JP2000028445A - Load measuring instrument and element for measuring load - Google Patents

Load measuring instrument and element for measuring load

Info

Publication number
JP2000028445A
JP2000028445A JP10200695A JP20069598A JP2000028445A JP 2000028445 A JP2000028445 A JP 2000028445A JP 10200695 A JP10200695 A JP 10200695A JP 20069598 A JP20069598 A JP 20069598A JP 2000028445 A JP2000028445 A JP 2000028445A
Authority
JP
Japan
Prior art keywords
load
piezoelectric element
frequency
voltage
load measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10200695A
Other languages
Japanese (ja)
Other versions
JP4178600B2 (en
Inventor
Kin Kono
欣 河野
Atsushi Kosaka
淳 小坂
Hidetoshi Ouchi
英俊 大内
Tasuku Osada
佐 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20069598A priority Critical patent/JP4178600B2/en
Publication of JP2000028445A publication Critical patent/JP2000028445A/en
Application granted granted Critical
Publication of JP4178600B2 publication Critical patent/JP4178600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a static load or force by using a piezoelectric element composed of a high polymer piezoelectric material exhibiting no definite resonance characteristic. SOLUTION: A load measuring instrument 100 is provided with a piezoelectric element 1 which is composed of a high polymer piezoelectric material and receives an external load, a coil 2 which works as a steepening means which steepens the frequency characteristic of the voltage of the element 1, a frequency oscillator 4 which oscillates the element 1 at a constant frequency near the resonance frequency of the element 1, and an amplitude variation detecting circuit which detects the magnitude of an external load applied to the element 1 by detecting the variation of the frequency characteristic of the voltage of the element 1 when the external load is applied as the amplitude variation of the voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子圧電材料に
交流電圧を加えて外部からの荷重または力を計測する荷
重測定装置に関し、例えば、車両座席における人体の荷
重計測やベッドにおける体圧分布の計測等、静的な荷重
や力の計測に用いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load measuring device for measuring an external load or force by applying an AC voltage to a polymer piezoelectric material. For example, the present invention relates to a load measurement for a human body in a vehicle seat and a body pressure distribution in a bed. It is suitable for use in static load and force measurement, such as measurement of the load.

【0002】[0002]

【従来の技術】従来、圧電材料を用いた荷重測定装置に
は、ピエゾ効果を利用した圧電型、応力による共振周波
数(共振点)の変化を追跡する共振型がある。しかし、
圧電型は、出力電圧の発生を継続化すべく回路中にイン
ピーダンスを介在させているものの、発生電圧の漏洩が
不可避であり、その結果、動的な荷重や力の測定は可能
であるが、静的(定常的)な荷重や力の測定は困難であ
る。一方、共振型は、回路構成が複雑となり回路調整に
長い時間が必要などの問題がある。
2. Description of the Related Art Conventionally, load measuring devices using a piezoelectric material include a piezoelectric type using a piezo effect and a resonance type for tracking a change in resonance frequency (resonance point) due to stress. But,
In the piezoelectric type, although impedance is interposed in the circuit in order to continue generation of the output voltage, leakage of the generated voltage is inevitable, and as a result, dynamic load and force can be measured, but static It is difficult to measure a proper (steady) load or force. On the other hand, the resonance type has a problem that the circuit configuration is complicated and a long time is required for circuit adjustment.

【0003】これらの問題点を解決するものとして、例
えば特開昭52−78483号公報に、圧電セラミック
の共振点近傍の応力によるインピーダンス変化を利用し
た荷重(力)測定装置が提案されている。これは、圧電
セラミックに印加する交流電圧を共振点近傍の周波数に
固定し、外部から圧電セラミックに静的な力が加わった
ときの電圧振幅の変化量(出力電圧差)を測定するもの
である。これによると周波数が固定化されているため、
共振型に比べ簡単な回路構成とできる。
To solve these problems, for example, Japanese Unexamined Patent Publication No. 52-78483 proposes a load (force) measuring device utilizing an impedance change due to stress near a resonance point of a piezoelectric ceramic. In this technique, the AC voltage applied to the piezoelectric ceramic is fixed at a frequency near the resonance point, and the amount of change in voltage amplitude (output voltage difference) when a static force is applied to the piezoelectric ceramic from the outside is measured. . According to this, since the frequency is fixed,
The circuit configuration can be simpler than that of the resonance type.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来公報においては、圧電セラミックのインピーダンス変
化を利用しているが、圧電セラミック材料の機械的な振
動モードが複雑なため検出器を構成する事が難しい。ま
た、圧電セラミック材料として代表的な水晶や圧電セラ
ミックは脆性材料であり、硬くて脆いため応用範囲が限
られる。例えば、車両座席において人体の荷重を計測す
る乗員検知センサに用いた場合、人が着席したときに、
硬いセンサの部分に違和感を生じる。
However, in the above-mentioned conventional publication, the impedance change of the piezoelectric ceramic is used, but it is difficult to construct a detector because the mechanical vibration mode of the piezoelectric ceramic material is complicated. . Further, quartz and piezoelectric ceramics, which are typical piezoelectric ceramic materials, are brittle materials, and are hard and brittle, so that their application range is limited. For example, when used for an occupant detection sensor that measures the load on the human body in a vehicle seat, when a person is seated,
An uncomfortable feeling is caused in the hard sensor portion.

