crystal base material serving as a seed crystal,
The single crystal base material itself is limited in film thickness and area, and it is difficult to obtain a large single crystal SiC as a final product. In addition, since α-SiC single crystals are grown at high temperatures, it is difficult to obtain high purity due to impurities and the like during the growth process, and there is room for improvement in quality. did.

【0007】本発明は上記知見に基づいてなされたもの
で、結晶粒界やマイクロパイプ欠陥等が非常に少ないと
ともに、生産性に優れているのはもとより、非常に大型
で、しかも不純物の入り込みなどもなく、品質の著しい
向上を図ることができる単結晶SiCおよびその製造方
法を提供することを目的としている。
The present invention has been made based on the above-mentioned findings, and has very few crystal grain boundaries and micropipe defects, and is excellent not only in productivity but also in a very large size. It is another object of the present invention to provide a single-crystal SiC capable of significantly improving quality and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明に係る単結晶SiCは、β−S
iC単結晶基材の表面にβ−SiC多結晶層を形成して
なる複合体を熱処理することにより、上記β−SiC多
結晶層の多結晶体を再結晶化して単結晶に転化させると
ともに、その単結晶部分及び上記β−SiC単結晶基材
を含めて結晶軸が同方位に配向されたα−SiC単結晶
を一体に成長させていることを特徴とするものであり、
また、請求項4に記載の発明に係る単結晶SiCの製造
方法は、β−SiC単結晶基材の表面にβ−SiC多結
晶層を形成した後、その複合体を、大気圧以下の不活性
ガス雰囲気、かつ、SiC飽和蒸気圧下で熱処理するこ
とにより、上記β−SiC多結晶層の多結晶体を再結晶
化して単結晶に転化させるとともに、その転化された単
結晶部分及び上記β−SiC単結晶基材を含めて結晶軸
が同方位に配向されたα−SiC単結晶を一体化し育成
することを特徴とするものである。
In order to achieve the above object, a single-crystal SiC according to the first aspect of the present invention comprises a β-S
By performing a heat treatment on the composite formed by forming a β-SiC polycrystalline layer on the surface of the iC single crystal base material, the polycrystalline body of the β-SiC polycrystalline layer is recrystallized and converted into a single crystal, Α-SiC single crystal whose crystal axis is oriented in the same direction including the single crystal part and the β-SiC single crystal base material are grown integrally,
Further, in the method for producing single-crystal SiC according to the invention of claim 4, after forming a β-SiC polycrystalline layer on the surface of the β-SiC single-crystal base material, the composite is converted to a non-atmospheric pressure or lower. The polycrystalline body of the β-SiC polycrystalline layer is recrystallized and converted into a single crystal by performing a heat treatment in an active gas atmosphere and under a SiC saturated vapor pressure, and the converted single crystal portion and the β-SiC polycrystalline layer are converted to a single crystal. The present invention is characterized in that an α-SiC single crystal whose crystal axes are oriented in the same direction including a SiC single crystal substrate is integrated and grown.

【0009】上記のような構成要件を有する請求項1及
び請求項4に記載の発明によれば、種結晶となる単結晶
基材として、本出願人が既に提案している既述の製造方
法で用いていたα−SiC単結晶に代えてβ−SiC単
結晶を用いることによって、α−SiC単結晶を用いる
場合に比べて、膜厚及び面積共に非常に大きい大型の単
結晶基材(種結晶)が得やすく、その結果、最終製品で
ある単結晶SiCとしても半導体材料としての適用範囲
の広い大型のものが得やすくなる。また、β−SiC単
結晶は比較的低温下で育成可能であって、それの育成過
程において不純物などが入り込むことがほとんどなく、
高純度の単結晶を得やすい。
According to the first and fourth aspects of the present invention having the above constitutional requirements, the above-described manufacturing method which has been already proposed by the present applicant as a single crystal base material serving as a seed crystal. By using a β-SiC single crystal instead of the α-SiC single crystal used in the above, a large single crystal base material (seed) having a very large film thickness and area compared to the case of using an α-SiC single crystal As a result, it is easy to obtain a large-sized single-crystal SiC having a wide range of application as a semiconductor material even as a final product, single-crystal SiC. Further, a β-SiC single crystal can be grown at a relatively low temperature, and impurities and the like hardly enter during the growth process.
Easy to obtain high purity single crystal.

