JP2000028556A - Spectral analysis method for energy of charged particles - Google Patents

Spectral analysis method for energy of charged particles

Info

Publication number
JP2000028556A
JP2000028556A JP10227149A JP22714998A JP2000028556A JP 2000028556 A JP2000028556 A JP 2000028556A JP 10227149 A JP10227149 A JP 10227149A JP 22714998 A JP22714998 A JP 22714998A JP 2000028556 A JP2000028556 A JP 2000028556A
Authority
JP
Japan
Prior art keywords
sample
energy
spectroscopy
charged particle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227149A
Other languages
Japanese (ja)
Inventor
Kotaro Satori
浩太郎 佐鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10227149A priority Critical patent/JP2000028556A/en
Publication of JP2000028556A publication Critical patent/JP2000028556A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the charge of a sample under a controlled condition to provide an energy spectrum in an accurate position with a stable peak shape all the time, when the energy of a charged particle is dispersed into its spectral components to be measured. SOLUTION: A sample is pulverized, and resulting pulverized powder 1 is used for analysis in a state that the powder 1 is embedded into a conductive material 2, in a energy spectral analysis method of a charged particle where energy of the charged particle is dispersed into its spectral components in an Auger electron spectroscopy or an X-ray electron spectroscopy to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子をエネル
ギー分光し、測定する荷電粒子エネルギー分光分析方法
に関し、例えば、オージェ電子分光法やX線電子分光法
などの如く試料から放出される荷電粒子をエネルギー分
光し、測定する分析手法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle energy spectroscopy method for performing energy spectroscopy and measurement of charged particles, for example, charged particles emitted from a sample such as Auger electron spectroscopy and X-ray electron spectroscopy. For energy spectroscopy and measurement.

【0002】[0002]

【従来の技術】オージェ電子分光法やX線電子分光法な
どに代表されるように、荷電粒子をエネルギー分光し、
測定する分析手法では、荷電粒子が励起により放出され
るので、原理的な理由により測定中に試料の帯電状態が
変化する。また、オージェ電子分光のように励起源に荷
電粒子を用いたり、深さ方向分析時にイオンビーム照射
を行ったりしても、同様の変化が発生する。
2. Description of the Related Art As represented by Auger electron spectroscopy and X-ray electron spectroscopy, charged particles are subjected to energy spectroscopy.
In the analysis method for measurement, charged particles are emitted by excitation, so that the charge state of the sample changes during measurement for a fundamental reason. Similar changes occur when charged particles are used as an excitation source as in Auger electron spectroscopy or when ion beam irradiation is performed during depth analysis.

【0003】この時、試料が絶縁物や高誘電率を有する
物質であると、試料の電位が著しく変化することにな
る。このため、測定結果として得られるエネルギースペ
クトルは、試料電位だけエネルギー方向にシフトしてピ
ークの正確なエネルギー位置が不明になったり、また
は、経時的に電位が変化したり、局所的に帯電状態が異
なる場合は、ピーク形状そのものが変化してしまうな
ど、著しい悪影響が発生する。
At this time, if the sample is an insulator or a substance having a high dielectric constant, the potential of the sample changes significantly. For this reason, the energy spectrum obtained as a measurement result shifts in the energy direction by the sample potential, and the exact energy position of the peak becomes unknown, or the potential changes over time, or the charged state locally changes. If they are different, significant adverse effects occur, such as a change in the peak shape itself.

