JP2000028838A - Optical module for signal transmission and reception - Google Patents

Optical module for signal transmission and reception

Info

Publication number
JP2000028838A
JP2000028838A JP10195289A JP19528998A JP2000028838A JP 2000028838 A JP2000028838 A JP 2000028838A JP 10195289 A JP10195289 A JP 10195289A JP 19528998 A JP19528998 A JP 19528998A JP 2000028838 A JP2000028838 A JP 2000028838A
Authority
JP
Japan
Prior art keywords
waveguide
substrate
optical
branch
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10195289A
Other languages
Japanese (ja)
Inventor
Kenichi Takase
健一 高瀬
Hiroshi Nomura
洋 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Soc Corp
Original Assignee
Showa Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Optronics Co Ltd filed Critical Showa Optronics Co Ltd
Priority to JP10195289A priority Critical patent/JP2000028838A/en
Publication of JP2000028838A publication Critical patent/JP2000028838A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical module for signal transmission and reception which is small in size and is free in shapes. SOLUTION: This optical module comprises a microlens array 11 which is obtd. by forming plural microlenses 13 of short focal lengths disposed in juxtaposition on the surface of a lens substrate 12 and focus the foal positions of the respective microlenses 13 to the rear surface of the substrate 12 and an optical waveguide substrate part 16 which is superposed on this microlens array part 11 in the state of joining the rear surface of the waveguide substrate 4 to the rear surface of the lens substrate 12 and is formed with a Y branch waveguide 15 for branching and combining input and output light at the waveguide substrate 14. The Y branch waveguide 15 is extended to the focal positions in the form that its respective branch side ends are respectively aligned to the optical axes of the respective microlenses 13. The combining side end thereof is extended to the front surface or flank of the waveguide substrate 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信システムに
用いて光の分波又は合波を行う送受信用光学系に係り、
特に小型化が可能で且つ自在な形状を採り得るように、
マイクロレンズアレイとY字形の光導波路を組み合わせ
た送受信用光学モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmitting / receiving optical system for splitting or multiplexing light used in an optical communication system.
In particular, so that it can be miniaturized and take any shape,
The present invention relates to a transmitting / receiving optical module in which a microlens array and a Y-shaped optical waveguide are combined.

【0002】[0002]

【従来の技術】この種の送受信用光学系では、図1で示
すように、対物レンズ1とその焦点位置に配置した発光
素子又は受光素子による光電変換素子2を組合せ、送信
光又は受信光を対物レンズ1と光電変換素子2の間で授
受している。
2. Description of the Related Art In a transmission / reception optical system of this kind, as shown in FIG. 1, an objective lens 1 and a photoelectric conversion element 2 composed of a light emitting element or a light receiving element arranged at a focal position thereof are combined to transmit or receive light. Transfer is performed between the objective lens 1 and the photoelectric conversion element 2.

【0003】この送受信用光学系では、所定の送信ビー
ム幅や受信光量を確保するために必要な口径Dの対物レ
ンズ1が使用され、その焦点位置に配置した光電変換素
子2との間には焦点距離Lに相当する距離間隔が必要で
あると共に、これらを収容して固定保持するためのハウ
ジング3を必要とする。
In this transmission / reception optical system, an objective lens 1 having an aperture D required to secure a predetermined transmission beam width and a received light amount is used. A distance interval corresponding to the focal length L is required, and a housing 3 for accommodating and fixing and holding them is required.

【0004】例えば、対物レンズ1の口径Dが40mm
φでFナンバーを一般的な値2とした場合に、焦点距離
Lは40mm×2=80mmで集光面積は12.6cm
2となるので、対物レンズ1と光電変換素子2との間に
80mmの長い距離間隔が必要であると共に、これらを
収容するハウジング3の容積も大きくなり、この改善の
ために焦点距離Lを短くするようにFナンバーを小さく
すると、収差が増えて性能を低下させるので望ましくな
い。
[0004] For example, if the diameter D of the objective lens 1 is 40 mm
When the F number is a general value of 2 in φ, the focal length L is 40 mm × 2 = 80 mm, and the light focusing area is 12.6 cm.
Since the 2, as well as a required long distance interval of 80mm between the objective lens 1 and the photoelectric conversion element 2, also increases the volume of the housing 3 that accommodates these, the focal length L for this improvement short If the f-number is reduced as described above, the aberration increases and the performance decreases, which is not desirable.

【0005】また受信用光学系の場合に、大気の屈折率
分布の時間的変動に基づく受信強度の時間的変動(星の
瞬きの原因として知られている)を少なくするために、
対物レンズの口径を大きくしたり、間隔を離して併設し
た複数の受信用光学系の総和を取り出すようにして、い
わゆるアパーチャーアベレージ効果を得ようとする場合
がある。
[0005] In the case of a receiving optical system, in order to reduce the temporal fluctuation of the receiving intensity based on the temporal fluctuation of the refractive index distribution of the atmosphere (known as a cause of star blinking),
In some cases, a so-called aperture averaging effect is obtained by increasing the aperture of the objective lens or extracting the sum of a plurality of receiving optical systems provided side by side at an interval.