【0005】そこで、本発明者等は、圧電セラミックの
かわりに、比較的振動モードが簡単と考えられ且つ柔軟
性に富んだポリフッ化ビニリデン(以下PVDFとい
う)等の高分子圧電材料を圧電素子として用いることを
考えた。しかし、検討の結果、図9の高分子(PVD
F)圧電素子と圧電セラミック素子の電圧の周波数特性
グラフに示す様に、これら高分子電圧材料は明確な共振
特性を示さないため、静的な荷重の計測が出来なかっ
た。
Therefore, the present inventors have proposed that instead of piezoelectric ceramic, a polymer piezoelectric material such as polyvinylidene fluoride (hereinafter referred to as PVDF), which is considered to have a relatively simple vibration mode and has high flexibility, is used as a piezoelectric element. I thought about using it. However, as a result of the examination, the polymer (PVD
F) As shown in the frequency characteristic graph of the voltage of the piezoelectric element and the piezoelectric ceramic element, these polymer voltage materials did not show a clear resonance characteristic, so that a static load could not be measured.

【0006】そこで、本発明は上記点に鑑みて、明確な
共振特性を示さない高分子圧電材料からなる圧電素子を
用いて、静的な荷重または力が計測できるようにするこ
とを目的とする。
In view of the above, an object of the present invention is to make it possible to measure a static load or force using a piezoelectric element made of a high-molecular piezoelectric material that does not show a clear resonance characteristic. .

【0007】[0007]

【課題を解決するための手段】上述のように、静的な荷
重または力が計測できるには、明確な共振特性を持つ圧
電素子が必要である。本発明者らは、高分子圧電材料に
明確な共振特性を与えるべく鋭意検討を行なった結果、
インダクタンス成分(L成分)を有する素子(例えばコ
イル等)を、高分子圧電材料に並列又は直列に接続する
ことにより、後述の図2に示す様に、高分子圧電材料の
電圧の周波数特性を急峻化できることを見出した。本発
明は、この知見に基づいてなされたものである。
As described above, in order to measure a static load or force, a piezoelectric element having clear resonance characteristics is required. The present inventors have conducted intensive studies to give a clear resonance characteristic to the polymer piezoelectric material,
By connecting an element (for example, a coil or the like) having an inductance component (L component) to the polymer piezoelectric material in parallel or in series, the frequency characteristic of the voltage of the polymer piezoelectric material is sharpened as shown in FIG. Found that it can be The present invention has been made based on this finding.

【0008】すなわち、請求項1記載の発明では、圧電
素子(1)を、この圧電素子(1)の共振周波数近傍の
一定周波数で振動させておき、圧電素子(1)に外部か
らの荷重または力が加わったときの圧電素子(1)の電
圧の周波数特性変化を検出することにより、前記荷重ま
たは力の大きさを検出するようにした荷重測定装置にお
いて、圧電素子(1)を高分子圧電材料からなるものと
し、さらにこの圧電素子(1)の電圧の周波数特性を急
峻化させる急峻化手段(2)を設けたことを特徴として
いる。
That is, according to the first aspect of the present invention, the piezoelectric element (1) is vibrated at a constant frequency near the resonance frequency of the piezoelectric element (1), and an external load or a load is applied to the piezoelectric element (1). In a load measuring device that detects the magnitude of the load or the force by detecting a change in the frequency characteristic of the voltage of the piezoelectric element (1) when a force is applied, the piezoelectric element (1) may be a polymer piezoelectric element. It is characterized by being made of a material, and further provided with a steepening means (2) for steepening the frequency characteristic of the voltage of the piezoelectric element (1).

【0009】それによって、急峻化手段(2)によっ
て、明確な共振特性を示さない高分子圧電材料からなる
圧電素子(1)の電圧の周波数特性を急峻化、すなわち
共振特性を明確化(Q値を大きく)できるから、外部荷
重等が加わったときの圧電素子(1)のインピーダンス
変化による電圧の周波数特性変化を明確に検出できる。
従って、本発明によれば、静的な荷重や力を計測でき
る。
Thus, the steepening means (2) sharpens the voltage frequency characteristics of the piezoelectric element (1) made of a polymer piezoelectric material which does not exhibit clear resonance characteristics, ie, clarifies the resonance characteristics (Q value). ), It is possible to clearly detect a change in the frequency characteristic of the voltage due to a change in the impedance of the piezoelectric element (1) when an external load or the like is applied.
Therefore, according to the present invention, a static load or force can be measured.

【0010】また、請求項2及び請求項3記載の発明は
具体的な急峻化手段を提供するものであり、急峻化手段
を、圧電素子(1)に並列もしくは直列に接続されたコ
イル部(2)としたことを特徴としている。ここで、圧
電素子(1)とコイル部(2)により共振回路が構成さ
れ、コイルのインダクタンス値を選択すれば、共振周波
数とQ値を任意に設定でき、従って、測定感度も任意に
選択出来る。
The invention according to claims 2 and 3 provides concrete steepening means, and the steepening means is provided with a coil unit (parallel or series connected to the piezoelectric element (1)). 2). Here, a resonance circuit is constituted by the piezoelectric element (1) and the coil section (2), and if the inductance value of the coil is selected, the resonance frequency and the Q value can be arbitrarily set, and therefore, the measurement sensitivity can also be arbitrarily selected. .

【0011】また、請求項4記載の発明は、圧電素子
(1)を複数個備え、複数個の圧電素子(1)の各々に
コイル部(2)を接続し、コイル(2)のインダクタン
ス値を各圧電素子(1)の電圧の周波数特性に合わせて
選択していることを特徴としており、複数個の圧電素子
(1)及びコイル部(2)を複数箇所に配置すれば、複
数箇所における静的な荷重や力を計測できる。
According to a fourth aspect of the present invention, a plurality of piezoelectric elements (1) are provided, and a coil section (2) is connected to each of the plurality of piezoelectric elements (1), and an inductance value of the coil (2) is provided. Is selected in accordance with the frequency characteristics of the voltage of each piezoelectric element (1). If a plurality of piezoelectric elements (1) and coil portions (2) are arranged at a plurality of locations, It can measure static loads and forces.