【0004】その解決の手法として、 (1)中和用の電子線を照射する(X線電子分光法な
ど、)。 (2)入射電子に対し試料を傾斜させる(オージェ電子
分光法など)。 (3)ホルダー上部に金属製の網をはる(X線電子分光
法など)。 (4)試料表面に導電性物質をつける。 (5)イオン化ガスを分析室へ導入する(X線電子分光
法など)。 などがよく用いられる。
As a method of solving the problem, (1) irradiating a neutralizing electron beam (such as X-ray electron spectroscopy). (2) The sample is tilted with respect to the incident electrons (such as Auger electron spectroscopy). (3) Put a metal net on the upper part of the holder (X-ray electron spectroscopy, etc.). (4) Apply a conductive substance to the sample surface. (5) Introduce ionized gas into the analysis room (X-ray electron spectroscopy, etc.). Are often used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、誘電率
が極端に高い絶縁体の場合、かならずしも、上記の
(1)、(2)、(3)の手法の効果が大きいわけでな
く、上記の(4)、(5)などのように測定場所近傍で
導通を取る手法の方が、チャージアップ抑制効果が大き
い場合が多い。しかし、超高真空雰囲気を要する分析室
においては、導入ガス量に限界があり、すなわち上記の
(5)の方法は帯電抑制量に上限がある。また、上記の
(4)の方法は、具体的には、表面に金属片を密着させ
たり、測定部位を覆わないように金属膜をパターン化し
て付けることになる。しかしながら、金属片は必ずしも
うまく密着できるわけではなく、また、金属膜をパター
ン化してつけるのは方法として容易でない。
However, in the case of an insulator having an extremely high dielectric constant, the effects of the above methods (1), (2) and (3) are not always great, and In many cases, the method of obtaining conduction near the measurement location as in (4) and (5) has a larger effect of suppressing charge-up. However, in an analysis chamber requiring an ultra-high vacuum atmosphere, the amount of gas introduced is limited, that is, the method (5) has an upper limit on the amount of charge suppression. In the method (4), specifically, a metal piece is brought into close contact with the surface, or a metal film is patterned and applied so as not to cover the measurement site. However, metal pieces cannot always be adhered well, and it is not easy as a method to apply a metal film in a pattern.

【0006】本発明の目的は、電子などの荷電粒子をエ
ネルギー分光し、測定するに際し、試料の帯電を抑制し
た状態で測定し、エネルギースペクトルが常に正確な位
置に安定したピーク形状で得られることを可能とする方
法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to measure the energy of a charged particle, such as an electron, in a state where the charge of the sample is suppressed, so that the energy spectrum can always be obtained at an accurate position with a stable peak shape. It is to provide a method that enables

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、オージ
ェ電子分光法又はX線電子分光法の如く荷電粒子をエネ
ルギー分光し、測定する荷電粒子エネルギー分光分析方
法において、試料を粉砕し、この試料粉砕物を導電性物
質に埋め込んだ状態で分析に供することを特徴とする、
荷電粒子エネルギー分光分析方法(以下、本発明の方法
と称する。)に係るものである。
That is, the present invention provides a charged particle energy spectroscopy method for measuring the energy of a charged particle, such as Auger electron spectroscopy or X-ray electron spectroscopy, and pulverizing a sample. Characterized in that the sample pulverized material is subjected to analysis in a state of being embedded in a conductive material,
The present invention relates to a charged particle energy spectroscopic analysis method (hereinafter, referred to as a method of the present invention).

【0008】本発明の方法によれば、試料を粉砕し、こ
の試料粉砕物を導電性物質に埋め込んだ状態で分析に供
しているので、測定のための励起プローブが照射される
測定部位とこれに接する前記導電性物質との距離が小さ
く、測定部位での電子の出入りは容易になり、帯電を容
易かつ確実に防げることになる。この結果、試料の帯電
を抑制した状態で測定し、エネルギースペクトルが常に
正確な位置に安定したピーク形状で得られることにな
る。
According to the method of the present invention, the sample is crushed, and the crushed sample is embedded in a conductive substance and is used for analysis. The distance between the conductive material and the conductive material is small, so that electrons can easily enter and exit at the measurement site, and charging can be easily and reliably prevented. As a result, the measurement is performed in a state where the charging of the sample is suppressed, and the energy spectrum is always obtained at an accurate position with a stable peak shape.

【0009】本発明の方法は、原理的には、既述した
(3)、(4)のように測定位置近傍で電荷移動ができ
るようにする方法と同様ではあるが、試料粉砕物を導電
性物質に埋め込むだけでよいから、帯電を容易かつ確実
に抑制できるメリットがある。
The method of the present invention is, in principle, the same as the method described in (3) and (4) above, which enables charge transfer in the vicinity of the measurement position. There is an advantage that charging can be easily and surely suppressed because it is only necessary to bury the material in the conductive material.