【0006】[0006]

【発明が解決しようとする課題】このように、従来技術
による対物レンズ1と光電変換素子2を組合せた送受信
用光学系では、長い焦点距離Lを必要とすること及び、
その間に形成された円筒状の光路外周囲がデッドスペー
スとなって有効利用できない恐れがあること等の理由か
ら、装置の小型化を図ることが困難であった。
As described above, the transmitting / receiving optical system in which the objective lens 1 and the photoelectric conversion element 2 according to the prior art are combined requires a long focal length L, and
It has been difficult to reduce the size of the device because, for example, there is a possibility that the outer periphery of the cylindrical optical path formed during that time becomes a dead space and cannot be used effectively.

【0007】また、アパーチャーアベレージ効果を得る
ために、対物レンズの口径を大きくすると焦点距離Lが
一段と長くなり、複数の受信用光学系を並設するとレン
ズの配列に自由度が無いので装置内におけるスペースの
利用効率が一段と悪くなり、装置の小型化が一層困難に
なる。
In order to obtain the aperture averaging effect, when the aperture of the objective lens is increased, the focal length L is further increased. When a plurality of receiving optical systems are arranged in parallel, there is no flexibility in the arrangement of the lenses. The space utilization efficiency is further deteriorated, and miniaturization of the device becomes more difficult.

【0008】そこで本発明では、これら従来技術の課題
を解決するものであって、焦点距離を短くして装置の小
型化を図ることができ、また自在な形状を採ることを可
能にしてスペースを有効利用した自由度のある装置設計
ができると共に、アパーチャーアベレージ効果を得るた
めに有効な適正配置を採ることができる新規な送受信用
光学モジュールの提供を目的とする。
Therefore, the present invention solves these problems of the prior art, and it is possible to reduce the size of the apparatus by shortening the focal length, and it is possible to take a free shape to save space. It is an object of the present invention to provide a novel optical module for transmitting and receiving, which can design a device having a degree of freedom by effectively utilizing it and adopt an effective proper arrangement for obtaining an aperture average effect.

【0009】[0009]

【課題を解決するための手段】本発明による送受信用光
学モジュールは、空間伝搬する光波を受信または送信す
る光学系であって、レンズ基板の表面に並設した焦点距
離の短い複数のマイクロレンズを形成し、各マイクロレ
ンズの焦点位置をレンズ基板の裏面に整合させたマイク
ロレンズアレイ部と、導波路基板の裏面をレンズ基板の
裏面に接合した状態でマイクロレンズアレイ部に重合
し、導波路基板には入出力光を分岐・合流するY分岐導
波路を形成した光導波路基板部とで構成され、前記Y分
岐導波路は、各分岐側端部が各マイクロレンズの光軸と
それぞれ一致する態様で焦点位置に延在されると共に、
合流側端部は導波路基板の表面又は側面に延在されてい
るものである。
A transmitting / receiving optical module according to the present invention is an optical system for receiving or transmitting a spatially propagating light wave, and includes a plurality of microlenses having a short focal length arranged in parallel on a surface of a lens substrate. A microlens array portion formed and aligned with the focal position of each microlens on the back surface of the lens substrate, and a microlens array portion superimposed on the microlens array portion in a state where the back surface of the waveguide substrate is bonded to the back surface of the lens substrate. And an optical waveguide substrate portion formed with a Y-branch waveguide for branching and merging the input / output light, wherein the Y-branch waveguide has a branch-side end portion coinciding with the optical axis of each microlens. At the focal position, and
The junction side end extends to the surface or side surface of the waveguide substrate.

【0010】前記構成による本発明の送受信用光学モジ
ュールは、受信に用いた場合は、各マイクロレンズに入
射した光は各焦点位置に集光したのちに、光導波路で順
次合流して導波路基板表面の合流側端部から合成した受
信光を受信部へ放射し、送信に用いた場合には、合流側
端部から入射した光は光導波路で2分の1ずつに順次分
岐しながら分岐側端部である各マイクロレンズの焦点位
置に達し、各マイクロレンズから幅の狭い複数の光ビー
ムによる送信光を空中へ放射する。
In the transmission / reception optical module of the present invention having the above-described structure, when used for reception, light incident on each microlens is condensed at each focal position, and then sequentially merged in an optical waveguide to form a waveguide substrate. When the received light synthesized from the merging side end of the surface is radiated to the receiving part and used for transmission, the light incident from the merging side end is sequentially branched in half by the optical waveguide at the branch side. The focal position of each microlens, which is the end, is reached, and transmission light by a plurality of narrow light beams is emitted from the microlens into the air.

【0011】本発明による送受信用光学モジュールで
は、1個の対物レンズの代わりにマイクロレンズアレイ
と光導波路基板を用い、焦点距離の短い各マイクロレン
ズの光をY分岐の光導波路で分岐・合流するようにした
ので、従来の光学系の対物レンズの焦点距離に相当する
厚みによる小型化阻害の制約が無くなり、薄い光学系が
実現できるので、光送受信器の小型化に寄与する。
In the optical module for transmission and reception according to the present invention, a microlens array and an optical waveguide substrate are used instead of one objective lens, and the light of each microlens having a short focal length is branched and merged by the Y-branch optical waveguide. As a result, the restriction of miniaturization due to the thickness corresponding to the focal length of the objective lens of the conventional optical system is eliminated, and a thin optical system can be realized, which contributes to the miniaturization of the optical transceiver.