【0012】また、請求項1〜4に記載の周波数発振手
段(4)において、圧電素子(1)を振動させるには、
一定振幅の正弦波電圧を印加するか、又は一定振幅の正
弦波電流を印加する。つまり、電圧及び電流のどちらか
を一定とした正弦波信号を印加するのであるが、本発明
者等の検討によれば、外部荷重等に応じて正確な出力信
号(出力電圧差)を得るには、請求項5記載の発明のよ
うに、一定振幅の正弦波電流を印加した方が好ましい
(図3(b)参照)。
Further, in the frequency oscillating means (4) according to the first to fourth aspects, in order to vibrate the piezoelectric element (1),
A constant amplitude sine wave voltage is applied, or a constant amplitude sine wave current is applied. That is, a sine wave signal in which either the voltage or the current is constant is applied. According to the study of the present inventors, it is necessary to obtain an accurate output signal (output voltage difference) according to an external load or the like. It is preferable to apply a sinusoidal current having a constant amplitude, as in the fifth aspect of the present invention (see FIG. 3B).

【0013】また、高分子圧電材料としては請求項6記
載の材料を用いることができる。また、請求項7記載の
発明は、高分子圧電材料からなる圧電素子(1)と、こ
の圧電素子(1)の電圧の周波数特性を急峻化させる急
峻化手段(2)とを備えた荷重測定用素子を提供するも
のである。本発明によれば、共振特性の明確な荷重測定
用素子を提供でき、共振周波数近傍の一定周波数でこの
荷重測定用素子を振動させ、外部荷重等が加わったとき
の電圧の周波数特性変化を検出すれば、静的な荷重や力
を計測できる。
Further, the material described in claim 6 can be used as the polymer piezoelectric material. According to a seventh aspect of the present invention, there is provided a load measuring device comprising a piezoelectric element (1) made of a polymer piezoelectric material and a steepening means (2) for steepening a frequency characteristic of a voltage of the piezoelectric element (1). To provide an element for use. According to the present invention, it is possible to provide a load measuring element with a clear resonance characteristic, vibrate the load measuring element at a constant frequency near the resonance frequency, and detect a change in the frequency characteristic of the voltage when an external load or the like is applied. Then, static load and force can be measured.

【0014】なお、上記した括弧内の符号は、後述する
実施形態記載の具体的手段との対応関係を示す一例であ
る。
Note that the reference numerals in parentheses above are examples showing the correspondence with specific means described in the embodiments described later.

【0015】[0015]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。本実施形態の荷重測定装置は、荷重
センサとして適用されたものとし、高分子圧電材料から
なる圧電素子に、コイルを並列又は直列に接続すること
で共振特性を急峻化させたものである。本実施形態に係
る荷重センサ100の回路構成を図1に示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. The load measuring device according to the present embodiment is applied as a load sensor, and has a steep resonance characteristic by connecting a coil in parallel or in series to a piezoelectric element made of a polymer piezoelectric material. FIG. 1 shows a circuit configuration of the load sensor 100 according to the present embodiment.

【0016】1は高分子圧電材料からなり外部からの荷
重または力を受ける受圧部としての圧電素子であり、フ
ィルム状に形成された高分子圧電材料に電極を設けた構
成となっている。高分子圧電材料としては、ポリフッ化
ビニリデン(PVDF)、ポリフッ化ビニル、ポリフッ
化ビニリデンおよび/またはポリフッ化ビニルを主成分
とする共重合体、奇数ナイロン、ポリ尿素、ビニリデン
シアナイドを主成分とする共重合体、ポリウレタン、ア
クリロニトリル系共重合体、およびポリ塩化ビニルの中
から選択された材料等を採用できる。
Reference numeral 1 denotes a piezoelectric element as a pressure receiving portion which is made of a polymer piezoelectric material and receives an external load or force, and has a structure in which electrodes are provided on a polymer piezoelectric material formed in a film shape. Examples of the polymer piezoelectric material include polyvinylidene fluoride (PVDF), polyvinyl fluoride, a copolymer containing polyvinylidene fluoride and / or polyvinyl fluoride as a main component, odd-numbered nylon, polyurea, and vinylidene cyanide as a main component. Materials selected from copolymers, polyurethanes, acrylonitrile copolymers, and polyvinyl chloride can be employed.

【0017】2は、圧電素子1の電圧の周波数特性を急
峻化させる急峻化手段としてのコイル(コイル部)であ
る。本実施形態では、圧電素子1とコイル2は荷重測定
用素子に相当し、両者1、2は並列に接続されて共振回
路を構成している。この共振回路には、抵抗(インピー
ダンス)3を介して、直列に周波数発振器(周波数発振
手段)4が接続されている。
Reference numeral 2 denotes a coil (coil portion) as steepening means for steepening the frequency characteristic of the voltage of the piezoelectric element 1. In the present embodiment, the piezoelectric element 1 and the coil 2 correspond to a load measuring element, and both 1 and 2 are connected in parallel to form a resonance circuit. A frequency oscillator (frequency oscillating means) 4 is connected to the resonance circuit in series via a resistor (impedance) 3.

【0018】ここで、図2は、圧電素子1の電圧の周波
数特性を示す特性図である。圧電素子1に並列にコイル
2を付加していることにより、電圧の周波数特性(周波
数−電圧特性)は、図2の黒四角プロットのように、コ
イル2が接続されていない圧電素子1単独の場合(比較
例、図2中、白四角プロットで示す)に比べて、急峻化
されている。
FIG. 2 is a characteristic diagram showing the frequency characteristics of the voltage of the piezoelectric element 1. Since the coil 2 is added in parallel to the piezoelectric element 1, the frequency characteristic (frequency-voltage characteristic) of the voltage is reduced as shown by the black square plot in FIG. It is steeper than in the case (comparative example, shown by a white square plot in FIG. 2).

