JP2000027866A - Bearing metal of sliding bearing and manufacture therefor - Google Patents

Bearing metal of sliding bearing and manufacture therefor

Info

Publication number
JP2000027866A
JP2000027866A JP11154926A JP15492699A JP2000027866A JP 2000027866 A JP2000027866 A JP 2000027866A JP 11154926 A JP11154926 A JP 11154926A JP 15492699 A JP15492699 A JP 15492699A JP 2000027866 A JP2000027866 A JP 2000027866A
Authority
JP
Japan
Prior art keywords
bearing
sliding
concentration
metal
sliding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11154926A
Other languages
Japanese (ja)
Inventor
Gerd Andler
ゲルト・アンドラー
Jens-Peter Dr Heinss
ペーター・ハインス イエンス−
Klaus Goedicke
クラウス・ゲーデイッケ
Christoph Metzner
クリストフ・メッツナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Wiesbaden GmbH
Original Assignee
Federal Mogul Wiesbaden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Wiesbaden GmbH filed Critical Federal Mogul Wiesbaden GmbH
Publication of JP2000027866A publication Critical patent/JP2000027866A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/912Metallic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Sliding-Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the bearing metal of a sliding bearing excellent in an emergency time state and a running-in state together with a high limit load until biting-in of the bearing is caused particularly in a high load range, and a manufacturing method therefor. SOLUTION: The bearing metal of a sliding bearing has a support and at least a single metallic sliding layer. This sliding layer is formed by electron beam evaporation, and the sliding layer has at least a single fine component dispersed in a base material. Atomic weight of this component is larger than atomic weight of the base material. The concentration of a dispersed fine component 7 continuously reduces toward a divided surface range 9 from a top part range 8 of the bearing metal 1 of the sliding bearing. In a method, gas is adjusted to pressure of 0.1 to 5 pa in forming a film of the top part range of the bearing metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、支持体と少なくと
も1つの金属製滑り層を備え、この滑り層が電子ビーム
蒸着によって形成され、滑り層が母材材料内に、分散さ
れた少なくとも1つの微細な成分を有し、この成分の原
子量が母材材料の原子量よりも大きい、滑り軸受の軸受
金に関する。本発明は更に、金属合金からなる少なくと
も1つの滑り層が、被覆室内で電子ビーム蒸着によって
支持体上に形成され、滑り層が母材材料内に、分散され
た微細な成分を有し、この成分の原子量が母材材料の原
子量よりも大きい、滑り軸受の軸受金を製作するための
方法に関する。
FIELD OF THE INVENTION The present invention comprises a support and at least one metallic sliding layer, wherein the sliding layer is formed by electron beam evaporation, and wherein the sliding layer is dispersed in a matrix material at least one. The present invention relates to a bearing metal for a sliding bearing, which has a fine component, and the atomic weight of this component is larger than the atomic weight of a base material. The invention further provides that at least one sliding layer of a metal alloy is formed on the support by electron beam evaporation in the coating chamber, the sliding layer having a fine component dispersed in the matrix material, The present invention relates to a method for manufacturing a bearing of a sliding bearing, wherein the atomic weight of the component is larger than the atomic weight of the base material.

【0002】[0002]

【従来の技術】このように使用される滑り要素は一般的
に、次の構造の多層複合系からなっている。支持体材料
としての鋼製裏当て金、Cu合金Al合金またはホワイトメ
タル合金といわゆるオーバーレイ層または第3の層また
は滑り層からなる軸受金属層を備えている。この滑り層
は電気メッキ法(E.Roemer: GLYCO 40からなる三元軸
受;GLYCOエンジニア報告書8/67)によってあるいは
陰極噴霧(スパッタリング)によって、ヨーロッパ特許
第0256226号公報に記載されているように被覆形
成される。電気メッキによって被覆形成された、ほとん
どがPbまたはSnをベースとした層の場合には、往々
にして、耐食性が不充分であるかまたは耐摩耗所為が
い。更に、電気メッキ法は環境の観点から問題があると
見なされる。
2. Description of the Prior Art Sliding elements used in this way generally consist of a multilayer composite system of the following construction. A bearing metal layer consisting of a steel backing metal, a Cu alloy Al alloy or a white metal alloy as a support material and a so-called overlay layer or a third layer or a sliding layer is provided. This sliding layer can be applied by electroplating (E. Roemer: three-way bearing consisting of GLYCO 40; GLYCO Engineers Report 8/67) or by cathodic spraying (sputtering), as described in EP 0 256 226. A coating is formed. In the case of layers based on Pb or Sn, which are mostly formed by electroplating, corrosion resistance is often insufficient or wear-resistant. Furthermore, electroplating is considered problematic from an environmental point of view.

【0003】オーバーレイ層がスパッタリング技術で被
覆形成される場合には、そのときに実現可能な成膜速度
が遅く、装置コストが高いので、滑り要素全体のコスト
が高い。
When the overlay layer is formed by a sputtering technique, the cost of the entire sliding element is high because the film formation speed achievable at that time is low and the equipment cost is high.

【0004】英国特許第2270927号公報は、錫含
有量が層全体で一定であり、10〜80%であるアルミ
ニウム合金を示している。この出願の第10,11頁の
表1から明らかなように、錫含有量が増えるにつれて、
軸受がかみつきを生じようとするまで限界荷重が増大す
ることが明らかである。しかし、所定の錫含有量から耐
荷重が再び急激に低下する。この文献には、ならし状態
を改善するための指摘は存在しない。オーバーレイ成す
るための製作方法として、この出願には、スパッッタリ
ングが述べてある。
GB 2270927 shows an aluminum alloy in which the tin content is constant throughout the layer and is between 10 and 80%. As is clear from Table 1 on pages 10 and 11 of this application, as the tin content increases,
It is clear that the critical load increases until the bearing is about to bite. However, the load bearing capacity rapidly drops again from a predetermined tin content. There is no indication in this document to improve the break-in. As a fabrication method for forming an overlay, this application describes sputtering.