【0012】また、円形断面に限定され且つ焦点位置ま
での円筒状光路の外周囲がデットスペースとなる対物レ
ンズと違って、マイクロレンズアレイの形状とマイクロ
レンズの配列を自由に設定できると共に、Y分岐の光導
波路を薄型の光導波路基板中に形成できるので、装置に
組み込む場合のスペース効率が改善されて装置設計の自
由度が向上する効果がある。
Also, unlike an objective lens which is limited to a circular cross section and has a dead space on the outer periphery of a cylindrical optical path up to the focal position, the shape of the microlens array and the arrangement of the microlenses can be freely set. Since the branched optical waveguide can be formed in the thin optical waveguide substrate, there is an effect that the space efficiency when incorporated in the device is improved and the degree of freedom in device design is improved.

【0013】さらに、マイクロレンズアレイの形状とマ
イクロレンズの配列を、アパーチャーアベレージ効果を
得るために有効な適正配置(異なった複数個所に受信ポ
イントが設定されるように)に設定し、受信強度の変動
を少なくすることができる。
Further, the shape of the microlens array and the arrangement of the microlenses are set to an appropriate arrangement (so that reception points are set at a plurality of different places) effective for obtaining an aperture average effect, and the reception intensity Fluctuations can be reduced.

【0014】[0014]

【発明の実施の形態】以下、本発明の送受信用光学モジ
ュールに付いて、その望ましい実施形態を示した図2〜
8に基づいて説明するが、図2は送受信用光学モジュー
ルの概略図であって、(a)は平面図を(b)は縦断面
図を示し、図3は送受信用光学モジュールの要部拡大平
面図を示し、図4は図3のIV−IV線に沿った断面図で
あって第1の実施形態による断面図を示し、図5は図3
のIV−IV線に沿った断面図であって第2の実施形態に
よる断面図を示し、図6は本発明による送受信用光学モ
ジュールを壁掛け絵画の照明に用いた実施例図を示し、
図7は各種の光学モジュール形態の実施例図を示し、図
8は並列接続型による信号の授受方法の実施例図を示す
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a transmitting / receiving optical module according to the present invention will be described with reference to FIGS.
8, FIG. 2 is a schematic view of the optical module for transmission and reception, (a) is a plan view, (b) is a longitudinal sectional view, and FIG. 3 is an enlarged main part of the optical module for transmission and reception. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3 and shows a cross-sectional view according to the first embodiment.
FIG. 6 is a cross-sectional view taken along the line IV-IV, showing a cross-sectional view according to a second embodiment, and FIG. 6 is an example view in which a transmitting / receiving optical module according to the present invention is used for lighting a wall-mounted painting;
FIG. 7 shows an embodiment of various types of optical modules, and FIG. 8 shows an embodiment of a method of transmitting and receiving signals by a parallel connection type.

【0015】本発明による送受信用の光学モジュール1
0は、空間伝搬する光波を受信または送信する光学系で
あって、図2で示すようにレンズ基板12の表面に並設
した焦点距離の短い複数のマイクロレンズ13を形成
し、各マイクロレンズ13の焦点位置をレンズ基板12
の裏面に整合させたマイクロレンズアレイ部11と、導
波路基板14の裏面をレンズ基板12の裏面に接合した
状態でマイクロレンズアレイ部11に重合し、導波路基
板14には入出力光を分岐・合流するY分岐導波路15
を形成した光導波路基板部16とで構成される。
Optical module 1 for transmission and reception according to the present invention
Numeral 0 denotes an optical system for receiving or transmitting a spatially propagating light wave. As shown in FIG. 2, a plurality of microlenses 13 having a short focal length are formed side by side on the surface of a lens substrate 12, and each microlens 13 Focus position of the lens substrate 12
The microlens array unit 11 aligned with the back surface of the substrate and the microlens array unit 11 are overlapped with the back surface of the waveguide substrate 14 joined to the back surface of the lens substrate 12, and input / output light is branched to the waveguide substrate 14. .Y-branch waveguide 15 to be joined
And the optical waveguide substrate portion 16 formed with the above.

【0016】マイクロレンズアレイ部11は、例えば透
明性に優れたポリカーボネート(PC)や光線透過率が
良いポリメチルメタクリレート(PMMA)などの光学
的特性を具えた成形樹脂材を用い、金型に流し込む等の
方法でレンズ基板12上に多数のマイクロレンズ13を
一体形成することができ、レンズ基板12は方形や円形
その他の平面形状にすることが可能であるが、マイクロ
レンズ13を並設したり複数のレンズ基板12を並設す
る際には特に方形状にすることが望ましい。
The microlens array unit 11 is formed of a molding resin material having optical characteristics such as polycarbonate (PC) having excellent transparency and polymethyl methacrylate (PMMA) having good light transmittance, and is poured into a mold. A large number of microlenses 13 can be integrally formed on the lens substrate 12 by a method such as that described above, and the lens substrate 12 can be formed in a square, circular or other planar shape. When a plurality of lens substrates 12 are juxtaposed, it is particularly desirable to form them into a square shape.