【0010】[0010]

【発明の実施の形態】本発明の方法においては、測定対
象(試料)をより小さく粉砕することにより、測定のた
めの励起プローブが照射される測定部位とこれに接する
導電性物質との距離を一層減らすことができ、従って、
微粉化するほど測定部位での電子の出入りは容易にな
り、帯電を十分に防げることになる。このため、絶縁物
からなる前記試料を平均粒径20μm以下に粉砕して小
粒径化し、この試料粉砕物を金属に埋め込むのがよく、
これによって、試料帯電による測定妨害を抑制して前記
絶縁物を測定することができる。ただし、小粒径化後の
粒径の最適値は、測定物の誘電率や励起プローブの電流
量によるので、一概には定まらない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, the distance between a measurement site irradiated with an excitation probe for measurement and a conductive material in contact with the measurement object (sample) is reduced by crushing the measurement target (sample) into smaller pieces. Can be further reduced and therefore
The finer the powder, the easier it is for electrons to enter and exit from the measurement site, and the more the charge can be sufficiently prevented. For this reason, it is preferable to crush the sample made of an insulator to an average particle size of 20 μm or less to reduce the particle size, and embed the sample crushed product in a metal.
This makes it possible to measure the insulator while suppressing measurement disturbance due to sample charging. However, the optimum value of the particle size after the reduction of the particle size is unconditionally determined because it depends on the dielectric constant of the measured object and the current amount of the excitation probe.

【0011】この場合、前記金属として軟質で導電性の
高い金、インジウムなどの金属を使用し、前記試料粉砕
物を圧入などの方法で埋め込み固定した状態で試料支持
台上に取付けるのがよい。例えば、乳棒で試料粉砕物を
金属に押し付け、上面側の乳棒が触れた粒子や、金属に
埋め込まれていない粒子をふるい落とし、表面を清浄化
すると共に金属と直接接触した粒子を表面に露呈させ
る。
In this case, it is preferable to use a soft metal having high conductivity, such as gold or indium, as the metal, and mount the crushed sample on the sample support while embedding and fixing the sample by a method such as press fitting. For example, a crushed sample is pressed against a metal with a pestle, and particles touched by the pestle on the upper surface and particles not embedded in the metal are sieved off to clean the surface and expose the particles directly in contact with the metal to the surface.

【0012】例えば、測定物を、瑪瑙乳鉢等により平均
粒径20μmφ以下に粉砕し、小粒径化した後、図1に
示すように、この粉砕物1を導通性が高くかつ軟性の金
属2(たとえば、金やインジウム等)に上記の圧入など
の方法で埋め込んで固定し、これを試料支持台3上に固
定すると、散乱電子4などによる絶縁物測定時の帯電を
金属2から支持台3を通して放出できるため、帯電を抑
制することができる。
For example, a measured substance is pulverized with an agate mortar or the like to an average particle diameter of 20 μm or less to reduce the particle diameter, and as shown in FIG. (For example, gold or indium) by embedding and fixing by the above-described method such as press-fitting, and fixing this on the sample support 3, the charge at the time of measuring the insulator by the scattered electrons 4 and the like is transferred from the metal 2 to the support 3. Can be discharged, so that charging can be suppressed.

【0013】[0013]

【実施例】次に、本発明を実施例について具体的に説明
する。
Next, the present invention will be described in detail with reference to examples.

【0014】本実施例では、測定対象を酸化リチウム
(Li2 O)としたが、Li2 O結晶は抵抗値が高く、
チャージアップによる測定妨害を受けやすい。下記の条
件で、Li2 O粉末結晶体(未粉砕物)を圧入法によっ
て金属インジウムに埋め込み固定し、下記の条件でオー
ジェ電子分光分析を行った。
In this embodiment, the object to be measured is lithium oxide (Li 2 O), but the Li 2 O crystal has a high resistance value,
Susceptible to measurement disturbance due to charge-up. Under the following conditions, Li 2 O powder crystals (unground material) were embedded and fixed in metal indium by a press-fitting method, and Auger electron spectroscopy was performed under the following conditions.