【0005】ヨーロッパ特許第0376368号公報に
は、軸受を製作するための非常にコストのかかる方法が
記載されている。この軸受は緊急時特性とならし特性が
良好であるという利点がある。この出願も場合にもアル
ミニウム−錫−合金である。この合金はスパッタリング
プロセスによって被覆形成される。この出願の要部は、
軸受合金の金属基質に挿入された粒子の直径が静的な標
準分布に左右され、0.1 質量%以下の酸素がオーバーレ
イ層に挿入され、熱処理後オーバーレイ層の微小硬度が
低下する。これによって、埋め込み性、緊急時特性およ
び非かみつき性が改善される。
[0005] EP 0 376 368 describes a very costly method for producing bearings. This bearing has an advantage that it has good emergency characteristics and smoothing characteristics. This application is again an aluminum-tin-alloy. This alloy is coated by a sputtering process. The main parts of this application are:
The diameter of the particles inserted into the metal substrate of the bearing alloy depends on the static standard distribution, oxygen of less than 0.1% by mass is inserted into the overlay layer, and the microhardness of the overlay layer decreases after heat treatment. This improves implantability, emergency properties and non-biteability.

【0006】WO91/00375には、オーバーレイ
層が分散させた微細な第2相(例えば錫)を有する基質
(例えばアルミニウム)からなっている軸受が記載され
ている。この場合にも、スパッタリングが使用される。
この発明の目的は、上張りにおける第2の相(例えば
錫)の含有量がオーバーレイ層の厚さの関数として、最
も下側の位置の0%から最も上側の位置の100%まで
連続的に増大するように、オーバーレイ層を構成した軸
受を製作することである。これは異なる組成の複数のタ
ーゲットとコーティング時の変化するスパッタリングパ
ラメータを使用することによって達成される。このよう
にして作られたオーバーレイ層はその摩耗と疲れに関し
て非常に良好な特性を示す。これは勿論、非常にコスト
のかかる方法によって得られる。
[0006] WO 91/00375 describes a bearing consisting of a substrate (eg aluminum) having a fine second phase (eg tin) in which an overlay layer is dispersed. Again, sputtering is used.
It is an object of the present invention that the content of the second phase (eg, tin) in the overlay is continuously as a function of the thickness of the overlay layer from 0% at the lowermost position to 100% at the uppermost position. Manufacture bearings with an overlay layer to increase. This is achieved by using multiple targets of different composition and varying sputtering parameters during coating. The overlay layer thus produced exhibits very good properties with respect to wear and fatigue. This is, of course, obtained in a very costly way.

【0007】ドイツ連邦共和国特許出願公開第1951
4835号公報および同第19514836号公報によ
り、電子ビーム蒸着によって滑り層を凹形に湾曲した滑
り要素に付着させることが知られている。この両文献で
は、所定の層厚形状の形成が注目される。滑り軸受の軸
受金の場合に均一な層厚を得るために、ドイツ連邦共和
国特許出願公開第19514835号公報では、滑り層
の蒸着の間、蒸発器と支持体が異なる速度で相対的に直
線的に移動する。そのために、適当な調節装置が被覆室
内で必要である。これに対して、ドイツ連邦共和国特許
出願公開第19514836号公報の場合には、不均一
な層厚が適切に調節される。滑り要素の層厚は最大で頂
部範囲で最大であり、分割面の方に連続的に低下してい
る。これを実現するために、本方法では、蒸発器から滑
り軸受の軸受金の頂部範囲までの間隔が150〜350
mmに調節され、層の蒸着の間蒸発器と支持体は互いに
動かぬように位置決めされ、頂部範囲における付着のた
めの凝縮速度は少なくとも80nm/sに調節される。
[0007] Published German Patent Application No. 1951
From U.S. Pat. Nos. 4,835 and 195,148, it is known to attach a sliding layer to a concavely curved sliding element by electron beam evaporation. In these documents, formation of a predetermined layer thickness shape is noted. In order to obtain a uniform layer thickness in the case of sliding bearing bearings, DE-A-195 14 835 discloses that during evaporation of the sliding layer, the evaporator and the support are relatively linear at different speeds. Go to For that purpose, a suitable adjusting device is required in the coating room. On the other hand, in the case of DE-A-19514836, the non-uniform layer thickness is adjusted appropriately. The layer thickness of the sliding element is at most maximum in the top region and decreases continuously towards the dividing plane. To achieve this, the method requires that the distance from the evaporator to the top area of the bearing metal of the plain bearing be 150-350.
mm, the evaporator and the support are positioned so as to be stationary with respect to each other during the deposition of the layer, and the condensation rate for deposition in the top area is adjusted to at least 80 nm / s.

【0008】ドイツ連邦共和国特許出願公開第3606
529号公報により、少なくとも1つの金属材料を金属
基質上に蒸着させることによって、層状材料または層状
工作物を製造するための方法が知られている。この方法
の場合には同様に、スライド層を形成するための電子ビ
ーム蒸着法が用いられる。この方法は残留ガス雰囲気下
で10-2〜10-3mbarの範囲の圧力で行われる。こ
の場合、材料は同時に蒸着によって拡散硬化されるかま
たは拡散固化される。約0.3μm/sの成層速度が生
じる。蒸着中に、基質は200〜800°Cの温度に保
たれる。アルミニウム合金の蒸着の際、基質の温度は約
200〜300°Cであり、銅−鉛−合金の場合には5
00〜700°Cの範囲である。この方法に従って製作
された層の耐荷重は、粉末冶金的な方法で製作された層
よりもはるかに良好である。この出願の場合には、蒸着
中、例えば酸化物を発生することによる拡散固定によっ
て、所定の主層割合を滑り層内で発生することが注目さ
れている。
[0008] Published German Patent Application No. 3606
No. 529 discloses a method for producing a layered material or a layered workpiece by depositing at least one metal material on a metal substrate. In the case of this method, an electron beam evaporation method for forming a slide layer is similarly used. The process is carried out in a residual gas atmosphere at a pressure in the range from 10 -2 to 10 -3 mbar. In this case, the material is simultaneously diffusion hardened or diffusion hardened by vapor deposition. A stratification rate of about 0.3 μm / s results. During deposition, the substrate is kept at a temperature of 200-800C. During the deposition of the aluminum alloy, the temperature of the substrate is about 200-300 ° C.
The range is from 00 to 700 ° C. The load carrying capacity of the layers produced according to this method is much better than the layers produced by powder metallurgy. In the case of this application, it has been noted that a predetermined proportion of the main layer is generated in the sliding layer during the deposition, for example by diffusion fixation by generating oxides.