【0017】レンズ基板12上におけるマイクロレンズ
13の配列は、横方向に沿った各列Xと縦方向に沿った
各段Yに対して、それぞれ所望の個数を配列させること
ができるが、その際に全てのマイクロレンズ13を1枚
のレンズ基板12上に配列したり、各段Y毎にレンズ基
板12を分割して離間させた分散状態で配列させること
もでき、何れの場合でも合計で所望の集光面積が得られ
るように各レンズの口径と配列及び個数を設定する。
As for the arrangement of the micro lenses 13 on the lens substrate 12, a desired number can be arranged for each row X along the horizontal direction and each stage Y along the vertical direction. It is also possible to arrange all the micro lenses 13 on one lens substrate 12, or to arrange the lens substrates 12 in each stage Y in a dispersed state separated from each other. The aperture, arrangement and number of each lens are set so as to obtain the condensing area.

【0018】図2のように配列されたマイクロレンズア
レイ部11では、例えばマイクロレンズ13の口径が5
mmφで各レンズ13の間隔を5mmとすると、レンズ
1個あたりの集光面積は0.196cm2であるから、
64個のレンズを配置すると合計の集光面積は0.19
6×64=12.5cm2となり、先に説明した従来技
術による対物レンズ1と同等の集光面積になる。
In the micro-lens array section 11 arranged as shown in FIG.
Assuming that the distance between the lenses 13 is 5 mm in mmφ, the focusing area per lens is 0.196 cm 2 ,
When 64 lenses are arranged, the total light collecting area is 0.19
6 × 64 = 12.5cm 2, and becomes the same light collecting area and the objective lens 1 according to the prior art described earlier.

【0019】光導波路基板部16には、1×2のY分枝
・合流器を単位として直列及び並列に接続し、送信光又
は受信光に対して所望の分岐又は合流を行うため必要な
導波路パターンによるY分岐導波路15を導波路基板1
4中に形成させ、各分岐側端部を各マイクロレンズ13
の光軸Cとそれぞれ一致する態様で焦点位置Fに延在さ
せると共に、合流側端部を導波路基板14の表面又は側
面に延在させ、外部に隣接配備させた光電変換素子17
との間で光信号の授受を行う。
The optical waveguide substrate section 16 is connected in series and in parallel with a 1 × 2 Y branching / combining unit as a unit, and is provided with a waveguide necessary for performing desired branching or merging with respect to transmission light or reception light. The Y-branch waveguide 15 having the waveguide pattern is connected to the waveguide substrate 1.
4 and each branch-side end is connected to each microlens 13.
Of the photoelectric conversion element 17 that is arranged adjacent to the outside while extending to the focal position F in a manner coinciding with the optical axis C of the
The transmission and reception of an optical signal is performed between the device and.

【0020】光導波路基板部16は、シリコン基板等か
らなる導波路基板14に対してチタンを熱拡散する等の
方法によってY分岐導波路15が形成され、レンズ基板
12と導波路基板14の間は光学接着剤によって固着し
ている。
The optical waveguide substrate section 16 has a Y-branch waveguide 15 formed by, for example, thermally diffusing titanium into a waveguide substrate 14 made of a silicon substrate or the like. Are fixed by an optical adhesive.

【0021】Y分岐導波路15は、例えば図4の導波路
基板14A中のY分岐導波路15Aのように、トーナメ
ント方式に接続したツリー構造にして合流側端部を表面
に配置したり、図5の導波路基板14B中のY分岐導波
路15Bのように、合流側を連鎖状に接続したチェーン
構造にして合流側端部を側面に配置するなど、用途に適
合し得る各種の導波路パターンにすることが可能であ
る。
The Y-branch waveguide 15 has a tree structure connected in a tournament system like the Y-branch waveguide 15A in the waveguide substrate 14A of FIG. 5, a variety of waveguide patterns suitable for use, such as a Y-branch waveguide 15B in the waveguide substrate 14B, in which a merging side is connected in a chain and a merging side end is arranged on a side surface. It is possible to

【0022】図4におけるY分岐導波路15Aは、各段
Y毎に横列Xに8個づつ配列させた各マイクロレンズ1
3X1 〜13X8 に対して、導波路基板14Aの裏面に
延在された8光路の各分岐側端部15A1 〜15A8
が、対応する各マイクロレンズ13X1 〜13X8 の各
光軸Cに垂直でかつ焦点位置Fに整合状態で配置され、
この導波路は2光路を1組としてツリー状に順次合流し
ながら最終的には1光路の合流側端部15A0 として導
波路基板14Aの表面に延在される。
The Y-branch waveguides 15A shown in FIG. 4 are each composed of eight microlenses 1 arranged in rows X for each stage Y.
For 3X1 to 13X8, the respective branch-side ends 15A1 to 15A8 of the eight optical paths extending on the back surface of the waveguide substrate 14A.
Are arranged perpendicular to the optical axes C of the corresponding microlenses 13X1 to 13X8 and aligned with the focal position F,
The waveguides are sequentially merged in a tree shape with two optical paths as one set, and finally extend to the surface of the waveguide substrate 14A as the merging side end 15A0 of one optical path.