【0010】このような大型、高純度のβ−SiC単結
晶基材を種結晶として用い、その表面にβ−SiC多結
晶層を形成してなる複合体を単に高温熱処理して多結晶
体を再結晶化することによって、本出願人が既に提案し
ている製造方法と同様に、結晶粒界やマイクロパイプ欠
陥等が非常に少ない上に、純度も非常に高く、その結
果、きわめて良質で、しかも大型の単結晶SiCを設備
的に容易に、かつ生産性よく得ることが可能となる。
[0010] A complex formed by using such a large, high-purity β-SiC single crystal base material as a seed crystal and forming a β-SiC polycrystal layer on the surface thereof is simply subjected to high-temperature heat treatment to form a polycrystal. By recrystallization, as in the manufacturing method already proposed by the present applicant, in addition to having very few crystal grain boundaries and micropipe defects, the purity is also very high, and as a result, very high quality, In addition, large single-crystal SiC can be easily obtained with equipment and with high productivity.

【0011】ここで、上記β−SiC多結晶層として、
請求項2及び請求項5に記載のように、1300〜19
00℃範囲の熱化学的蒸着法によりβ−SiC単結晶基
材の表面に形成されたものを用いることによって、この
β−SiC多結晶層の多結晶体の再結晶化による単結晶
への転化時における不純物原子の拡散が抑えられ、より
高品質な単結晶SiCを得ることが可能である。
Here, as the β-SiC polycrystalline layer,
As described in claims 2 and 5, 1300 to 19
By using what was formed on the surface of the β-SiC single crystal base material by the thermochemical vapor deposition method in the 00 ° C. range, the polycrystal of the β-SiC polycrystal layer was converted into a single crystal by recrystallization. At this time, diffusion of impurity atoms is suppressed, and higher quality single crystal SiC can be obtained.

【0012】また、上記請求項1に記載の発明に係る単
結晶SiC及び請求項4に記載の発明に係る単結晶Si
Cの製造方法において、種結晶となるβ−SiC単結晶
基材として、請求項3及び請求項6に記載したように、
Si単結晶の炭化SiC層を基板としてエピタキシャル
成長されたβ−SiCエピタキシャル層の上にβ−Si
C多結晶層を熱化学的蒸着法で成膜し、かつ、これらを
熱処理することにより一体に単結晶化されたものを使用
することによって、面積及び膜厚の大きい単結晶が容易
に得られるとともに、その種結晶の製造過程での不純物
の入り込みもなくなり、一層純度の高いβ−SiC単結
晶を得やすい。
Further, the single-crystal SiC according to the first aspect and the single-crystal Si according to the fourth aspect of the present invention.
In the method for producing C, as a β-SiC single crystal base material serving as a seed crystal, as described in claims 3 and 6,
Β-Si is formed on a β-SiC epitaxial layer epitaxially grown using a Si single crystal carbonized SiC layer as a substrate.
A single crystal having a large area and a large film thickness can be easily obtained by forming a C polycrystalline layer by a thermochemical vapor deposition method and using a single crystal formed by heat-treating them. At the same time, impurities do not enter during the process of producing the seed crystal, so that a β-SiC single crystal with higher purity can be easily obtained.