【0019】なお、この特性例は、40mm×40m
m、厚さ40μmのPVDFフィルムを用いた圧電素子
1、インダクタが36mHであるコイル2、10kΩの
インピーダンス3を用いた構成とし、周波数発振器4か
ら、最大値と最小値との差が5.6VP-P の一定振幅の
交流電圧を印加し、周波数を変えて行ったものである。
そして、上記した他の高分子圧電材料においても同様の
急峻化傾向を示す。
The characteristic example is 40 mm × 40 m
m, a piezoelectric element 1 using a PVDF film having a thickness of 40 μm, a coil 2 having an inductor of 36 mH, and an impedance 3 of 10 kΩ. From the frequency oscillator 4, the difference between the maximum value and the minimum value is 5.6 V. This was performed by applying an AC voltage with a constant amplitude of PP and changing the frequency.
The other polymer piezoelectric materials described above also show the same steepening tendency.

【0020】また、5は振幅変化検出回路(検出手段)
であり、適当な記憶回路と差動増幅器を備えた構成とな
っている。そして、出力信号として上記共振回路(荷重
測定用素子)両端の電圧振幅を取り出すようになってい
る。なお、検出する電圧振幅としては、共振回路両端の
電圧振幅を取り出してもよいが、インピーダンス3の両
端の電圧振幅を用いてもよい。
5 is an amplitude change detection circuit (detection means)
This is a configuration including an appropriate storage circuit and a differential amplifier. Then, the voltage amplitude at both ends of the resonance circuit (load measuring element) is taken out as an output signal. Note that the voltage amplitude at both ends of the resonance circuit may be extracted as the detected voltage amplitude, but the voltage amplitude at both ends of the impedance 3 may be used.

【0021】かかる構成を有する荷重測定装置100の
作動について述べる。周波数発振器4により、上記共振
回路に圧電素子1の共振周波数近傍の一定周波数で、圧
電素子1を振動させる。このとき、上記図2に示したよ
うに、コイル2の付加により圧電素子1の電圧の周波数
特性は急峻化されて、明確な共振特性を示す。
The operation of the load measuring device 100 having the above configuration will be described. The frequency oscillator 4 causes the resonance circuit to vibrate the piezoelectric element 1 at a constant frequency near the resonance frequency of the piezoelectric element 1. At this time, as shown in FIG. 2, the frequency characteristic of the voltage of the piezoelectric element 1 is sharpened by the addition of the coil 2, and a clear resonance characteristic is exhibited.

【0022】そして、圧電素子1に外部から荷重が加わ
ったとき、その電圧の周波数特性が変化する。この周波
数特性変化の様子を図3(a)に模式的に示す。図3
(a)において、実線で示す波形A1は、外部荷重が加
わっていないときの周波数特性であり、R1は共振点を
示す。ここで、外部荷重が加わると周波数特性は、波形
A1から破線で示す波形A2となり、共振点はR1から
R2に移動する。
When a load is applied to the piezoelectric element 1 from the outside, the frequency characteristic of the voltage changes. FIG. 3A schematically shows how this frequency characteristic changes. FIG.
In (a), a waveform A1 indicated by a solid line is a frequency characteristic when no external load is applied, and R1 indicates a resonance point. Here, when an external load is applied, the frequency characteristic changes from the waveform A1 to a waveform A2 indicated by a broken line, and the resonance point moves from R1 to R2.

【0023】従って、圧電素子1を共振周波数近傍の一
定周波数、例えば周波数f1で振動させておけば、外部
荷重が加わったとき振幅変化検出回路5により出力電圧
差V1が検出できる。一方、圧電素子1を共振周波数近
傍の例えば周波数f2で振動させておけば、外部荷重が
加わったとき出力電圧差V2が検出できる。これら出力
電圧差V1、V2と外部荷重とは、例えば図3(b)に
示す様な関係になり、この出力−荷重特性を用いて荷重
の大きさを検出できる。なお、出力電圧差V1、V2の
どちらを出力とするかで出力−荷重特性における傾きの
正負は変わる。
Therefore, if the piezoelectric element 1 is vibrated at a constant frequency near the resonance frequency, for example, the frequency f1, the output voltage difference V1 can be detected by the amplitude change detection circuit 5 when an external load is applied. On the other hand, if the piezoelectric element 1 is vibrated at a frequency f2 near the resonance frequency, the output voltage difference V2 can be detected when an external load is applied. These output voltage differences V1, V2 and the external load have a relationship as shown in FIG. 3B, for example, and the magnitude of the load can be detected using the output-load characteristics. The sign of the output-load characteristic changes depending on which of the output voltage differences V1 and V2 is output.

【0024】なお、周波数発振器4によって、圧電素子
1を振動させるには、一定振幅の正弦波電圧を印加する
か、又は一定振幅の正弦波電流を印加するのであるが、
本発明者等の検討によれば、一定振幅の正弦波電流を印
加した方が好ましい。これは、一定振幅の正弦波電流と
した方が、図3(b)に示す様な、荷重の増加方向と減
少方向とで生じる出力電圧差変化のヒステリシスHを軽
減できるためである。
In order to vibrate the piezoelectric element 1 by the frequency oscillator 4, a sine wave voltage having a constant amplitude or a sine wave current having a constant amplitude is applied.
According to the study of the present inventors, it is preferable to apply a sinusoidal current having a constant amplitude. This is because the use of a sinusoidal current having a constant amplitude can reduce the hysteresis H of the output voltage difference change that occurs in the increasing and decreasing directions of the load, as shown in FIG.