【0023】Y分岐導波路15Aを受信に用いた場合に
は、各マイクロレンズ13に入射した光は各焦点位置F
に集光したのちに、光導波路で順次合流して導波路基板
14表面の合流側端部から合成した受信光を受信部へ放
射し、送信に用いた場合には合流側端部から入射した光
は、光導波路で2分の1ずつに順次分岐しながら分岐側
端部である各マイクロレンズ13の焦点位置Fに達し、
各マイクロレンズ13から幅の狭い複数の光ビームによ
る送信光を空中へ放射する。
When the Y-branch waveguide 15A is used for reception, light incident on each microlens 13 is focused on each focal position F
After being condensed, the light was sequentially merged in the optical waveguide, and the received light synthesized from the merging side end of the surface of the waveguide substrate 14 was radiated to the receiving portion, and when used for transmission, it was incident from the merging side end. The light reaches the focal position F of each microlens 13 which is a branch-side end while sequentially branching in half at the optical waveguide,
Transmission light by a plurality of narrow light beams is emitted from the microlenses 13 into the air.

【0024】図5におけるY分岐導波路15Bは、Y分
岐導波路15Aの場合と同様に、導波路基板14Bの裏
面に延在された8光路の各分岐側端部15B1 〜15B
8 が対応する各マイクロレンズ13の各光軸Cに垂直で
かつ焦点位置Fに整合状態で配置されるが、導波路は8
光路を連鎖状に合流して1光路の合流側端部15B0と
して導波路基板14Bの側面に延在される。
As in the case of the Y-branch waveguide 15A, the Y-branch waveguide 15B shown in FIG. 5 has eight optical paths extending on the back surface of the waveguide substrate 14B, and the respective branch-side ends 15B1 to 15B of the eight optical paths.
8 are arranged perpendicular to the respective optical axes C of the corresponding microlenses 13 and in alignment with the focal position F.
The optical paths are joined in a chain and extended to the side surface of the waveguide substrate 14B as a joining end 15B0 of one optical path.

【0025】Y分岐導波路15Bを受信に用いた場合に
は、各マイクロレンズ13に入射した光は、Y分岐導波
路15Aの場合と同様に各焦点位置Fに集光したのち
に、光導波路で合流して導波路基板14側面の合流側端
部から合成した受信光を受信部へ放射し、Y分岐導波路
15Aの場合に比べて更に厚みを薄くした光学モジュー
ルを形成するが、送信に用いた場合には合流側端部から
入射した光は光導波路で2分の1ずつに順次分岐するた
め、合流側端部から離れた位置のマイクロレンズ13ほ
ど出射光量が減少して放射密度に勾配が生ずるので、こ
の特性を利用して特殊な用途に用いると良い。
When the Y-branch waveguide 15B is used for reception, the light incident on each microlens 13 is condensed at each focal position F as in the case of the Y-branch waveguide 15A, and then the optical waveguide And the combined light is emitted from the merging side end of the side face of the waveguide substrate 14 to the receiving portion, and an optical module having a thickness smaller than that of the Y-branch waveguide 15A is formed. When used, the light incident from the converging side end is sequentially branched into halves in the optical waveguide, so that the farther away from the converging side end the microlens 13 is, the smaller the amount of emitted light is and the radiation density is reduced. Since a gradient is generated, it is preferable to use this characteristic for a special purpose.

【0026】例えば、図6では前記Y分岐導波路15B
を有する光学モジュール20を壁掛け絵画の照明に使用
した例を示すが、壁21に掛けた絵画22の場合には斜
め上方位置から均一に照明することが望ましく、合流側
端部に近いマイクロレンズ13からの放射光で絵画21
の下端側を照明する態様でY分岐導波路15Bを用いる
と、距離の遠い下端側は放射源の光の密度が高いマイク
ロレンズの照射光によって、距離の近い上端側は放射源
の光の密度が低いマイクロレンズの照射光によってそれ
ぞれ照明されるので、均一な照明を行うことができる。
For example, in FIG. 6, the Y branch waveguide 15B
An example is shown in which the optical module 20 is used to illuminate a wall-hanging painting. In the case of a painting 22 hung on a wall 21, it is desirable to illuminate uniformly from an obliquely upper position, and the microlens 13 near the merging side end is preferred. 21 with synchrotron radiation from
When the Y-branch waveguide 15B is used to illuminate the lower end of the light source, the lower end farther away is irradiated by the microlens having a higher density of light from the radiation source, and the upper end closer to the light is closer to the light density of the radiation source. Are illuminated by the irradiation light of the microlenses, respectively, so that uniform illumination can be performed.