【0013】なお、上記請求項6に記載の単結晶SiC
の製造方法における上記β−SiCエピタキシャル層及
びその上に成膜したβ−SiC多結晶層の熱処理温度
は、2200〜2350℃の範囲に設定することが好ま
しく、また、上記請求項4ないし7のいずれかに記載の
単結晶SiCの製造方法における複合体に対する熱処理
温度としては、2100〜2400℃の範囲に設定する
ことが望ましい。
The single-crystal SiC according to claim 6
The heat treatment temperature of the β-SiC epitaxial layer and the β-SiC polycrystalline layer formed thereon is preferably set in the range of 2200 to 2350 ° C. in the manufacturing method of The heat treatment temperature for the composite in any one of the methods for producing single-crystal SiC described above is desirably set in the range of 2100 to 2400 ° C.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る単結晶Si
Cの熱処理前の状態を示す模式図であり、同図におい
て、1はβ−SiC単結晶基材で、その表面に1300
〜1900℃の範囲の熱化学的蒸着法(以下、熱CVD
法という)により立方晶系のβ−SiC多結晶層2を成
膜することにより、β−SiC単結晶基材1の表面にβ
−SiCの多結晶体3が成長された複合体Mを形成して
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a single crystal Si according to the present invention.
FIG. 3 is a schematic diagram showing a state before heat treatment of C, in which 1 is a β-SiC single crystal base material, and 1300 is provided on the surface thereof.
Thermochemical vapor deposition method (hereinafter referred to as thermal CVD)
By forming a cubic β-SiC polycrystalline layer 2 by the method described above, the surface of the β-SiC single crystal
Forming a composite M in which the polycrystalline body 3 of SiC is grown.

【0015】この後、上記複合体Mの全体をカーボン製
抵抗発熱炉(図示省略)内に挿入するとともに、複合体
Mの周囲にアチソン法等によって作られたSiC塊(図
示省略)を配置し、また、Arなどの不活性ガス気流を
1atm 程度炉内に注入して炉の中心温度が2100〜2
400℃、好ましくは2000〜2200℃の範囲に達
する間で昇温させ、かつ、その温度を数時間に亘って保
持させるといったように、不活性ガス雰囲気、かつ、S
iC飽和蒸気圧下で熱処理することにより、上記β−S
iC多結晶層2の多結晶体3が再結晶化されて単結晶に
転化されると共に、その単結晶部分及び上記β−SiC
単結晶基材1の単結晶がα−SiC単結晶に転化され
て、図2に示すように、結晶軸が同方位に配向された大
きなα−SiC単結晶5を一体に育成している。
Thereafter, the whole of the composite M is inserted into a resistance heating furnace made of carbon (not shown), and an SiC mass (not shown) made by Acheson method or the like is arranged around the composite M. In addition, an inert gas stream such as Ar is injected into the furnace at about 1 atm so that the center temperature of the furnace becomes 2100-2.
An inert gas atmosphere, such as raising the temperature to reach 400 ° C., preferably 2000 to 2200 ° C., and maintaining the temperature for several hours;
By performing the heat treatment under the saturated vapor pressure of iC, the above β-S
The polycrystalline body 3 of the iC polycrystalline layer 2 is recrystallized and converted into a single crystal, and the single crystal portion and the β-SiC
The single crystal of the single crystal substrate 1 is converted into an α-SiC single crystal, and as shown in FIG. 2, a large α-SiC single crystal 5 in which the crystal axes are oriented in the same direction is integrally grown.

【0016】上記のようにして育成されたα−SiC単
結晶5は、種結晶となる単結晶基材1として、膜厚及び
面積共に非常に大型化しやすく、また、高純度が得やす
いβ−SiC単結晶を用いているために、最終製品であ
る単結晶SiCも大型化することができるとともに、結
晶粒界やマイクロパイプ欠陥等が非常に少ないだけでな
く純度も非常に高く、品質面できわめて良質で、大きさ
及び品質の両面から半導体材料としての適用性を著しく
拡充し、実用化を促進することが可能となる。
The α-SiC single crystal 5 grown as described above, as a single crystal substrate 1 serving as a seed crystal, is likely to be very large in both film thickness and area, and β-SiC is easy to obtain high purity. Since the SiC single crystal is used, the final product, single crystal SiC, can be made large in size. In addition to having very few crystal grain boundaries and micropipe defects, the purity is also very high. The applicability as a semiconductor material is remarkably enhanced in terms of both quality and size and quality, and practical application can be promoted.