【0009】この3つの文献には、合金成分を異なるよ
うに分布させることについて示唆していない。若干の用
途の場合には、耐荷重またはならし状態は充分でない。
[0009] The three references do not suggest distributing the alloying components differently. For some applications, the load-bearing or level-up condition is not sufficient.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、特に
高負荷範囲において、軸受かみつきを生じるまでの高い
限界荷重と共に、緊急時状態およびならし状態が良好で
ある滑り軸受の軸受金を提供することである。このよう
な滑り軸受の軸受金を製作するための、電子ビーム蒸着
をベースとした低コストの方法を提供することも、本発
明の課題である。この方法は、軸受金外周全体にわたっ
て均一な層厚を簡単に保証する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a bearing for a sliding bearing which has a good emergency condition and a good break-in condition, particularly in a high load range, with a high limit load until the bearing bites. It is to be. It is also an object of the present invention to provide a low-cost method based on electron beam evaporation for producing bearings for such sliding bearings. This method simply ensures a uniform layer thickness over the entire circumference of the bearing.

【0011】[0011]

【課題を解決するための手段】滑り軸受の軸受金は、分
散された微細な成分の濃度(密度)が、滑り軸受の軸受
金の頂部範囲から分割面範囲に向かって連続的に低下し
ていることを特徴とする。
SUMMARY OF THE INVENTION In a bearing of a sliding bearing, the concentration (density) of dispersed fine components continuously decreases from the top region of the bearing of the sliding bearing toward the division surface. It is characterized by being.

【0012】このように構成された滑り層は、最高負荷
範囲、すなわち頂部範囲において、緊急時状態とならし
状態を左右する合金成分が最高の濃度であるという利点
がある。他の利点は、比較的に高価である分散された微
細な成分が、高い濃度の範囲においてのみ存在すること
にある。この範囲において、この成分は緊急時プロセス
やならしプロセスのために特に必要である。
The sliding layer thus constructed has the advantage that in the highest load range, that is, the top range, the alloy component which determines the emergency state and the smoothing state has the highest concentration. Another advantage is that the relatively finely dispersed fine components are only present in a high concentration range. In this range, this component is particularly necessary for emergency and leveling processes.

【0013】最高負荷範囲の滑り特性はすべり軸受全体
の寿命を左右するので、頂部範囲の分配された微細な合
金成分の濃度を高めることにより、寿命を延ばすことが
できる。
Since the sliding characteristics in the highest load range determine the life of the entire slide bearing, the life can be extended by increasing the concentration of the distributed fine alloy component in the top region.

【0014】頂部範囲における、分散された微細な成分
の濃度は特に、分割面範囲の濃度の1.2 〜1.8 倍、好ま
しくは1.3 〜1.6 倍である。
The concentration of the dispersed fine components in the top region is, in particular, 1.2 to 1.8 times, preferably 1.3 to 1.6 times, the concentration in the dividing plane region.

【0015】分散された微細な成分の濃度は第1の実施
形に従って、滑り層の厚さにわたって一定である。
According to the first embodiment, the concentration of the dispersed fine components is constant over the thickness of the sliding layer.

【0016】周方向における濃度分布は第2の実施形に
従って、層厚にわたって異なる濃度と組み合わせること
ができる。この場合特に、分散された微細な成分の濃度
は滑り層の下側範囲、すなわち支持体近くの側から上側
範囲に連続的に増大している。滑り層のこの実施形は、
滑り軸受の軸受金の相手方である回転体が例えば鋳造軸
の場合のような大きな表面粗さを有するときに選択され
る。
According to a second embodiment, the concentration distribution in the circumferential direction can be combined with different concentrations over the layer thickness. In this case, in particular, the concentration of the dispersed fine components increases continuously from the lower region of the sliding layer, ie from the side near the support to the upper region. This embodiment of the sliding layer
It is selected when the rotating body which is the counterpart of the bearing of the plain bearing has a large surface roughness, for example, in the case of a cast shaft.

【0017】分散された微細な成分の濃度は好ましく
は、滑り層の上側範囲が下側範囲の2倍以下である。
The concentration of the dispersed fine components is preferably such that the upper region of the sliding layer is less than twice the lower region.

【0018】分散された微細な成分の濃度は好ましく
は、頂部範囲において10〜70質量%である。
The concentration of the finely dispersed component is preferably from 10 to 70% by weight in the top range.

【0019】母材材料は特にアルミニウムからなり、こ
の場合、分散された微細な成分は錫、鉛、ビスマスおよ
びまたはアンチモンからなっている。滑り層は他の合金
成分として、銅、亜鉛、珪素、マンガンおよびまたはニ
ッケルを個別的にまたは組み合わせて5質量%まで有す
る。
The matrix material is in particular made of aluminum, in which case the finely divided component consists of tin, lead, bismuth and / or antimony. The sliding layer has up to 5% by weight of other alloy components, individually or in combination, of copper, zinc, silicon, manganese and / or nickel.

【0020】支持体として鋼製裏当て金、鋼/CuPbSn複
合材、鋼/ アルミニウム複合材または鋼/ ホワイトメタ
ル複合材が使用可能である。滑り層を形成する好ましい
合金系は、AlSnCu、AlSnPbおよびAlSnSiである。錫合金
からなる滑り層の場合、滑り層内の錫割合は、滑り要素
の頂点から分割面に向けて減少する。すなわち、滑り層
は錫の割合の多い範囲と少ない範囲を有する。それによ
って初めて、滑り層において高い錫割合と少ない錫割合
の利点が同時に利用可能である。高い錫割合の範囲が滑
り要素の良好なならし運転を保証し、低い錫割合を有す
る範囲が滑り要素の大きな耐荷重能力を保証する。
As the support, a steel backing, a steel / CuPbSn composite, a steel / aluminum composite or a steel / white metal composite can be used. Preferred alloy systems for forming the sliding layer are AlSnCu, AlSnPb and AlSnSi. In the case of a sliding layer made of a tin alloy, the percentage of tin in the sliding layer decreases from the top of the sliding element toward the dividing plane. That is, the sliding layer has a range in which the proportion of tin is large and a range in which the tin ratio is small. Only then can the advantages of a high tin content and a low tin content be simultaneously available in the sliding layer. A range with a high tin content guarantees a good running-in of the sliding element, and a range with a low tin content guarantees a high load-carrying capacity of the sliding element.

【0021】滑り層の厚さは外周全体にわたって特に均
一である。
The thickness of the sliding layer is particularly uniform over the entire circumference.

【0022】滑り軸受の軸受金のこのような滑り層を製
作するための方法では、軸受金の頂部範囲の成膜中に、
ガスが0.1 〜5Paの圧力に調節される。
In a method for producing such a sliding layer of a bearing of a sliding bearing, a method of depositing the top area of the bearing during the deposition is as follows.
The gas is adjusted to a pressure of 0.1-5 Pa.