【0027】送受信用光学モジュールは、ハウジング1
9内に収容され、光導波路基板部16に隣接してY分岐
導波路15の合流側端部の光軸上に配置した光電変換素
子17と、損失を少なくして光の授受を効果的に行う目
的で必要に応じて装着する中継レンズ18(例えば球形
のボールレンズ等)を組み合わせて使用するが、この光
電変換素子17と中継レンズ18は導波路基板14上に
配置して装着することができる。
The transmission / reception optical module comprises a housing 1
9, a photoelectric conversion element 17 disposed adjacent to the optical waveguide substrate section 16 on the optical axis at the end of the Y-branch waveguide 15 on the merging side, and effectively transmitting and receiving light by reducing loss. A relay lens 18 (for example, a spherical ball lens or the like) to be mounted as necessary is used in combination for the purpose of performing, and the photoelectric conversion element 17 and the relay lens 18 may be disposed and mounted on the waveguide substrate 14. it can.

【0028】光電変換素子17は、送信用の場合には発
光ダイオードやレーザダイオードなどの発光素子を用
い、この発光素子で光信号に変換した発信光を光導波路
基板部16で分岐してマイクロレンズアレイ部11から
送信させ、受信用の場合にはシリコンフォトダイオード
などの受光素子を用い、マイクロレンズアレイ部11で
受けて光導波路基板部16で合流した受信光を電気信号
に変換して取り出す。
As the photoelectric conversion element 17, a light emitting element such as a light emitting diode or a laser diode is used for transmission, and the transmission light converted into an optical signal by the light emitting element is branched by the optical waveguide substrate section 16 to be a micro lens. The light is transmitted from the array unit 11, and in the case of reception, a light receiving element such as a silicon photodiode is used, and the received light received by the microlens array unit 11 and combined by the optical waveguide substrate unit 16 is converted into an electric signal and extracted.

【0029】このように、本発明による送受信用光学モ
ジュールでは、焦点距離の短い複数のマイクロレンズ1
3を形成したマイクロレンズアレイ部11と、入出力光
を分岐・合流するY分岐導波路15を形成した光導波路
基板部16とで、薄い小型な送信用光学系又は受信用光
学系が構成されるので、図1と図2を対比すれば明らか
なように装置全体の小型化を図ることができると共に、
デッドスペースも少ないので部品を配置する場合におけ
る設計の自由度も増大する。
As described above, in the transmitting / receiving optical module according to the present invention, a plurality of microlenses 1 having a short focal length are provided.
The thin and small transmitting optical system or the receiving optical system is composed of the microlens array section 11 having the 3 formed therein and the optical waveguide substrate section 16 having the Y-branch waveguide 15 for branching and merging the input / output light. Therefore, as is clear from comparison between FIG. 1 and FIG. 2, the size of the entire apparatus can be reduced, and
Since the dead space is small, the degree of freedom in designing when arranging components is also increased.

【0030】光学モジュールは、図7(a)のように全
体を一体化した光学モジュール23上に全てのマイクロ
レンズ13を所望な個数と配列で横列Xと縦段Yに沿っ
て配置しても良いが、図7(b)のように各段毎に分割
したモジュールを必要な個数組み合わせた光学モジュー
ル24の状態で使用したり、図7(c)のように複数に
分割して離間させたモジュール25,25の状態で使用
することもでき、分割するでもマイクロレンズアレイ部
11と光導波路基板部16の何れか一方又は双方を分割
する形態がある。
As shown in FIG. 7A, a desired number and arrangement of all the microlenses 13 can be arranged along a row X and a column Y on an integrated optical module 23 as shown in FIG. It is good, but as shown in FIG. 7B, the module divided for each stage is used in the state of the optical module 24 in which a required number is combined, or as shown in FIG. The module can be used in the state of the modules 25, 25, and there is a form in which either or both of the microlens array unit 11 and the optical waveguide substrate unit 16 are divided.

【0031】図7(b)の状態で使用すると、製作する
際の加工性も良くまた設計する際の自由度が増す利点が
あり、図7(c)の状態で使用すると、各マイクロレン
ズ13が分散状に配置されるので、同じ集光面積でも異
なった条件での受信ポイントが得やすいので、特にアパ
ーチャーアベレージ効果を期待することができる。
When used in the state shown in FIG. 7B, there is an advantage that the workability in manufacturing is good and the degree of freedom in designing is increased. When used in the state shown in FIG. Are arranged in a dispersed manner, so that it is easy to obtain reception points under different conditions even with the same light-collecting area, so that an aperture averaging effect can be particularly expected.

【0032】光学モジュール側である光導波路15の合
流側端部と、電気回路側である光電変換素子17との間
で行われる信号の授受方法の一つとして、各列毎に分割
した入出力光を個別に伝達する独立分離型があり、この
独立分離型では送信用の場合における発光素子とその駆
動回路、受信用の場合における受光素子とその増幅回路
を、各列毎にそれぞれ設けると共に、これに加えて受信
用の場合には各列毎に受信して増幅した出力を加算する
加算回路を設けた形態である。
As one of the methods of transmitting and receiving signals between the end of the optical waveguide 15 on the optical module side and the photoelectric conversion element 17 on the electric circuit side, input / output divided for each column is used. There is an independent separation type that individually transmits light, and in the independent separation type, a light emitting element and its driving circuit in the case of transmission, a light receiving element and its amplification circuit in the case of reception are provided for each column, In addition, in the case of reception, an addition circuit for adding the output received and amplified for each column is provided.