【0017】ここで、上記α−SiC単結晶5の育成に
種結晶として用いられるβ−SiC単結晶基材1は、次
のようにして作製されるものである。図3(A)に示す
ように、Si単結晶6の表面をH2 気流中でCCl4
によって炭化して薄いSi炭化SiC層7を形成すると
ともに、そのSi炭化SiC層7を基板としてヘテロエ
ピタキシャル成長によりβ−SiCエピタキシャル層8
を形成した後、図3(B)に示すように、硝酸等によっ
てSi単結晶6を除去する。
Here, the β-SiC single crystal base material 1 used as a seed crystal for growing the α-SiC single crystal 5 is manufactured as follows. As shown in FIG. 3A, the surface of the Si single crystal 6 is carbonized by CCl 4 or the like in an H 2 gas flow to form a thin SiC SiC layer 7 and the SiC SiC layer 7 is used as a substrate. Β-SiC epitaxial layer 8 by epitaxial growth
Then, as shown in FIG. 3B, the Si single crystal 6 is removed by using nitric acid or the like.

【0018】次に、図3(C)に示すように、β−Si
Cエピタキシャル層8上に、大過剰のH2 気流中にCH
3 SiCl3 (モノメチルトルクロルシラン)を混入し
た雰囲気下で1300〜1380℃の範囲の熱CVD法
によって、(111)面に配向のβ−SiC多結晶層9
を150μ/Hrの速度で成膜する。最後に、Si炭化
SiC層7、β−SiCエピタキシャル層8及びβ−S
iC多結晶層9からなる複合体の全体をArなどの不活
性ガス雰囲気、かつ、SiC飽和蒸気圧下で2200〜
2350℃の温度範囲になるまで3時間かけて加熱昇温
させ、かつ、その温度を3時間に亘って保持させるとい
った熱処理を施すことにより、図3(D)に示すよう
に、各層7〜9が一体に単結晶化されたβ−SiC単結
晶基材1を得る。
Next, as shown in FIG.
On the C epitaxial layer 8, the CH 2 is introduced in a large excess H 2 gas flow.
Β-SiC polycrystalline layer 9 oriented on the (111) plane by a thermal CVD method in the range of 1300 to 1380 ° C. in an atmosphere containing 3 SiCl 3 (monomethyltolchlorosilane).
Is formed at a rate of 150 μ / Hr. Finally, the SiC SiC layer 7, the β-SiC epitaxial layer 8, and the β-S
The whole of the composite comprising the iC polycrystalline layer 9 was subjected to an inert gas atmosphere of Ar or the like and an SiC saturated vapor pressure of 2200 to 2200.
As shown in FIG. 3 (D), each of the layers 7 to 9 is subjected to a heat treatment of heating and raising the temperature over 3 hours until the temperature reaches a temperature range of 2350 ° C. and maintaining the temperature for 3 hours. To obtain a β-SiC single crystal substrate 1 in which the single crystal is integrally crystallized.

【0019】上記のようにして得られたβ−SiC単結
晶基材1は、面積及び膜厚共に大きいだけでなく、その
製造過程で不純物が入り込むこともないため、非常に高
純度であり、このようなβ−SiC単結晶基材1を種結
晶として用いて製造される単結晶SiC(最終製品)が
非常に大型で、かつ、きわめて高品質であることは容易
に理解されるところである。
The β-SiC single crystal base material 1 obtained as described above has not only a large area and a large film thickness, but also has very high purity because no impurities enter during the manufacturing process. It is easily understood that a single crystal SiC (final product) manufactured using such a β-SiC single crystal substrate 1 as a seed crystal is very large and of extremely high quality.

【0020】なお、上記実施の形態では、β−SiC単
結晶基材1の表面に熱CVD法により立方晶系のβ−S
iC多結晶層2を成膜して複合体Mを形成する場合につ
いて説明したが、β−SiC単結晶基材1の表面にβ−
SiC多結晶層2を単に重ね合わせて複合体Mを形成
し、これを熱処理するものであってもよい。
In the above-described embodiment, the cubic β-S
Although the case where the composite M is formed by forming the iC polycrystalline layer 2 is described, the β-SiC single crystal substrate 1
The composite M may be formed by simply superposing the SiC polycrystalline layers 2 and heat-treating the composite M.