【0015】 [0015]

【0016】こうして得られたオージェ電子分光スペク
トルを図2に示す(但し、参照例1及び参照例2は粉砕
していない粒子(Li2 O:但し、これらの参照例では
測定個体が異なっている。)からサンプリングし、ま
た、表面から汚染源由来の炭素が検出されなくなるまで
アルゴンイオンスパッタクリーニングを行った)。横軸
が電子の運動エネルギー、縦軸はその強度を微分したも
のである。オージェピークは、元素に固有のエネルギー
位置に縦軸の上下方向に突き出るピークとして出現す
る。
The Auger electron spectroscopy spectrum thus obtained is shown in FIG. 2 (however, in Reference Examples 1 and 2, unmilled particles (Li 2 O: However, in these Reference Examples, the individual to be measured is different). ) And argon ion sputter cleaning was performed until no carbon from the contamination source was detected from the surface). The horizontal axis is the kinetic energy of the electrons, and the vertical axis is the derivative of the intensity. The Auger peak appears as a peak protruding in the vertical direction of the vertical axis at the energy position unique to the element.

【0017】この図2から、オージェ電子分光スペクト
ルは、おおよお粒径100μmφの粉砕していない試料
(参照例1及び参照例2)では、帯電により、運動エネ
ルギーが高エネルギー側にシフトしていたり、またはピ
ーク幅のブロード化が起こっていることがわかる。しか
も、参照例1及び参照例2の違いから、測定粒子や測定
位置によりスペクトルの変化の挙動が異なり、再現性に
乏しい。
From FIG. 2, it can be seen that Auger electron spectroscopy shows that the kinetic energy of the unmilled sample (Reference Example 1 and Reference Example 2) having a particle size of approximately 100 μm φ is shifted to a higher energy side due to charging. Or broadening of the peak width occurs. Moreover, due to the difference between Reference Example 1 and Reference Example 2, the behavior of the change in the spectrum differs depending on the measurement particles and the measurement positions, and the reproducibility is poor.

【0018】一方、瑪瑙乳鉢により平均粒径10μmφ
まで粉砕したLi2 O結晶体を金属インジウムに圧入法
で埋め込み固定した試料(本発明)のオージェ電子分光
スペクトルを図2に示す。図2の参照例1及び2に比
べ、ピークが尖鋭化されており、エネルギー方向へのシ
フトも発生していない。なお、この場合、大気暴露によ
る試料変質を避けるため、粉砕はアルゴン雰囲気中(酸
素濃度<10ppm vol%、露点−60℃)で行っ
た。
On the other hand, the average particle size is 10 μmφ by using an agate mortar.
FIG. 2 shows an Auger electron spectroscopy spectrum of a sample (the present invention) in which the Li 2 O crystal crushed to the maximum size is embedded in metal indium by the press-in method and fixed. As compared with Reference Examples 1 and 2 in FIG. 2, the peak is sharpened, and no shift in the energy direction occurs. In this case, the pulverization was performed in an argon atmosphere (oxygen concentration <10 ppm vol%, dew point −60 ° C.) in order to avoid deterioration of the sample due to exposure to the atmosphere.

【0019】以上、本発明を実施の形態及び実施例につ
いて説明したが、これらは更に本発明の技術的思想に基
づいて変形可能である。
Although the present invention has been described with reference to the embodiment and the examples, these can be further modified based on the technical idea of the present invention.

【0020】例えば、試料粉砕物の導電性物質への埋め
込み状態や埋め込み方法、各物質の種類などは種々に変
更してよい。圧入法など以外も採用してよいが、物理的
な圧入法ではサンプルに熱ダメージ等を与えることはな
い。また、測定はオージェ電子分光法以外にもX線電子
分光法などによって行うこともできる。
For example, the state of embedding of the crushed sample in the conductive substance, the method of embedding, the type of each substance, and the like may be variously changed. A method other than the press-fitting method may be employed, but the physical press-fitting method does not cause heat damage to the sample. The measurement can be performed by X-ray electron spectroscopy or the like in addition to Auger electron spectroscopy.