【0033】また他の授受方法としては、各段毎に分割
した入出力光を一括して伝達する並列接続型があり、こ
の並列接続型では図8で示すように光導波路15Aと同
様に分岐・合流する第2のY分岐導波路26を内部に形
成した連結基板27、又は光導波路15Bと同様に分岐
・合流する第2のY分岐導波路28を内部に形成した連
結基板29を、導波路基板14A又は導波路基板14B
と接合させ、接着手段などによって一体に連結してい
る。
As another transmission / reception method, there is a parallel connection type in which input / output light divided for each stage is transmitted collectively. In this parallel connection type, as shown in FIG. A coupling substrate 27 having a second Y-branch waveguide 26 formed therein and a second Y-branch waveguide 28 which forms a second Y-branch waveguide 28 branching and merging in the same manner as the optical waveguide 15 </ b> B are introduced into the conductive substrate 27. Waveguide substrate 14A or waveguide substrate 14B
And are integrally connected by an adhesive means or the like.

【0034】第2のY分岐導波路26,28は、分岐側
端部を連結基板27,29の一端側に延在させて導波路
基板14A,14Bの合流側端部15A0 ,15B0 と
整合させると共に、導波路基板14Aの表面又は導波路
基板14Bの側面に延在させた合流側端部26a,28
bを介して光電変換素子17との間で信号の授受を行
い、送信用の場合における各段への送信光の分岐又を、
受信用の場合における各段からの受信光の合流を行うも
のである。
The second Y-branch waveguides 26 and 28 have their branch-side ends extended to one ends of the connection substrates 27 and 29 to be aligned with the merging-side ends 15A0 and 15B0 of the waveguide substrates 14A and 14B. At the same time, the merging-side end portions 26a and 28 extended to the surface of the waveguide substrate 14A or the side surface of the waveguide substrate 14B.
b, transmitting and receiving signals to and from the photoelectric conversion element 17 to branch transmission light to each stage in the case of transmission.
In the case of receiving, the received light from each stage is merged.

【0035】独立分離型は、並列接続型に比べて受信感
度が高くS/N比が向上する性能的な利点があり、並列
接続型は独立分離型と違って、送信用の場合における発
光素子とその駆動回路及び、受信用の場合における受光
素子とその増幅回路を1組で済ませることができる経済
的な利点があるので、例えば十分な受信強度が有る場合
には並列接続型を用いるなど用途に応じて使い分けるこ
とができる。
The independent connection type has a performance advantage that the receiving sensitivity is higher and the S / N ratio is improved as compared with the parallel connection type. Unlike the independent connection type, the parallel connection type has a light emitting element for transmission. And its driving circuit, as well as the light receiving element and its amplifying circuit in the case of reception, are economically advantageous in that they can be combined into one set. For example, when there is sufficient reception strength, a parallel connection type is used. Can be used properly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例による送受信用光学レンズ系の概略図で
あって、(a)は平面図を(b)は縦断面図を示す。
FIG. 1 is a schematic view of a transmission / reception optical lens system according to a conventional example, in which (a) is a plan view and (b) is a longitudinal sectional view.

【図2】本発明を適用した送受信用光学モジュールの概
略図であって、(a)は平面図を(b)は縦断面図を示
す。
FIGS. 2A and 2B are schematic diagrams of a transmission / reception optical module to which the present invention is applied, wherein FIG. 2A is a plan view and FIG.

【図3】図2の送受信用光学モジュールの要部拡大平面
図を示す。
FIG. 3 is an enlarged plan view of a main part of the optical module for transmission and reception in FIG. 2;

【図4】図3のIV−IV線に沿った第1の実施形態に
よる断面図を示す。
FIG. 4 shows a sectional view according to the first embodiment along the line IV-IV in FIG. 3;

【図5】図3のIV−IV線に沿った第2の実施形態に
よる断面図を示す。
5 shows a sectional view according to a second embodiment along the line IV-IV in FIG. 3;

【図6】本発明による送受信用光学モジュールを壁掛け
絵画の照明に用いた実施例図を示す。
FIG. 6 shows an embodiment in which the transmission / reception optical module according to the present invention is used for lighting a wall-mounted picture.

【図7】本発明による送受信用光学モジュールの各種の
形態の実施例図を示す。
FIGS. 7A and 7B show examples of various embodiments of the optical module for transmission and reception according to the present invention.

【図8】本発明による送受信用光学モジュールにおける
並列接続型による信号の授受方法の実施例図を示す
FIG. 8 is a diagram showing an embodiment of a method of transmitting and receiving signals by a parallel connection type in the optical module for transmission and reception according to the present invention.