【0021】[0021]

【発明の効果】以上のように、請求項1及び請求項4に
記載の発明によれば、種結晶となる単結晶基材として、
膜厚及び面積共に非常に大きくて大型化しやすく、か
つ、それの育成過程で不純物などの入り込みがなくて高
純度化が容易なβ−SiC単結晶を用い、その表面にβ
−SiC多結晶層を形成してなる複合体を単に高温熱処
理するだけで、最終製品である単結晶SiCとしても半
導体材料としての適用範囲の広い大型のものが得やすい
とともに、本出願人が既に提案している既述の製造方法
と同様に、結晶粒界やマイクロパイプ欠陥等が非常に少
ない上に純度も非常に高く、その結果、きわめて高品質
な単結晶SiCを設備的に容易に、かつ生産性よく得る
ことができる。これによって、Si(シリコン)やGa
As(ガリウムヒ素)などの既存の半導体材料に比べて
大容量、高周波、耐圧、耐環境性に優れパワーデバイス
用半導体材料として期待されている単結晶SiCの適用
性の拡充及び実用化の促進を図ることができるという効
果を奏する。
As described above, according to the first and fourth aspects of the present invention, a single crystal base material serving as a seed crystal is:
A β-SiC single crystal, which is very large in both film thickness and area and easy to increase in size, and does not enter impurities or the like during its growing process and is easily purified, is used.
-By simply subjecting the composite formed with the SiC polycrystalline layer to high-temperature heat treatment, it is easy to obtain a single-crystal SiC as a final product, which has a wide range of application as a semiconductor material and has a large size. As in the case of the above-mentioned proposed manufacturing method, there are very few crystal grain boundaries and micropipe defects, and the purity is very high. As a result, extremely high-quality single-crystal SiC can be easily produced with equipment. And it can be obtained with good productivity. Thereby, Si (silicon) or Ga
Compared with existing semiconductor materials such as As (gallium arsenide), it is superior in capacity, high frequency, withstand voltage, environmental resistance, and is expected to be used as a semiconductor material for power devices. This has the effect that it can be achieved.

【0022】また、請求項2及び請求項5に記載の発
明、さらには、請求項3及び請求項6に記載の発明によ
れば、上記請求項1記載の発明で得られる単結晶SiC
の品質をより一層高めることができる。
According to the second and fifth aspects of the present invention, and according to the third and sixth aspects of the present invention, the single-crystal SiC obtained by the first aspect of the present invention is provided.
Quality can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶SiCの熱処理前の状態を
示す模式図である。
FIG. 1 is a schematic diagram showing a state before heat treatment of single crystal SiC according to the present invention.

【図2】本発明に係る単結晶SiCの熱処理後の状態を
示す模式図である。
FIG. 2 is a schematic diagram showing a state after heat treatment of single crystal SiC according to the present invention.

【図3】(A)〜(D)は本発明に係る単結晶SiCの
製造にあたって、種結晶として用いられるβ−SiC単
結晶基材の作製方法の説明図である。
FIGS. 3A to 3D are explanatory diagrams of a method for producing a β-SiC single crystal base material used as a seed crystal in producing the single crystal SiC according to the present invention.

【符号の説明】[Explanation of symbols]

1 β−SiC単結晶基材 2 β−SiC多結晶層 3 多結晶体 5 単結晶SiC 6 Si単結晶 7 Si炭化SiC層 8 β−SiCエピタキシャル層 9 β−SiC多結晶層 M 複合体 REFERENCE SIGNS LIST 1 β-SiC single crystal base material 2 β-SiC polycrystal layer 3 polycrystal 5 single crystal SiC 6 Si single crystal 7 Si carbide SiC layer 8 β-SiC epitaxial layer 9 β-SiC polycrystal layer M composite