【0025】このように、本実施形態によれば、コイル
2の付加によって、明確な共振特性を示さない高分子圧
電材料からなる圧電素子1の電圧の周波数特性を急峻
化、すなわち共振特性を明確化(Q値を大きく)できる
から、外部荷重等が加わったときの圧電素子1のインピ
ーダンス変化による電圧の周波数特性変化を明確に検出
でき、静的な荷重や力を計測できる。
As described above, according to the present embodiment, the addition of the coil 2 sharpens the frequency characteristic of the voltage of the piezoelectric element 1 made of a polymer piezoelectric material that does not show a clear resonance characteristic, that is, makes the resonance characteristic clear. Therefore, a change in the frequency characteristic of the voltage due to a change in the impedance of the piezoelectric element 1 when an external load or the like is applied can be clearly detected, and a static load or force can be measured.

【0026】ここで、上記図1では、圧電素子1にコイ
ル2を並列に接続したが、図4に示す様に、圧電素子1
にコイル2を直列に接続した構成としても、同様の作用
効果が得られる。また、急峻化手段としてはコイルに限
定されることなく、インダクタンス成分(L成分)を有
する素子であればよい。次に本実施形態を、以下に示す
実施例に基づいてさらに説明する。
Here, in FIG. 1, the coil 2 is connected in parallel to the piezoelectric element 1, but as shown in FIG.
The same operation and effect can be obtained even when the coil 2 is connected in series. The steepening means is not limited to a coil, but may be any element having an inductance component (L component). Next, the present embodiment will be further described based on examples shown below.

【0027】[0027]

【実施例】(実施例1)PVDF(厚さ:40μm、寸
法:40×40mm)の両面に電極としてAlが蒸着さ
れた圧電素子1に、コイル(L=36.5mH)2を並
列に接続し、圧電素子1とコイル2から成る共振回路に
直列に抵抗(10kΩ)3を介して、発振器4より共振
点近傍の一定周波数(12.5kHz)、一定振幅(電
圧:5.6V)の正弦波交流を印加した。
(Example 1) A coil (L = 36.5 mH) 2 is connected in parallel to a piezoelectric element 1 in which Al is deposited on both sides of PVDF (thickness: 40 μm, dimensions: 40 × 40 mm). Then, a sine having a constant frequency (12.5 kHz) and a constant amplitude (voltage: 5.6 V) near the resonance point from the oscillator 4 is provided by the oscillator 4 via a resistor (10 kΩ) 3 in series with a resonance circuit including the piezoelectric element 1 and the coil 2. Wave alternating current was applied.

【0028】出力信号は共振回路両端の電圧振幅を取り
出して、作動増幅器を用いた振幅変化検出回路5によっ
て出力電圧差を検出した。上記測定回路によって構成さ
れた圧電素子1に荷重を加えたときの出力−荷重特性を
図5に示す。本実施例では、印加した荷重に応じて出力
が直線的に変化し荷重センサとして良好な結果が得られ
た。
As the output signal, the voltage amplitude at both ends of the resonance circuit was taken out, and the output voltage difference was detected by the amplitude change detection circuit 5 using an operational amplifier. FIG. 5 shows an output-load characteristic when a load is applied to the piezoelectric element 1 constituted by the measurement circuit. In this embodiment, the output linearly changes in accordance with the applied load, and a good result as a load sensor was obtained.

【0029】(実施例2)PVDF(厚さ:40μm、
寸法:40×40mm)の両面に電極としてAlが蒸着
された圧電素子1に、コイル(L=36.5mH)2を
並列に接続し、圧電素子1とコイル2から成る共振回路
に直列に抵抗(10kΩ)3を介して、発振器4より共
振点近傍の一定周波数(12.79kHz)、一定振幅
(電圧:5.6V)の正弦波交流を印加した。
Example 2 PVDF (thickness: 40 μm,
A coil (L = 36.5 mH) 2 is connected in parallel to a piezoelectric element 1 in which Al is deposited as electrodes on both surfaces of dimensions (40 × 40 mm), and a resistance is serially connected to a resonance circuit composed of the piezoelectric element 1 and the coil 2. Through a (10 kΩ) 3, a sine wave alternating current having a constant frequency (12.79 kHz) and a constant amplitude (voltage: 5.6 V) near the resonance point was applied from the oscillator 4.

【0030】出力信号は共振回路両端の電圧振幅を取り
出して、作動増幅器を用いた振幅変化検出回路5によっ
て出力電圧差を検出した。上記測定回路によって構成さ
れた圧電素子に荷重を加えた時の出力−荷重特性を図6
に示す。本実施例では、印加した荷重に応じて出力が直
線的に変化し荷重センサとして良好な結果が得られた。
As for the output signal, the voltage amplitude at both ends of the resonance circuit was taken out, and the output voltage difference was detected by an amplitude change detection circuit 5 using an operational amplifier. FIG. 6 shows an output-load characteristic when a load is applied to the piezoelectric element constituted by the measurement circuit.
Shown in In this embodiment, the output linearly changes in accordance with the applied load, and a good result as a load sensor was obtained.