【0021】[0021]

【発明の作用効果】本発明は、上述した如く、試料を粉
砕し、この試料粉砕物を導電性物質に埋め込んだ状態で
分析に供しているので、測定のための励起プローブが照
射される測定部位とこれに接する前記導電性物質との距
離が小さく、測定部位での電子の出入りは容易になり、
帯電を容易かつ確実に防げることになる。この結果、試
料の帯電を抑制した状態で測定し、エネルギースペクト
ルが常に正確な位置に安定したピーク形状で得られるこ
とになる。
According to the present invention, as described above, the sample is pulverized, and the sample pulverized material is used for analysis in a state of being embedded in a conductive substance. The distance between the site and the conductive substance in contact with the site is small, so that electrons can easily enter and exit at the measurement site,
Charging can be easily and reliably prevented. As a result, the measurement is performed in a state where the charging of the sample is suppressed, and the energy spectrum is always obtained at an accurate position with a stable peak shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づいて荷電粒子エネルギー分光分析
を行う状況を示す概略断面図(A)とその一部分の拡大
平面図(B)である。
FIG. 1 is a schematic cross-sectional view (A) showing a situation where charged particle energy spectroscopy is performed based on the present invention, and an enlarged plan view (B) of a part thereof.

【図2】同、各種試料についてのオージェ電子分光スペ
クトル図である。
FIG. 2 is an Auger electron spectroscopy spectrum of various samples.

【符号の説明】[Explanation of symbols]

1…試料(粉砕物)、2…金属、3…支持台、4…散乱
電子
1: Sample (crushed), 2: Metal, 3: Support, 4: Scattered electrons

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子をエネルギー分光し、測定する
荷電粒子エネルギー分光分析方法において、試料を粉砕
し、この試料粉砕物を導電性物質に埋め込んだ状態で分
析に供することを特徴とする、荷電粒子エネルギー分光
分析方法。
1. A charged particle energy spectroscopy method for performing energy spectroscopy and measurement of charged particles, characterized in that a sample is pulverized and the sample pulverized material is subjected to analysis in a state of being embedded in a conductive substance. Particle energy spectroscopy method.
【請求項2】 絶縁物からなる前記試料を平均粒径20
μm以下に粉砕して小粒径化し、この試料粉砕物を金属
に埋め込むことによって、試料帯電による測定妨害を抑
制し、前記絶縁物を測定する、請求項1に記載した、荷
電粒子エネルギー分光分析方法。
2. The method according to claim 1, wherein the sample made of an insulating material has an average particle size of 20.
The charged particle energy spectroscopy according to claim 1, wherein the particles are crushed to a particle size of not more than μm to reduce the particle size, and the crushed sample is embedded in a metal to suppress measurement interference due to charging of the sample and measure the insulator. Method.
【請求項3】 前記金属として軟質で導電性の高い金属
を使用し、前記試料粉砕物を埋め込み固定した状態で試
料支持台上に取付ける、請求項2に記載した、荷電粒子
エネルギー分光分析方法。
3. The charged particle energy spectroscopic analysis method according to claim 2, wherein a soft and highly conductive metal is used as the metal, and the sample is mounted on a sample support in a state where the ground sample is embedded and fixed.
【請求項4】 オージェ電子分光法又はX線電子分光法
に適用する、請求項1に記載した、荷電粒子エネルギー
分光分析方法。
4. The charged particle energy spectroscopy method according to claim 1, which is applied to Auger electron spectroscopy or X-ray electron spectroscopy.
JP10227149A 1998-05-01 1998-08-11 Spectral analysis method for energy of charged particles Pending JP2000028556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227149A JP2000028556A (en) 1998-05-01 1998-08-11 Spectral analysis method for energy of charged particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-122158 1998-05-01
JP12215898 1998-05-01
JP10227149A JP2000028556A (en) 1998-05-01 1998-08-11 Spectral analysis method for energy of charged particles