【符号の説明】[Explanation of symbols]

10,20,23,24,25 光学モジュール 11 マイクロレンズアレイ部 12 レンズ基板 13 マイクロレンズ 14 導波路基板 15 Y分岐導波路 16 光導波路基板部 17 光電変換素子 18 中継レンズ 19 ハウジング 21 壁 22 絵画 26,28 第2のY分岐導波路 27,29 連結基板 Reference Signs List 10, 20, 23, 24, 25 Optical module 11 Micro lens array unit 12 Lens substrate 13 Micro lens 14 Waveguide substrate 15 Y branch waveguide 16 Optical waveguide substrate unit 17 Photoelectric conversion element 18 Relay lens 19 Housing 21 Wall 22 Painting 26 , 28 Second Y-branch waveguide 27, 29 Connecting substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空間伝搬する光波を受信または送信す
る光学系であって、レンズ基板の表面に並設した焦点距
離の短い複数のマイクロレンズを形成し、各マイクロレ
ンズの焦点位置をレンズ基板の裏面に整合させたマイク
ロレンズアレイ部と、導波路基板の裏面をレンズ基板の
裏面に接合した状態でマイクロレンズアレイ部に重合
し、導波路基板には入出力光を分岐・合流するY分岐導
波路を形成した光導波路基板部とで構成され、前記Y分
岐導波路は、各分岐側端部が各マイクロレンズの光軸と
それぞれ一致する態様で焦点位置に延在されると共に、
合流側端部は導波路基板の表面又は側面に延在されてい
ることを特徴とした送受信用光学モジュール。
1. An optical system for receiving or transmitting a spatially propagating light wave, wherein a plurality of microlenses having a short focal length are formed side by side on a surface of a lens substrate, and a focal position of each microlens is set on the lens substrate. A micro-lens array section aligned with the back side and a Y-branch guide that superimposes the micro-lens array section with the back side of the waveguide substrate bonded to the back side of the lens substrate, and branches and joins the input / output light to the waveguide substrate. The Y-branch waveguide is formed at a focal position in such a manner that each branch-side end coincides with the optical axis of each microlens.
An optical module for transmission and reception, wherein the end on the converging side extends on the surface or side surface of the waveguide substrate.
JP10195289A 1998-07-10 1998-07-10 Optical module for signal transmission and reception Pending JP2000028838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195289A JP2000028838A (en) 1998-07-10 1998-07-10 Optical module for signal transmission and reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195289A JP2000028838A (en) 1998-07-10 1998-07-10 Optical module for signal transmission and reception

Publications (1)

Publication Number Publication Date
JP2000028838A true JP2000028838A (en) 2000-01-28

Family

ID=16338684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195289A Pending JP2000028838A (en) 1998-07-10 1998-07-10 Optical module for signal transmission and reception

Country Status (1)

Country Link
JP (1) JP2000028838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407595B2 (en) * 2005-03-23 2008-08-05 Fuji Xerox Co., Ltd. Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235105U (en) * 1988-08-30 1990-03-07
JPH07168040A (en) * 1993-12-14 1995-07-04 Nippon Steel Corp Semiconductor laser converging apparatus
JPH087626A (en) * 1994-06-22 1996-01-12 Fujitsu Ltd Light input and output device and its manufacture and photoelectric transfer system using this and manufacture of microlens used in this
JPH10104449A (en) * 1996-09-26 1998-04-24 Sharp Corp Waveguide type linear light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235105U (en) * 1988-08-30 1990-03-07
JPH07168040A (en) * 1993-12-14 1995-07-04 Nippon Steel Corp Semiconductor laser converging apparatus
JPH087626A (en) * 1994-06-22 1996-01-12 Fujitsu Ltd Light input and output device and its manufacture and photoelectric transfer system using this and manufacture of microlens used in this
JPH10104449A (en) * 1996-09-26 1998-04-24 Sharp Corp Waveguide type linear light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407595B2 (en) * 2005-03-23 2008-08-05 Fuji Xerox Co., Ltd. Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate

Similar Documents

Publication Publication Date Title
JP5714229B2 (en) Double lens single optical receiver assembly
JP5538108B2 (en) Lens array and optical module having the same
US20110297229A1 (en) Integrated concentrating photovoltaics
ATE410847T1 (en) FREE SPACE AND WAVEGUIDE ARRAY ROUTER
JPH11149004A (en) Optical parts and optical network
JP2003255166A5 (en)
EP1343036A3 (en) Optical waveguides, lens array and laser collecting device
US6929405B2 (en) Optical communication module and single fiber bi-directional optical communication module
CN101984565B (en) Multi-channel dual-functional wave multiplexing photoelectric integrated module
EP1441247A1 (en) Light signal transmitting device and signal processing device
DE59705793D1 (en) LIGHT TRANSMISSION DEVICE
CN201708807U (en) Multi-channel difunctional wavelength division multiplexing photoelectric integrated module
JP5538118B2 (en) Lens array and optical module having the same
JP2000028838A (en) Optical module for signal transmission and reception
WO2005031392A3 (en) Integrated microlens reflector and light coupler
US20030090161A1 (en) Light communication channel-based electronics power distribution system
JP2008015034A (en) Optical transmitter, optical module, and optical transmission system
CN210605101U (en) Multipath wavelength demultiplexing light receiving component based on optical waveguide
CN210626708U (en) Light splitting planar waveguide for optical power monitoring and TAP device thereof
JP2004226430A (en) Optical device and optical apparatus using same optical device
CN113031258A (en) Optical system and light processing method thereof
CN219758546U (en) Optical integrated component and optical transceiver module
JP3366941B2 (en) Alignment method
US11476942B2 (en) Coherent fiber bundle parallel optical links
JPH04340508A (en) Optical fiber array with lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918