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G050 AA03 AB02 4G077 AA03 AB02 BE08 DA01 DB05 DB09 EA01 ED05 ED06 FE02 FE11 HA12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G050 AA03 AB02 4G077 AA03 AB02 BE08 DA01 DB05 DB09 EA01 ED05 ED06 FE02 FE11 HA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 β−SiC単結晶基材の表面にβ−Si
C多結晶層を形成してなる複合体を熱処理することによ
り、上記β−SiC多結晶層の多結晶体を再結晶化して
単結晶に転化させるとともに、その単結晶部分及び上記
β−SiC単結晶基材を含めて結晶軸が同方位に配向さ
れたα−SiC単結晶を一体に成長させていることを特
徴とする単結晶SiC。
1. The surface of a β-SiC single crystal substrate has β-Si
By heat treating the composite formed with the C polycrystal layer, the polycrystal of the β-SiC polycrystal layer is recrystallized and converted into a single crystal, and the single crystal portion and the β-SiC A single crystal SiC, wherein an α-SiC single crystal whose crystal axes are oriented in the same direction including a crystal substrate is integrally grown.
【請求項2】 上記β−SiC多結晶層が、1300〜
1900℃範囲の熱化学的蒸着法によりβ−SiC単結
晶基材の表面に形成されたものである請求項1に記載の
単結晶SiC。
2. The method according to claim 1, wherein the β-SiC polycrystalline layer is
The single crystal SiC according to claim 1, wherein the single crystal SiC is formed on the surface of the β-SiC single crystal base material by a thermochemical deposition method in a temperature range of 1900 ° C.
【請求項3】 上記β−SiC単結晶基材が、Si単結
晶の炭化SiC層を基板としてエピタキシャル成長され
たβ−SiCエピタキシャル層の上にβ−SiC多結晶
層を熱化学的蒸着法で成膜し、かつ、これらを熱処理す
ることにより一体に単結晶化されたものである請求項1
または2に記載の単結晶SiC。
3. The β-SiC single crystal base material is formed by thermochemical vapor deposition of a β-SiC polycrystal layer on a β-SiC epitaxial layer epitaxially grown using a Si single crystal SiC layer as a substrate. 2. A film which is formed into a single crystal by heat treatment.
Or the single crystal SiC according to 2.
【請求項4】 β−SiC単結晶基材の表面にβ−Si
C多結晶層を形成した後、 その複合体を、大気圧以下の不活性ガス雰囲気、かつ、
SiC飽和蒸気圧下で熱処理することにより、上記β−
SiC多結晶層の多結晶体を再結晶化して単結晶に転化
させるとともに、 その転化された単結晶部分及び上記β−SiC単結晶基
材を含めて結晶軸が同方位に配向されたα−SiC単結
晶を一体化し育成することを特徴とする単結晶SiCの
製造方法。
4. A β-SiC single crystal substrate having β-Si
After the C polycrystalline layer is formed, the composite is formed in an inert gas atmosphere at a pressure lower than the atmospheric pressure, and
By performing the heat treatment under the saturated vapor pressure of SiC, the above β-
The polycrystal of the SiC polycrystal layer is recrystallized to be converted into a single crystal, and the converted single crystal portion and the α-crystal whose crystal axis is oriented in the same direction including the β-SiC single crystal base material are included. A method for producing single-crystal SiC, comprising integrating and growing a single-crystal SiC.
【請求項5】 上記β−SiC多結晶層が、1300〜
1900℃範囲の熱化学的蒸着法によりβ−SiC単結
晶基材の表面に形成されたものである請求項4に記載の
単結晶SiCの製造方法。
5. The polycrystalline β-SiC layer according to claim 1, wherein
The method for producing single-crystal SiC according to claim 4, wherein the single-crystal SiC is formed on the surface of the β-SiC single-crystal substrate by a thermochemical vapor deposition method in a temperature range of 1900 ° C.
【請求項6】 上記β−SiC単結晶基材が、Si単結
晶の炭化SiC層を基板としてエピタキシャル成長され
たβ−SiCエピタキシャル層の上にβ−SiC多結晶
層を熱化学的蒸着法で成膜し、かつ、これらを熱処理す
ることにより一体に単結晶化されたものである請求項4
または5に記載の単結晶SiCの製造方法。
6. The β-SiC single crystal base material is formed by thermochemical vapor deposition of a β-SiC polycrystalline layer on a β-SiC epitaxial layer epitaxially grown using a Si single crystal SiC layer as a substrate. 5. A film which is formed into a single crystal by heat treatment.
Or the method for producing single-crystal SiC according to 5.
【請求項7】 上記β−SiCエピタキシャル層及びそ
の上に成膜したβ−SiC多結晶層の熱処理温度が、2
200〜2350℃の範囲に設定されている請求項6に
記載の単結晶SiCの製造方法。
7. The heat treatment temperature of the β-SiC epitaxial layer and the β-SiC polycrystalline layer formed thereon is 2
The method for producing single crystal SiC according to claim 6, wherein the temperature is set in a range of 200 to 2350 ° C.
【請求項8】 上記複合体に対する熱処理温度が、21
00〜2400℃である請求項4ないし7のいずれかに
記載の単結晶SiCの製造方法。
8. The heat treatment temperature for the composite is 21.
The method for producing single-crystal SiC according to any one of claims 4 to 7, wherein the temperature is from 00 to 2400 ° C.
JP19729598A 1998-07-13 1998-07-13 Single crystal SiC and method for producing the same Expired - Fee Related JP2917149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729598A JP2917149B1 (en) 1998-07-13 1998-07-13 Single crystal SiC and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729598A JP2917149B1 (en) 1998-07-13 1998-07-13 Single crystal SiC and method for producing the same