Publications (1)

Publication Number Publication Date
JP2000028556A true JP2000028556A (en) 2000-01-28

Family

ID=26459346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227149A Pending JP2000028556A (en) 1998-05-01 1998-08-11 Spectral analysis method for energy of charged particles

Country Status (1)

Country Link
JP (1) JP2000028556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2380311A (en) * 2001-08-07 2003-04-02 Hewlett Packard Co Disk cartridge data storage apparatus and method
JP2009180598A (en) * 2008-01-30 2009-08-13 Hamamatsu Photonics Kk Photoelectric spectroscopy
JP2021510418A (en) * 2018-01-10 2021-04-22 ユニバーシティ・オブ・カンザス Conductive fixation of electron microscope
JP7452277B2 (en) 2019-06-18 2024-03-19 マツダ株式会社 Analysis method using photoelectron spectroscopy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2380311A (en) * 2001-08-07 2003-04-02 Hewlett Packard Co Disk cartridge data storage apparatus and method
GB2380311B (en) * 2001-08-07 2005-10-12 Hewlett Packard Co A data storage apparatus for a tape and a disk cartridge
JP2009180598A (en) * 2008-01-30 2009-08-13 Hamamatsu Photonics Kk Photoelectric spectroscopy
JP2021510418A (en) * 2018-01-10 2021-04-22 ユニバーシティ・オブ・カンザス Conductive fixation of electron microscope
JP7452277B2 (en) 2019-06-18 2024-03-19 マツダ株式会社 Analysis method using photoelectron spectroscopy

Similar Documents

Publication Publication Date Title
Pisonero et al. Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis
JP2013115047A5 (en) Plasma source as electron beam source for spectroscopic analysis.
Musapelo et al. Particle formation in ambient MALDI plumes
US6140131A (en) Method and apparatus for detecting heavy metals in silicon wafer bulk with high sensitivity
Bu et al. Reconstruction of the Ir (110) surface: A mixed faceted (1× 3) and (1× 1) structure
Grünberger et al. Chemical imaging with laser ablation–spark discharge–optical emission spectroscopy (LA-SD-OES) and laser-induced breakdown spectroscopy (LIBS)
JP2000028556A (en) Spectral analysis method for energy of charged particles
JPH01502789A (en) Quantitative spectroscopic analysis method
JPH03214044A (en) Method of analyzing sample matter in solid state, sample holder for supporting solid sample cathode for use in generation of plasma, instrument for directly analyzing combined continuous solid sample without matrix transformation and source for con ducting mass spectrum analysis on solid sample
JP2014066586A (en) Method for preparing analysis sample and analysis method using the analysis sample
JPH0589816A (en) Secondary ion mass-spectrometric device
Ko et al. Effective removal of Ga residue from focused ion beam using a plasma cleaner
Muranaka et al. In-situ experiments of vacuum discharge using scanning electron microscopes
JPH0114664B2 (en)
JP6179994B2 (en) Elemental analyzer
Dou et al. One-step fabrication of high-density Si nanotips as SALDI-MS substrate for highly sensitive detection
Lankosz et al. Experimental verification of a Monte Carlo method for x‐ray microfluorescence analysis of small particles
Bacon et al. Atomic spectrometry update. Atomic mass spectrometry
JP3341649B2 (en) High sensitivity detection method for Cu in silicon wafer bulk
Boland Voltage contrast XPS—a novel scheme for spatially resolved XPS studies
Abdellaoui et al. AES, EELS and TRIM investigation of InSb and InP compounds subjected to Ar+ ions bombardment
Bouslama et al. The study of InPO4/InP (1 0 0) by EELS and AES
JP3289666B2 (en) Method and apparatus for highly sensitive detection of heavy metals in silicon wafer bulk
Biswas et al. Analytical techniques for measuring contamination introduced during ion implantation
Ito et al. Submicron particle analysis by the Auger microprobe (FE-SAM)