【0031】(実施例3)PVDF(厚さ:80μm、
寸法:40×40mm)の両面に電極としてAlが蒸着
された圧電素子1に共振特性を与えるコイル(L=3
6.5mH)2を並列に接続し、圧電素子1とコイル2
から成る共振回路に直列に抵抗(10kΩ)3を介し
て、発振器4より共振点近傍の一定周波数(16.5k
Hz)、一定振幅(電圧:5.6V)の正弦波交流を印
加した。
Example 3 PVDF (thickness: 80 μm,
A coil (L = 3) which gives resonance characteristics to the piezoelectric element 1 in which Al is vapor-deposited as electrodes on both surfaces of dimensions: 40 × 40 mm
6.5 mH) 2 connected in parallel, the piezoelectric element 1 and the coil 2
A constant frequency (16.5 kΩ) near the resonance point from the oscillator 4 via a resistor (10 kΩ) 3 in series with a resonance circuit composed of
Hz) and a sine wave alternating current having a constant amplitude (voltage: 5.6 V) was applied.

【0032】出力信号は共振回路両端の電圧振幅を取り
出して、作動増幅器を用いた振幅変化検出回路5によっ
て出力電圧差を検出した。上記測定回路によって構成さ
れた圧電素子1に荷重を加えたときの出力−荷重特性を
図7に示す。本実施例では、ポリフッ化ビニリデンの厚
さを実施例1、実施例2に比べ厚くしたため、感度は低
下したが、印加した荷重に応じて出力が直線的に変化し
た荷重センサとして良好な結果が得られた。
As the output signal, the voltage amplitude at both ends of the resonance circuit was taken out, and the output voltage difference was detected by the amplitude change detection circuit 5 using an operational amplifier. FIG. 7 shows an output-load characteristic when a load is applied to the piezoelectric element 1 constituted by the measurement circuit. In this embodiment, the thickness of the polyvinylidene fluoride was increased compared to the first and second embodiments, so that the sensitivity was lowered. However, a good result was obtained as a load sensor whose output linearly changed in accordance with the applied load. Obtained.

【0033】(比較例)本比較例は、コイルを付加しな
い圧電素子を用いたものである。PVDF(厚さ:40
μm、寸法:40×40mm)の両面に電極としてAl
が蒸着された圧電素子に直列に抵抗(10kΩ)を介し
て、発振器より共振点近傍の一定周波数(12.5kH
z)、一定振幅(電圧:5.6V)の正弦波交流を印加
した。実施例1と同様の方法で電圧振幅を検出したが、
図8に示す様に、荷重を印加しても出力電圧差の変動は
見られなかった。
(Comparative Example) This comparative example uses a piezoelectric element without a coil. PVDF (thickness: 40
μm, dimensions: 40 × 40 mm)
A constant frequency (12.5 kHz) near the resonance point from the oscillator via a resistor (10 kΩ) in series with the piezoelectric element on which
z), a sinusoidal alternating current having a constant amplitude (voltage: 5.6 V) was applied. Although the voltage amplitude was detected in the same manner as in the first embodiment,
As shown in FIG. 8, no change in the output voltage difference was observed even when a load was applied.

【0034】以上、上記実施形態について、上記各実施
例を含めて説明してきたが、荷重センサ100は、受圧
部である圧電素子1に薄膜で柔軟性に富んだ高分子圧電
材料を用いているので、車両等の座席及びベッド等に、
この受圧部である圧電素子1を内蔵すれば、人体の荷重
及び荷重分布を、人に違和感を与える事なく計測でき
る。
Although the above embodiment has been described including the above embodiments, the load sensor 100 uses a thin film and highly flexible polymer piezoelectric material for the piezoelectric element 1 as the pressure receiving portion. So, for seats and beds of vehicles, etc.,
By incorporating the piezoelectric element 1 serving as the pressure receiving portion, the load and the load distribution on the human body can be measured without giving a sense of strangeness to a person.

【0035】従って、本荷重センサ100は、圧電素子
1を自動車の座席に配して乗員の体重を検知しエアバッ
グの開放条件を制御するための乗員検知センサ、また
は、圧電素子1を病人の介護用ベッドに配し、介護人の
体圧分布、鼓動、脈拍等を検出する体圧分布センサまた
は床すれ防止センサ等に用いて好適である。また、本荷
重センサ100は、柔軟性のある圧電素子1を油や空気
等が流れるホースの外側に巻き付け油圧や空気圧を検知
する油圧センサまたは空気圧センサ、さらには体重検知
センサ等に用いることがきる。
Accordingly, the present load sensor 100 includes an occupant detection sensor for arranging the piezoelectric element 1 on the seat of an automobile to detect the weight of the occupant and control the opening condition of the airbag, or the piezo-electric element 1 is used for a patient. It is suitable for use in a body pressure distribution sensor for detecting body pressure distribution, beating, pulse, etc. of a caregiver or a floor-slip prevention sensor, etc., which is arranged on a nursing bed. Further, the present load sensor 100 can be used as a hydraulic sensor or an air pressure sensor that wraps a flexible piezoelectric element 1 around a hose through which oil, air, or the like flows, to detect a hydraulic pressure or an air pressure, and a weight detection sensor or the like. .

【0036】また、上記実施形態においては、圧電素子
1、及び、圧電素子1と並列もしくは直列に接続された
コイル2は、荷重測定用素子を構成しており、共振特性
の明確な荷重測定用素子を提供している。そして、この
荷重測定用素子を複数個備え、座席やベッドの適所に複
数個配置するようにすれば、複数箇所における静的な荷
重や力を計測できる。この場合、コイル2のインダクタ
ンス値は、各圧電素子1の電圧の周波数特性に合わせて
選択されているものにすればよい。
In the above embodiment, the piezoelectric element 1 and the coil 2 connected in parallel or in series with the piezoelectric element 1 constitute a load measuring element, and the load measuring element has a clear resonance characteristic. Provides devices. If a plurality of the load measuring elements are provided and a plurality of the elements are arranged at appropriate places on a seat or a bed, static loads and forces at a plurality of places can be measured. In this case, the inductance value of the coil 2 may be selected in accordance with the frequency characteristics of the voltage of each piezoelectric element 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る荷重測定装置の一例を
示す回路図である。
FIG. 1 is a circuit diagram illustrating an example of a load measuring device according to an embodiment of the present invention.