【0023】蒸発るつぼと被覆すべき面との間のガス分
子は、蒸着プロセス中の合金成分の異なる散乱(拡散)
を生じる。
The gas molecules between the evaporation crucible and the surface to be coated are subject to different scattering (diffusion) of the alloy components during the deposition process.
Is generated.

【0024】この場合、散乱角度または散乱の程度は、
動的な理由から、蒸発した個々の合金要素の比重に依存
する。その結果、例えば錫のような重い要素は、例えば
アルミニウムのような軽い要素よりも強く散乱させられ
る。この散乱プロセスの結果、重い要素が滑り軸受の軸
受金の頂部範囲において、分割面範囲よりも高い濃度で
付着することになる。ガス分子のこの散乱によって、電
子ビーム蒸着の場合にどの圧力範囲で作業するかに応じ
て、オーバーレイの組成を広い限度内で変更することが
できる。
In this case, the scattering angle or degree of scattering is
For dynamic reasons, it depends on the specific gravity of the evaporated individual alloy elements. As a result, heavy elements such as tin are scattered more strongly than light elements such as aluminum. As a result of this scattering process, heavy elements are deposited at a higher concentration in the top region of the bearing metal of the plain bearing than in the split surface region. This scattering of gas molecules allows the composition of the overlay to be varied within wide limits, depending on what pressure range is used in the case of electron beam evaporation.

【0025】ガス散乱によって形成された層は驚くべき
ことに、専門家の意見と異なり、コンパクトであり、か
つ耐摩耗性および耐荷重能力に関するその特性が、慣用
の滑り要素または付加的な手段なしに電子ビーム蒸着で
製作された滑り要素よりも優れている。
The layer formed by gas scattering is surprisingly, contrary to expert opinion, compact and its properties in terms of abrasion resistance and load-carrying capacity are reduced by conventional sliding elements or without additional measures. Better than sliding elements made by electron beam evaporation.

【0026】更に驚くべきことに、いろいろな濃度調節
のほかに同時に、均一な層厚が生じるので、ドイツ連邦
共和国特許出願公開第19514835号公報で知られ
ているような付加的な手段が不要である。
It is further surprising that, besides the various density adjustments, a uniform layer thickness is produced at the same time, so that no additional measures such as are known from DE-A 195 14 835 are necessary. is there.

【0027】それによって、製作方法が非常に簡単化さ
れる。
This greatly simplifies the manufacturing method.

【0028】被覆プロセス中のガス圧力は特に、±0.05
Paに一定に保たれる。この方法は、被覆プロセス中に
ガス圧が連続的に変化することにより変形可能である。
ガス圧が蒸着時間の関数と変化するときには、周方向に
おける滑り層の蒸着濃縮構造のほかに、層厚にわたって
組成の変形が達成可能である。
The gas pressure during the coating process is in particular ± 0.05
It is kept constant at Pa. This method can be modified by a continuous change in gas pressure during the coating process.
When the gas pressure varies with the function of the deposition time, deformations of the composition can be achieved over the layer thickness, as well as the deposition structure of the sliding layer in the circumferential direction.

【0029】ガス圧は特に、蒸着プロセスの開始時の0.
1 Paから終了時の1Paまで連続的に高められる。ガ
ス圧力の上昇により、原子量の小さな合金成分は、重い
合金要素よりも強く散乱させられる。それによって、頂
部範囲と分割面範囲の間の濃度の違いはプロセスの経過
につれて強まる。従って、層厚にわたって合成成分の濃
度が変化する。
In particular, the gas pressure is set at 0,1 at the start of the deposition process.
It is continuously increased from 1 Pa to 1 Pa at the end. Due to the increase in gas pressure, low atomic weight alloy components are scattered more strongly than heavy alloy elements. Thereby, the difference in density between the top area and the split plane area increases over the course of the process. Thus, the concentration of the composite component varies over the layer thickness.

【0030】ガスとしては好ましくは、希ガスであるア
ルゴン、ヘリウムまたはネオンが使用される。
As the gas, a rare gas such as argon, helium or neon is preferably used.

【0031】その際、蒸発るつぼからの滑り軸受の軸受
金の鉛直距離が、軸受金直径の2〜7倍に調節され、頂
部範囲の成膜速度が少なくとも20nm/sに調節され
る。
At this time, the vertical distance of the bearing metal of the sliding bearing from the evaporating crucible is adjusted to 2 to 7 times the diameter of the bearing metal, and the film forming speed in the top region is adjusted to at least 20 nm / s.

【0032】[0032]

【発明の実施の形態】次に、実施の形態と図に基づいて
本発明を詳しく説明する。
Next, the present invention will be described in detail with reference to embodiments and drawings.

【0033】図1には、支持体2と滑り層6を備えた滑
り軸受の軸受金1が示してある。支持体2は鋼製裏当て
金3からなっている。この鋼製裏当て金上には、CuPbSn
合金4が鋳造または焼結プロセスによって設けられ、か
つ拡散阻止層5が設けられている。鋼の炭素含有量は0.
03〜0.3 %である。
FIG. 1 shows a bearing 1 of a sliding bearing having a support 2 and a sliding layer 6. The support 2 comprises a steel backing metal 3. On this steel backing metal, CuPbSn
An alloy 4 is provided by a casting or sintering process, and a diffusion blocking layer 5 is provided. The carbon content of steel is 0.
03-0.3%.

【0034】それ自体知られているいろいろな焼きなま
しプロセスおよび変形プロセスの後で、帯状体を所定の
長さの帯状体片に切断し、この帯状体片をプレスするこ
とにより、すべり軸受の軸受金が製作される。穿孔また
はローリングによってこの軸受を表面加工した後で、軸
受金には電気メッキプロセスまたはPVDプロセスによ
って、ニッケルまたはニッケル合金からなる拡散阻止層
5が形成される。その後で、支持体が脱脂され、真空蒸
着装置に入れられる。ここで更に、噴霧エッチングプロ
セスによって表面洗浄または活性化が行われる。
After the various annealing and deformation processes known per se, the strip is cut into strips of a predetermined length and the strips are pressed to form the bearing metal of the plain bearing. Is produced. After the bearing has been surfaced by drilling or rolling, a diffusion blocking layer 5 of nickel or a nickel alloy is formed on the bearing metal by an electroplating process or a PVD process. Thereafter, the support is degreased and placed in a vacuum evaporation apparatus. Here, a further surface cleaning or activation is performed by means of a spray etching process.

【0035】成膜(被覆)室を排気した後で、成膜室に
アルゴンが供給される。この場合、圧力は約1Paに調
節される。それに続いて、支持体2は、軸方向の電子銃
を用いて蒸発るつぼからAlSn20Cuを電子ビーム蒸着によ
って成膜される。被覆されたAlSn20Cu製滑り層6の層厚
は約16±4μmである。
After exhausting the film forming (coating) chamber, argon is supplied to the film forming chamber. In this case, the pressure is adjusted to about 1 Pa. Subsequently, the support 2 is formed by electron beam evaporation of AlSn20Cu from an evaporation crucible using an axial electron gun. The layer thickness of the coated AlSn20Cu sliding layer 6 is about 16 ± 4 μm.

【0036】蒸着プロセスの間、アルゴン圧力が約1P
aに一定に保持され、支持体の温度は約190〜200
°Cで、そして電子銃の出力は約40〜60kWであっ
た。成膜速度は少なくとも20nm/sであった。
During the deposition process, the argon pressure is about 1 P
a, and the temperature of the support is about 190 to 200
° C, and the power of the electron gun was about 40-60 kW. The deposition rate was at least 20 nm / s.

【0037】滑り層6は頂部範囲において、分割面範囲
9よりもはるかに高い錫濃度を有する。錫粒子は点7に
よって示してある。高い濃度は頂部範囲8における高い
点密度によって示してある。
The sliding layer 6 has a much higher tin concentration in the top region than in the split surface region 9. Tin particles are indicated by point 7. The high density is indicated by the high dot density in the top region 8.

【0038】図2,3には、頂部範囲(図2)と分割面
範囲(図3)の合金の組成が示してある。錫含有量は走
査電子顕微鏡でEDXによって、蒸着されたAlSn20Cu層
の所定の面積について測定した。頂部範囲8における錫
の濃度は分割面範囲の1.4倍であった。この場合、値
は錫ピークにわたる積分によって算出された。
FIGS. 2 and 3 show the composition of the alloy in the top region (FIG. 2) and the split plane region (FIG. 3). Tin content was measured for a given area of the deposited AlSn20Cu layer by EDX with a scanning electron microscope. The tin concentration in the top area 8 was 1.4 times the split plane area. In this case, the value was calculated by integration over the tin peak.

【0039】図4は、従来の3元軸受および2元軸受と
直接比較して、蒸着されたオーバーレイ層で製作された
本発明による軸受金の、アンダーウッド(Underwood) 検
査スタンドによって得られる限界荷重を示している。こ
の試験の場合基礎として、AlSn20Cuからなる滑り層を有
するアルミニウム2元軸受(棒A)が選定された(10
0%と見なされる)。AlSnをベースとした2元軸受(棒
B)は高い耐荷重を可能にした。この二元軸受の母材は
合金要素であるニッケルとマンガンによって強化されて
いる。鋼/銅と鉛の合金/メッキ層(PbSn10Cn5)の構造
の三元軸受(棒C)は、前述の二元軸受の間にある荷重
に耐えることができる。図4に示すように、本発明に従
って蒸着した滑り軸受(棒D)の耐荷重は従来の軸受よ
りも大きい。
FIG. 4 shows the critical load obtained by an Underwood inspection stand of a bearing metal according to the invention made with a deposited overlay layer, in direct comparison with conventional three- and two-part bearings. Is shown. In this test, an aluminum binary bearing (rod A) having a sliding layer of AlSn20Cu was selected as the basis (10).
0%). The binary bearing (rod B) based on AlSn enables high load bearing. The base material of this dual bearing is reinforced by alloy elements nickel and manganese. A three-way bearing (rod C) with a steel / copper and lead alloy / plated layer (PbSn10Cn5) structure can withstand the loads between the aforementioned two-way bearings. As shown in FIG. 4, the load bearing capacity of the sliding bearing (rod D) deposited according to the present invention is greater than that of the conventional bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】滑り軸受の軸受金の斜視図である。FIG. 1 is a perspective view of a bearing metal of a slide bearing.

【図2】頂部範囲における滑り層の合金組成を示すグラ
フである。
FIG. 2 is a graph showing the alloy composition of the sliding layer in the top region.

【図3】分割面範囲における滑り層の合金組成を示すグ
ラフである。
FIG. 3 is a graph showing an alloy composition of a sliding layer in a division surface area.

【図4】従来の三元軸受や二元軸受と比較して、本発明
に従って製作された滑り層を有する滑り軸受の軸受金
の、アンーダーウッド試験で得られる限界荷重を示すグ
ラフである。
FIG. 4 is a graph showing a critical load obtained by an underwood test of a bearing metal of a sliding bearing having a sliding layer manufactured according to the present invention, as compared with a conventional three-way bearing or two-way bearing.

【符号の説明】[Explanation of symbols]

1 滑り軸受の軸受金 2 支持体 3 鋼製裏当て金 4 CuPbSn層 5 拡散阻止層 6 滑り層 7 錫粒子 8 頂部範囲 9 分割面範囲 DESCRIPTION OF SYMBOLS 1 Bearing metal of slide bearing 2 Support body 3 Steel backing metal 4 CuPbSn layer 5 Diffusion prevention layer 6 Sliding layer 7 Tin particles 8 Top area 9 Division plane area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 イエンス− ペーター・ハインス ドイツ連邦共和国、01157ドレースデン、 ゾンネンレーネ、21 (72)発明者 クラウス・ゲーデイッケ ドイツ連邦共和国、01307ドレースデン、 プフアイフエルハンスストラーセ、18 (72)発明者 クリストフ・メッツナー ドイツ連邦共和国、01474パープリッツ、 ビルケンストラーセ、9 ──────────────────────────────────────────────────続 き Continuing the front page (72) Inventor Jens-Peter Heins Germany, 01157 Dresden, Sonnenlehne, 21 (72) Inventor Christoph Metzner Germany, 01474 Parplitz, Birkenstrasse, 9

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 支持体と少なくとも1つの金属製滑り層
を備え、この滑り層が電子ビーム蒸着によって形成さ
れ、滑り層が母材材料内に、分散された少なくとも1つ
の微細な成分を有し、この成分の原子量が母材材料の原
子量よりも大きい、滑り軸受の軸受金において、分散さ
れた微細な成分(7)の濃度が、滑り軸受の軸受金
(1)の頂部範囲(8)から分割面範囲(9)に向かっ
て連続的に低下していることを特徴とする滑り軸受の軸
受金。
1. A method comprising: providing a support and at least one metallic sliding layer formed by electron beam evaporation, the sliding layer having at least one fine component dispersed in a base material; In the bearing metal of the sliding bearing, in which the atomic weight of this component is larger than the atomic weight of the base material, the concentration of the dispersed fine component (7) is increased from the top range (8) of the bearing metal (1) of the sliding bearing. A bearing metal for a sliding bearing, characterized in that the bearing metal decreases continuously toward the division surface area (9).
【請求項2】 頂部範囲(8)における、分散された微
細な成分(7)の濃度が、分割面範囲(9)の濃度の1.
2 〜1.8 倍であることを特徴とする請求項1記載の滑り
軸受の軸受金。
2. The concentration of the dispersed fine component (7) in the top region (8) is 1.times. The concentration of the divided surface region (9).
The bearing of claim 1, wherein the ratio is 2 to 1.8 times.
【請求項3】 分散された微細な成分(7)の濃度が滑
り層(6)の厚さにわたって一定であることを特徴とす
る請求項1または2記載の滑り軸受の軸受金。
3. The bearing metal according to claim 1, wherein the concentration of the dispersed fine component (7) is constant over the thickness of the sliding layer (6).
【請求項4】 分散された微細な成分(7)の濃度が滑
り層(6)の下側範囲から上側範囲に連続的に増大して
いることを特徴とする請求項1または2記載の滑り軸受
の軸受金。
4. The slide according to claim 1, wherein the concentration of the dispersed fine component increases continuously from the lower range to the upper range of the sliding layer. Bearing metal for bearings.
【請求項5】 分散された微細な成分(7)の濃度が頂
部範囲(8)において10〜70質量%であることを特
徴とする請求項1〜4のいずれか一つに記載の滑り軸受
の軸受金。
5. The sliding bearing according to claim 1, wherein the concentration of the dispersed fine component (7) is from 10 to 70% by weight in the top region (8). Bearing metal.
【請求項6】 滑り層(6)の上側範囲における、分散
された微細な成分(7)の濃度が、下側範囲の濃度の2
倍以下であることを特徴とする請求項4または5記載の
滑り軸受の軸受金。
6. The concentration of the dispersed fine component (7) in the upper region of the sliding layer (6) is 2% of the concentration in the lower region.
The bearing metal of the sliding bearing according to claim 4 or 5, wherein the diameter is not more than twice.
【請求項7】 母材材料がアルミニウムからなり、分散
された微細な成分(7)が錫、鉛、ビスマスおよびまた
はアンチモンからなっていることを特徴とする請求項1
〜6のいずれか一つに記載の滑り軸受の軸受金。
7. The material according to claim 1, wherein the base material is made of aluminum and the dispersed fine component (7) is made of tin, lead, bismuth and / or antimony.
The bearing of the sliding bearing according to any one of claims 6 to 6.
【請求項8】 滑り層(6)が他の合金成分として、
銅、亜鉛、珪素、マンガンおよびまたはニッケルを個別
的にまたは組み合わせて5質量%まで有することを特徴
とする請求項1〜7のいずれか一つに記載の滑り軸受の
軸受金。
8. The sliding layer (6) may comprise, as another alloy component,
8. The bearing metal of the sliding bearing according to claim 1, comprising copper, zinc, silicon, manganese and / or nickel individually or in combination up to 5% by mass. 9.
【請求項9】 滑り層(6)の厚さが外周全体にわたっ
て均一であることを特徴とする請求項1〜8のいずれか
一つに記載の滑り軸受の軸受金。
9. A bearing according to claim 1, wherein the thickness of the sliding layer is uniform over the entire outer periphery.
【請求項10】 金属合金からなる少なくとも1つの滑
り層が、被覆室内で電子ビーム蒸着によって支持体上に
形成され、滑り層が母材材料内に、分散された微細な成
分を有し、この成分の原子量が母材材料の原子量よりも
大きい、滑り軸受の軸受金を製作するための方法におい
て、軸受金の頂部範囲の被覆中に、ガスが0.1 〜5Pa
の圧力に調節されることを特徴とする方法。
10. At least one sliding layer made of a metal alloy is formed on a support by electron beam evaporation in a coating chamber, and the sliding layer has fine components dispersed in a base material. In a method for making a bearing of a sliding bearing, wherein the atomic weight of the component is greater than the atomic weight of the base material, a gas of 0.1 to 5 Pa is applied during the coating of the top area of the bearing.
Adjusting the pressure to a predetermined value.
【請求項11】 蒸着プロセスの間、ガス圧が連続的に
変えられることを特徴とする請求項10記載の方法。
11. The method according to claim 10, wherein the gas pressure is varied continuously during the deposition process.
【請求項12】 ガス圧が蒸着プロセスの開始時の0.1
Paから終了時の1Paまで連続的に高められることを
特徴とする請求項11記載の方法。
12. A gas pressure of 0.1 at the beginning of the deposition process.
The method according to claim 11, wherein the pressure is continuously increased from Pa to 1 Pa at the end.
【請求項13】 ガスとして、希ガスであるアルゴン、
ヘリウムまたはネオンが使用されることを特徴とする請
求項10〜12のいずれか一つに記載の方法。
13. A rare gas, such as argon,
13. The method according to claim 10, wherein helium or neon is used.
【請求項14】 蒸発るつぼからの滑り軸受の軸受金の
鉛直距離が、軸受金直径の2〜7倍に調節されることを
特徴とする請求項10〜13のいずれか一つに記載の方
法。
14. The method according to claim 10, wherein the vertical distance of the bearing metal of the sliding bearing from the evaporating crucible is adjusted to 2 to 7 times the diameter of the bearing metal. .
【請求項15】 頂部範囲の被覆速度が少なくとも20
nm/sに調節されることを特徴とする請求項10〜1
4のいずれか一つに記載の方法。
15. The coating rate in the top region is at least 20.
2. The method according to claim 1, wherein the wavelength is adjusted to nm / s.
5. The method according to any one of 4.
JP11154926A 1998-06-02 1999-06-02 Bearing metal of sliding bearing and manufacture therefor Pending JP2000027866A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19824308:1 1998-06-02
DE19824308A DE19824308C1 (en) 1998-06-02 1998-06-02 Plain bearing shell especially a steel-backed bearing shell with an aluminum-tin alloy running-in layer

Publications (1)

Publication Number Publication Date
JP2000027866A true JP2000027866A (en) 2000-01-25

Family

ID=7869456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154926A Pending JP2000027866A (en) 1998-06-02 1999-06-02 Bearing metal of sliding bearing and manufacture therefor

Country Status (14)

Country Link
US (2) US6139191A (en)
EP (1) EP0962673B1 (en)
JP (1) JP2000027866A (en)
KR (1) KR100675994B1 (en)
CN (1) CN1111656C (en)
AT (2) AT410358B (en)
BR (1) BR9901764A (en)
CZ (1) CZ294203B6 (en)
DE (2) DE19824308C1 (en)
ES (1) ES2224492T3 (en)
PL (1) PL190976B1 (en)
RU (1) RU2229040C2 (en)
SK (1) SK72799A3 (en)
TR (1) TR199901222A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540837A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
KR20230165134A (en) 2022-05-26 2023-12-05 다이도 메탈 고교 가부시키가이샤 Copper-based sliding member

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19824308C1 (en) * 1998-06-02 1999-09-09 Fraunhofer Ges Forschung Plain bearing shell especially a steel-backed bearing shell with an aluminum-tin alloy running-in layer
DE19852481C2 (en) * 1998-11-13 2002-09-12 Federal Mogul Wiesbaden Gmbh Layered composite material for sliding elements and process for its manufacture
US6318898B1 (en) * 1999-10-15 2001-11-20 Reliance Electric Technologies, Llc Corrosion-resistant bearing and method for making same
AT408102B (en) * 2000-03-09 2001-09-25 Miba Gleitlager Ag METHOD FOR PRODUCING A SLIDING ELEMENT AND A DEVICE FOR COATING A SLIDING ELEMENT
US6321712B1 (en) * 2000-04-07 2001-11-27 Dana Corporation Racing engine having trimetal bearings with a thick overlay for high speed and/or high load applications
JP3955737B2 (en) * 2001-03-07 2007-08-08 大同メタル工業株式会社 Plain bearing
GB0216331D0 (en) * 2002-07-13 2002-08-21 Dana Corp Bearings
US7147926B2 (en) * 2003-09-25 2006-12-12 Reliance Electric Technologies, Llc Corrosion-resistant and stain-resistant component and method for manufacturing same
AT413034B (en) 2003-10-08 2005-10-15 Miba Gleitlager Gmbh ALLOY, ESPECIALLY FOR A GLIDING LAYER
CN100427778C (en) 2003-11-25 2008-10-22 奥依列斯工业株式会社 Bush bearing
US7281853B2 (en) * 2003-12-01 2007-10-16 United Technologies Corporation Bearing material
DE102004008631A1 (en) * 2004-02-21 2005-09-08 Ks Gleitlager Gmbh Bearing material
DE102004029071B3 (en) * 2004-06-16 2006-02-16 Daimlerchrysler Ag Cups of hybrid materials and process for their preparation
DE102004045110B3 (en) * 2004-09-17 2006-01-19 Daimlerchrysler Ag Highly wear-resistant and durable bearing coating for crankshaft and connecting rod bearings
GB0421566D0 (en) * 2004-09-29 2004-10-27 Dana Corp Bearing materials and method for the production thereof
DE102004055228B4 (en) * 2004-11-17 2010-09-30 Daimler Ag Thermally sprayed bearing shells for connecting rods
DE102005063324B4 (en) * 2005-05-13 2008-02-28 Federal-Mogul Wiesbaden Gmbh & Co. Kg Slide bearing composite, use and manufacturing process
AT501722B1 (en) 2005-07-12 2006-11-15 Miba Gleitlager Gmbh COATING PROCESS
DE102006008910B4 (en) * 2006-02-27 2008-09-11 Daimler Ag Piston pin with sliding layers for connecting rod eyes in internal combustion engines
CN100494710C (en) * 2006-05-25 2009-06-03 上海电器气压缩机泵业有限公司 Compressor bearing liner
US20120114971A1 (en) * 2007-01-05 2012-05-10 Gerd Andler Wear resistant lead free alloy sliding element method of making
US8403027B2 (en) 2007-04-11 2013-03-26 Alcoa Inc. Strip casting of immiscible metals
US7846554B2 (en) 2007-04-11 2010-12-07 Alcoa Inc. Functionally graded metal matrix composite sheet
CN101215685B (en) * 2007-12-27 2011-06-22 重庆跃进机械厂有限公司 Method for preparing tin content step-up PVD bushing in antifriction layer
CN100552247C (en) * 2007-12-27 2009-10-21 重庆跃进机械厂有限公司 Production method with diffusion layer PVD bearing shell
US8956472B2 (en) 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
CN101782111B (en) * 2010-03-11 2011-07-27 潍坊金富通机械设备有限公司 High-hardness abrasion-resistant bush
DE102010031606A1 (en) * 2010-07-21 2012-01-26 Federal-Mogul Wiesbaden Gmbh Structured sliding surface of a bearing shell
RU2468265C2 (en) * 2010-07-26 2012-11-27 Учреждение Российской академии наук Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН Method to produce bimetal sliding bearings
RU2453742C1 (en) * 2010-12-23 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Method for production of aluminium-lead friction bearings
CN102230493B (en) * 2011-06-09 2012-12-19 杭州发达齿轮箱集团有限公司 Copper-based powder metallurgy thrust ring and preparation method thereof
CN102562808B (en) * 2011-12-15 2015-01-07 广州安达精密工业股份有限公司 Substrate layer for bearing bush
US9249830B2 (en) 2012-03-07 2016-02-02 Ntn Corporation Sintered bearing
CN102748391A (en) * 2012-06-15 2012-10-24 湖北东风佳华汽车部件有限公司 Surface leadless electroplating friction reducing layer of bearing shell, and electroplating process
AT514961B1 (en) * 2013-12-23 2015-05-15 Miba Gleitlager Gmbh Multilayer plain bearings
AT514955B1 (en) 2014-01-31 2015-05-15 Miba Gleitlager Gmbh Method for producing a two-substance plain bearing
CN103785999A (en) * 2014-02-24 2014-05-14 洛阳双瑞金属复合材料有限公司 Method for manufacturing copper steel bearing liner
CN104128588B (en) * 2014-06-25 2016-02-24 西安交通大学 A kind of semisolid continuous casting of composite bearing and electro-magnetic forming jockey
AT516877B1 (en) * 2015-02-19 2016-12-15 Miba Gleitlager Austria Gmbh plain bearing element
US10364844B2 (en) * 2015-08-06 2019-07-30 Nissan Motor Co., Ltd. Sliding member and manufacturing method therefor
JP6731969B2 (en) 2018-04-11 2020-07-29 大豊工業株式会社 Sliding member
CN108857291B (en) * 2018-08-29 2020-12-11 日照亿铭科技服务有限公司 Production process of bearing bush for engine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069369A (en) * 1970-12-15 1978-01-17 Gould Inc. Fine dispersion aluminum base bearing
US4006268A (en) * 1975-03-17 1977-02-01 Airco, Inc. Vapor collimation in vacuum deposition of coatings
DE3242543C2 (en) * 1982-11-18 1985-09-19 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Layer material with a functional layer made of a metallic suspension alloy applied to a metallic carrier layer and a method for its production
DE3304740C2 (en) * 1983-02-11 1985-02-21 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Multi-layer plain bearings
FR2555682B1 (en) * 1983-11-29 1987-10-16 Metafram Alliages Frittes SELF-LUBRICATING SINKED BEARING AND MANUFACTURING METHOD
DE3601438C1 (en) * 1986-01-20 1987-04-09 Glyco Metall Werke Layered composite material with diffusion barrier layer, in particular for sliding and friction elements, and method for its production
US5053286A (en) * 1986-01-23 1991-10-01 Federal-Mogul Corporation Aluminum-lead engine bearing alloy metallurgical structure and method of making same
US4996025A (en) * 1986-01-23 1991-02-26 Federal-Mogul Corporation Engine bearing alloy composition and method of making same
DE3606529A1 (en) * 1986-02-28 1987-09-03 Glyco Metall Werke METHOD FOR THE PRODUCTION OF LAYING MATERIAL OR LAYING MATERIAL PIECES BY EVAPORATING AT LEAST ONE METAL MATERIAL ONTO A METAL SUBSTRATE
CH671239A5 (en) * 1986-07-15 1989-08-15 Balzers Hochvakuum
GB2197879B (en) * 1986-11-26 1990-05-23 Glyco Metall Werke Laminate material for plain bearing elements with an anti-friction layer of an aluminium-based bearing material
US4961831A (en) * 1986-12-23 1990-10-09 Balzers Aktiengesellschaft Composite material having a slide layer applied by cathode sputtering
EP0272447B1 (en) * 1986-12-23 1992-09-16 Balzers Aktiengesellschaft Composite material with a sliding coating applied by cathodic sputtering
ATE79589T1 (en) * 1987-04-30 1992-09-15 Balzers Hochvakuum COMPONENT, ESPECIALLY MACHINE ELEMENT.
JP2512477B2 (en) * 1987-06-17 1996-07-03 大豊工業株式会社 Copper-based sliding material
AT389356B (en) * 1987-07-24 1989-11-27 Miba Gleitlager Ag HEAVY DUTY SLIDING BEARING
DE3813802A1 (en) * 1988-04-23 1989-11-09 Glyco Metall Werke LAYERING MATERIAL OR LAYERING MATERIAL WITH A FUNCTIONAL LAYER APPLIED ON A SUPPORT LAYER, IN PARTICULAR SLIDING LAYER WITH THE STRUCTURE OF A SOLID, BUT MELTABLE DISPERSION
DE3843927A1 (en) * 1988-12-24 1990-06-28 Kolbenschmidt Ag METHOD FOR PRODUCING STORAGE
GB8915254D0 (en) * 1989-07-03 1989-08-23 T & N Technology Ltd Bearings
US5300368A (en) * 1990-02-03 1994-04-05 Glyco-Metall-Werke Glyco B.V. & Co. Kg Highly wear-resistant overlay with improved slip and a method of its production
JP2679920B2 (en) * 1992-09-28 1997-11-19 大同メタル工業株式会社 Sliding bearing material with overlay with excellent anti-seizure property
JPH0735142A (en) * 1993-07-16 1995-02-03 Mitsubishi Heavy Ind Ltd Aluminum bearing
DE19514835C1 (en) * 1995-04-21 1997-01-23 Fraunhofer Ges Forschung Process for producing sliding elements concavely curved on the sliding surface
DE19514836C2 (en) * 1995-04-21 2000-06-08 Fraunhofer Ges Forschung bearing shell
DE19824308C1 (en) * 1998-06-02 1999-09-09 Fraunhofer Ges Forschung Plain bearing shell especially a steel-backed bearing shell with an aluminum-tin alloy running-in layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540837A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
KR20230165134A (en) 2022-05-26 2023-12-05 다이도 메탈 고교 가부시키가이샤 Copper-based sliding member

Also Published As

Publication number Publication date
EP0962673A3 (en) 2000-12-06
BR9901764A (en) 2001-01-16
US6139191A (en) 2000-10-31
DE19824308C1 (en) 1999-09-09
EP0962673A2 (en) 1999-12-08
ES2224492T3 (en) 2005-03-01
CN1240889A (en) 2000-01-12
EP0962673B1 (en) 2004-08-04
PL190976B1 (en) 2006-02-28
DE59910102D1 (en) 2004-09-09
TR199901222A3 (en) 2000-08-21
CZ294203B6 (en) 2004-10-13
ATA94499A (en) 2002-08-15
US6316061B1 (en) 2001-11-13
RU2229040C2 (en) 2004-05-20
PL333498A1 (en) 1999-12-06
SK72799A3 (en) 1999-12-10
KR100675994B1 (en) 2007-01-29
KR20000005817A (en) 2000-01-25
CZ194299A3 (en) 2000-09-13
CN1111656C (en) 2003-06-18
ATE272802T1 (en) 2004-08-15
AT410358B (en) 2003-04-25
TR199901222A2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP2000027866A (en) Bearing metal of sliding bearing and manufacture therefor
JP2624693B2 (en) Composite material having at least one smooth layer deposited by sputtering and method for producing the same
US6146019A (en) Plain bearing
US7572521B2 (en) Aluminum alloy for surfaces which are subjected to extreme stresses due to friction
RU1809881C (en) Plain bearing
US4900639A (en) Cladding of bearing metal and process for production thereof
AT501722B1 (en) COATING PROCESS
US20090025959A1 (en) Edm wire
JPS63255358A (en) Mixed layer composed of at least two kinds of metal nitrides and formation thereof
JPH01279119A (en) Mechanical member
US4830933A (en) Composite structural material with diffusion barrier layer, especially for slide and friction members, and method of manufacture
JPS6351865B2 (en)
US4832809A (en) Process for preparation layered composite constructional material, especially for sliding and friction members
JP2614732B2 (en) Low friction structure and manufacturing method thereof
SE539779C2 (en) Method for producing a bi-material sliding bearing
JPH04145225A (en) Multilayer bearing and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331