Publications (2)

Publication Number Publication Date
JP2917149B1 JP2917149B1 (en) 1999-07-12
JP2000034198A true JP2000034198A (en) 2000-02-02

Family

ID=16372094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729598A Expired - Fee Related JP2917149B1 (en) 1998-07-13 1998-07-13 Single crystal SiC and method for producing the same

Country Status (1)

Country Link
JP (1) JP2917149B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746787B2 (en) 2000-12-12 2004-06-08 Denso Corporation Manufacturing method of silicon carbide single crystals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746787B2 (en) 2000-12-12 2004-06-08 Denso Corporation Manufacturing method of silicon carbide single crystals
US7147714B2 (en) 2000-12-12 2006-12-12 Denso Corporation Manufacturing method of silicon carbide single crystals

Also Published As

Publication number Publication date
JP2917149B1 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP4979579B2 (en) Silicon carbide growth system and seed crystal sublimation method for growing silicon carbide large single crystals
US6053973A (en) Single crystal SiC and a method of producing the same
JP3296998B2 (en) Single crystal SiC and method for producing the same
JP3003027B2 (en) Single crystal SiC and method for producing the same
JP3254559B2 (en) Single crystal SiC and method for producing the same
JP2884085B1 (en) Single crystal SiC and method for producing the same
US6376900B1 (en) Single crystal SiC
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
EP1130137B1 (en) Material for raising single crystal sic and method of preparing single crystal sic
JP3254557B2 (en) Single crystal SiC and method for producing the same
JP2917143B1 (en) Single crystal SiC and method for producing the same
JP2917149B1 (en) Single crystal SiC and method for producing the same
JP3551106B2 (en) Method for producing single crystal SiC
JP2896667B1 (en) Single crystal SiC and method for producing the same
JP2936481B1 (en) Single crystal SiC and method for producing the same
JP2000053500A (en) METHOD AND DEVICE FOR GROWING SINGLE CRYSTAL SiC
JP2946418B1 (en) Single crystal SiC and method for producing the same
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JPH11315000A (en) Single crystal sic and its production
JP2964080B1 (en) Single crystal SiC and method for producing the same
JP2939615B2 (en) Single crystal SiC and method for producing the same
JP2946410B2 (en) Single crystal SiC and method for producing the same
JP3043687B2 (en) Single crystal SiC and method for producing the same
JPS6385097A (en) Method for growth of sic single crystal
JPH11147793A (en) Single crystal silicon carbide and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120423

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130423

LAPS Cancellation because of no payment of annual fees