【図2】上記実施形態における圧電素子の電圧の周波数
特性を示す特性図である。
FIG. 2 is a characteristic diagram showing a frequency characteristic of a voltage of a piezoelectric element in the embodiment.

【図3】(a)は外部荷重印加時における電圧の周波数
特性変化を示す説明図、(b)は出力−荷重特性を示す
説明図である。
3A is an explanatory diagram illustrating a change in frequency characteristic of a voltage when an external load is applied, and FIG. 3B is an explanatory diagram illustrating an output-load characteristic.

【図4】上記実施形態に係る荷重測定装置の他の一例を
示す回路図である。
FIG. 4 is a circuit diagram showing another example of the load measuring device according to the embodiment.

【図5】実施例1における荷重と出力電圧の関係を示す
特性図である。
FIG. 5 is a characteristic diagram illustrating a relationship between a load and an output voltage in the first embodiment.

【図6】実施例2における荷重と出力電圧の関係を示す
特性図である。
FIG. 6 is a characteristic diagram illustrating a relationship between a load and an output voltage according to the second embodiment.

【図7】実施例3における荷重と出力電圧の関係を示す
特性図である。
FIG. 7 is a characteristic diagram showing a relationship between a load and an output voltage in the third embodiment.

【図8】比較例における荷重と出力電圧の関係を示す特
性図である。
FIG. 8 is a characteristic diagram illustrating a relationship between a load and an output voltage in a comparative example.

【図9】高分子(PVDF)圧電素子と圧電セラミック
素子の周波数特性を示すグラフである。
FIG. 9 is a graph showing frequency characteristics of a polymer (PVDF) piezoelectric element and a piezoelectric ceramic element.

【符号の説明】[Explanation of symbols]

1…圧電素子、2…コイル、3…インピーダンス、4…
周波数発振器、5…振幅変化検出回路。
1: piezoelectric element, 2: coil, 3: impedance, 4:
Frequency oscillator, 5 ... amplitude change detection circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 欣 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 小坂 淳 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 大内 英俊 山梨県甲府市古府中町3008−1 (72)発明者 長田 佐 山梨県甲府市朝気1−1−8 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kin Kono 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. (72) Inventor Hidetoshi Ouchi 3008-1 Kofunaka-cho, Kofu City, Yamanashi Prefecture (72) Inventor Sasa 1-1-8 Asagi, Kofu City, Yamanashi Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高分子圧電材料からなり外部からの荷重
または力を受ける圧電素子(1)と、 この圧電素子(1)の電圧の周波数特性を急峻化させる
急峻化手段(2)と、 前記圧電素子(1)の共振周波数近傍の一定周波数で前
記圧電素子(1)を振動させる周波数発振手段(4)
と、 前記圧電素子(1)に前記荷重または力が加わったとき
の前記電圧の周波数特性変化を検出することにより、前
記荷重または力の大きさを検出する検出手段(5)とを
備えることを特徴とする荷重測定装置。
1. A piezoelectric element (1) made of a polymer piezoelectric material and subjected to an external load or force; a steepening means (2) for steepening a frequency characteristic of a voltage of the piezoelectric element (1); Frequency oscillating means (4) for vibrating the piezoelectric element (1) at a constant frequency near the resonance frequency of the piezoelectric element (1)
And detecting means (5) for detecting the magnitude of the load or force by detecting a change in the frequency characteristic of the voltage when the load or force is applied to the piezoelectric element (1). Characteristic load measuring device.
【請求項2】 前記急峻化手段は、前記圧電素子(1)
に並列に接続されたコイル部(2)であることを特徴と
する請求項1に記載の荷重測定装置。
2. The piezoelectric device according to claim 1, wherein the steepening means includes a piezoelectric element.
The load measuring device according to claim 1, wherein the load measuring device is a coil portion (2) connected in parallel to the load measuring device.
【請求項3】 前記急峻化手段は、前記圧電素子(1)
に直列に接続されたコイル部(2)であることを特徴と
する請求項1に記載の荷重測定装置。
3. The steepening means includes the piezoelectric element (1).
The load measuring device according to claim 1, wherein the load measuring device is a coil portion (2) connected in series to the load measuring device.
【請求項4】 前記圧電素子(1)は複数個備えられ、 前記コイル部(2)は前記複数個の圧電素子(1)の各
々に接続されており、 前記コイル(2)のインダクタンス値は、各前記圧電素
子(1)の電圧の周波数特性に合わせて選択されている
ことを特徴とする請求項2または3に記載の荷重測定装
置。
4. A plurality of the piezoelectric elements (1) are provided, the coil section (2) is connected to each of the plurality of piezoelectric elements (1), and an inductance value of the coil (2) is 4. The load measuring device according to claim 2, wherein the load measuring device is selected in accordance with a frequency characteristic of a voltage of each of the piezoelectric elements (1).
【請求項5】 前記周波数発振手段(4)は、前記圧電
素子(1)の共振周波数近傍の一定周波数で一定振幅の
正弦波電流を印加することにより前記圧電素子(1)を
振動させることを特徴とする請求項1ないし4のいずれ
か1つに記載の荷重測定装置。
5. The frequency oscillating means (4) vibrates the piezoelectric element (1) by applying a sinusoidal current having a constant amplitude at a constant frequency near a resonance frequency of the piezoelectric element (1). The load measuring device according to any one of claims 1 to 4, characterized in that:
【請求項6】 前記高分子圧電材料は、ポリフッ化ビニ
リデン、ポリフッ化ビニル、ポリフッ化ビニリデンおよ
び/またはポリフッ化ビニルを主成分とする共重合体、
奇数ナイロン、ポリ尿素、ビニリデンシアナイドを主成
分とする共重合体、ポリウレタン、アクリロニトリル系
共重合体、およびポリ塩化ビニルの中から選択された材
料であることを特徴とする請求項1ないし5のいずれか
1つに記載の荷重測定装置。
6. The polymer piezoelectric material is polyvinylidene fluoride, polyvinyl fluoride, a copolymer containing polyvinylidene fluoride and / or polyvinyl fluoride as a main component,
6. A material selected from the group consisting of an odd-numbered nylon, a polyurea, a copolymer containing vinylidene cyanide as a main component, a polyurethane, an acrylonitrile-based copolymer, and polyvinyl chloride. The load measuring device according to any one of the above.
【請求項7】 共振周波数近傍の一定周波数による振動
のもと、外部から荷重または力が加わったときに電圧の
周波数特性が変化し、前記荷重または力に応じた信号を
発生する荷重測定用素子であって、 高分子圧電材料からなる圧電素子(1)と、 この圧電素子(1)の電圧の周波数特性を急峻化させる
急峻化手段(2)とを備えることを特徴とする荷重測定
用素子。
7. A load measuring element that changes the frequency characteristics of a voltage when a load or force is applied from the outside under a vibration at a constant frequency near a resonance frequency, and generates a signal corresponding to the load or the force. A load measuring element comprising: a piezoelectric element (1) made of a polymer piezoelectric material; and steepening means (2) for steepening the frequency characteristic of the voltage of the piezoelectric element (1). .
JP20069598A 1998-07-15 1998-07-15 Load measuring device and load measuring element Expired - Fee Related JP4178600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20069598A JP4178600B2 (en) 1998-07-15 1998-07-15 Load measuring device and load measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20069598A JP4178600B2 (en) 1998-07-15 1998-07-15 Load measuring device and load measuring element

Publications (2)

Publication Number Publication Date
JP2000028445A true JP2000028445A (en) 2000-01-28
JP4178600B2 JP4178600B2 (en) 2008-11-12

Family

ID=16428712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20069598A Expired - Fee Related JP4178600B2 (en) 1998-07-15 1998-07-15 Load measuring device and load measuring element

Country Status (1)

Country Link
JP (1) JP4178600B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309438A (en) * 2003-04-10 2004-11-04 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring wheel load
JP2007155440A (en) * 2005-12-02 2007-06-21 Institute Of Physical & Chemical Research Apparatus and method for measuring minute force, and probe for measuring micro surface profile
JP2016521917A (en) * 2013-05-24 2016-07-25 シャンブル ドゥ コメルス エ ダンデュストリー ドゥ レギオン パリ イル ドゥ フランセChambre De Commerce Et D’Industrie De Region Paris Ile De France Method for manufacturing flexible piezoelectric sensor
WO2019171865A1 (en) * 2018-03-09 2019-09-12 ヤマハ株式会社 Measurement method and measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309438A (en) * 2003-04-10 2004-11-04 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring wheel load
JP2007155440A (en) * 2005-12-02 2007-06-21 Institute Of Physical & Chemical Research Apparatus and method for measuring minute force, and probe for measuring micro surface profile
KR101268043B1 (en) * 2005-12-02 2013-05-28 리켄 Microforce measurement device, microforce measurement method and probe for measuring shape of microsurface
JP2016521917A (en) * 2013-05-24 2016-07-25 シャンブル ドゥ コメルス エ ダンデュストリー ドゥ レギオン パリ イル ドゥ フランセChambre De Commerce Et D’Industrie De Region Paris Ile De France Method for manufacturing flexible piezoelectric sensor
WO2019171865A1 (en) * 2018-03-09 2019-09-12 ヤマハ株式会社 Measurement method and measurement device
US20210199517A1 (en) * 2018-03-09 2021-07-01 Yamaha Corporation Measurement method and measurement apparatus
US11906374B2 (en) * 2018-03-09 2024-02-20 Yamaha Corporation Measurement method and measurement apparatus

Also Published As

Publication number Publication date
JP4178600B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US6336366B1 (en) Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film
US4546658A (en) Piezoelectric force/pressure sensor
US7661291B2 (en) Accuracy enhancement of a sensor during an anomalous event
KR100592985B1 (en) Vibration type angular velocity sensor
JPH0763629A (en) Pressure sensor
JP3348686B2 (en) Vibration wave detection method and device
WO2000052440A1 (en) Monitoring system and method
KR20100113115A (en) Piezoelectric vibration type force sensor
JP2000028445A (en) Load measuring instrument and element for measuring load
JP5348451B2 (en) Load detection device
KR20020005417A (en) Sensor
JP3624459B2 (en) Human body detection device
JPS6228843B2 (en)
WO1989010567A1 (en) Accelerometer
JP2011185828A (en) Acceleration sensor
Aoki et al. Detection of high-frequency component of mechanomyogram
JPH07244168A (en) Vibration detection device and human body detection apparatus utilizing it
JP2960275B2 (en) Tension determination device
US6012341A (en) Force sensor having an adjustable distance between an operating point and a point of mechanical instability
WO1997034154A1 (en) Offset trimming for a micromachined differential capacitor
JP3250085B2 (en) Acceleration sensor
JP2000028444A (en) Pressure detecting device
JPH0381641A (en) Method and device for measuring hardness characteristic of material
JPH11160167A (en) Pressure detecting device
JP7093922B2 (en) Biometric information detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees