JP2000027303A - Support structure - Google Patents

Support structure

Info

Publication number
JP2000027303A
JP2000027303A JP10195795A JP19579598A JP2000027303A JP 2000027303 A JP2000027303 A JP 2000027303A JP 10195795 A JP10195795 A JP 10195795A JP 19579598 A JP19579598 A JP 19579598A JP 2000027303 A JP2000027303 A JP 2000027303A
Authority
JP
Japan
Prior art keywords
support structure
support
members
base member
deployable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10195795A
Other languages
Japanese (ja)
Inventor
Satoshi Harada
聡 原田
Jun Nakagawa
潤 中川
Mitsuteru Yamato
光輝 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP10195795A priority Critical patent/JP2000027303A/en
Publication of JP2000027303A publication Critical patent/JP2000027303A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a support structure supporting a developable structure on a base member, which can be developed and housed together with the developable structure and secure a high rigidity in the developed state and further, adjust a relative position of the base member and the developable structure. SOLUTION: An expansible and contractible support members 22, 23, 24 are provided, in which first and second joints are formed in different positions from each other and they are extended or contracted by a specified driving means to vary the distance between the first and second joints. The first and second foints are connected to each other through connection members 32, 33 which can practice at least one of rotation, transfer, and elastic deformation to the developable structure 10 and the base member 41 respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工衛星に搭載さ
れる大型アンテナのように、収納状態では占有する体積
が小さく、展開状態では所定の形状を形成する展開型構
造物を所定の基部部材上に支持するために用いる支持構
造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deployable structure, such as a large antenna mounted on an artificial satellite, which occupies a small volume in a stored state and forms a predetermined shape in a deployed state. The present invention relates to a support structure used for supporting the above.

【0002】[0002]

【従来の技術】展開型構造物及びそれを支持する支持構
造物の従来例を図5に示す。図5において(a),
(b)及び(c)は、それぞれ展開状態,中間状態及び
収納状態を示している。図5に示す展開型構造物は、
(a)の展開状態で星型の形状になる骨組み構造の上に
金属メッシュを張ることにより、この構造物がアンテナ
鏡面を形成する。この展開型構造物は、支待構造物を介
して図示しない人工衛星上に支持される。
2. Description of the Related Art FIG. 5 shows a conventional example of a deployable structure and a supporting structure for supporting the same. In FIG. 5, (a),
(B) and (c) show a deployed state, an intermediate state, and a stored state, respectively. The deployed structure shown in FIG.
This structure forms a mirror surface of the antenna by stretching a metal mesh on a skeleton structure having a star shape in the deployed state of (a). The deployable structure is supported on an artificial satellite (not shown) via a supporting structure.

【0003】展開型構造物は、展開状態でアンテナ鏡面
の形状を決定する。この展開型構造物の一部分が、支持
構造物を介して基部部材上に支持されている。基部部材
は、ブームを介して図示しない人工衛星に固定される。
この種のアンテナ鏡面を利用する場合には、アンテナの
指向方向を所定の方向に向ける必要があり、アンテナ鏡
面の形状を決定する展開型構造物の支持構造物について
も、展開型構造物を人工衛星に対して所定の向きに向け
るための可動機構を必要とする。
[0003] The deployed structure determines the shape of the antenna mirror surface in the deployed state. A portion of the deployable structure is supported on a base member via a support structure. The base member is fixed to an unshown artificial satellite via a boom.
When using this type of antenna mirror surface, it is necessary to direct the antenna in a predetermined direction, and the support structure of the expandable structure that determines the shape of the antenna mirror surface is also artificial. It requires a movable mechanism to orient it in a predetermined direction with respect to the satellite.

【0004】また、展開型構造物は展開状態と収納状態
とでは大きさが大きく異なるため、それを支持する支持
構造物についても展開型構造物とともに収納及び展開す
る構成が必要になる。可動機構を備える支持構造物の従
来例を図6に示す。図6においては、アンテナ鏡面は支
持部材及び2軸ジンバルによって、アンテナ取り付け面
に取付けられている。
[0004] In addition, since the size of the deployable structure is greatly different between the deployed state and the housed state, a supporting structure for supporting the deployable structure must be housed and deployed together with the deployable structure. FIG. 6 shows a conventional example of a support structure having a movable mechanism. In FIG. 6, the antenna mirror surface is mounted on the antenna mounting surface by a support member and a biaxial gimbal.

【0005】2軸ジンバルを駆動することにより、2つ
の軸に対してそれぞれアンテナ鏡面を回転し、アンテナ
取付け面に対するアンテナ鏡面の姿勢を変更できる。
By driving the two-axis gimbal, it is possible to rotate the antenna mirror surface with respect to each of the two axes and change the attitude of the antenna mirror surface with respect to the antenna mounting surface.

【0006】[0006]

【発明が解決しようとする課題】図6に示すような可動
機構をより大型の展開型構造物に適用する場合、大型化
に伴って展開型構造物の慣性が増える。従って、駆動時
に軸に加わる大きな慣性トルクや外乱の影響を考慮する
と駆動軸を大きくせざるを得ない。
When the movable mechanism as shown in FIG. 6 is applied to a larger deployable structure, the inertia of the deployable structure increases as the size increases. Therefore, the drive shaft must be enlarged in consideration of the influence of a large inertia torque and a disturbance applied to the shaft during driving.

【0007】従来の支持構造物においては、展開型構造
物の位置精度は、支持構造物を介して取り付けられる展
開型構造物の取り付け位置の誤差や、支持構造物の展開
再現精度に依存する。また、構造物が大型化し柔軟な構
造特性を持つような場合、展開型構造物の形状変形によ
って展開型構造物の位置精度が劣化し、結果として鏡面
の場合にはアンテナ鏡面の指向方向が人工衛星に対して
ずれるという問題があった。
In the conventional support structure, the positional accuracy of the deployable structure depends on the mounting position error of the deployable structure attached via the support structure and the deployment reproduction accuracy of the support structure. In addition, when the structure is large and has flexible structural characteristics, the positional accuracy of the deployable structure is degraded due to the deformation of the deployable structure. As a result, in the case of a mirror surface, the directivity of the antenna mirror surface is artificial. There was a problem of deviation from the satellite.

【0008】また、展開型構造物の位置変位に対してア
ンテナ鏡面の指向方向を確保するために、図6に示すよ
うな2軸の可動機構を用いて方向を制御する場合、アン
テナが大型化すると、剛性を保つために駆動機構の軸な
どが大型化するという問題があった。例えば、展開型構
造物の方向を調整するために、図7に示すように2軸回
転駆動機構を介して展開型構造物を支持する場合には、
収納状態では展開型構造物が小さく収納されるため、支
持構造物及び2軸回転駆動機構も展開型構造物とともに
収納されることが要求される。
When the direction is controlled using a two-axis movable mechanism as shown in FIG. 6 in order to secure the directivity of the antenna mirror surface with respect to the displacement of the deployable structure, the antenna becomes large. Then, there is a problem that the shaft of the drive mechanism or the like becomes large in order to maintain rigidity. For example, in order to adjust the direction of the deployable structure and to support the deployable structure via a two-axis rotation drive mechanism as shown in FIG.
Since the deployable structure is stored small in the stored state, it is required that the support structure and the biaxial rotation drive mechanism be stored together with the deployable structure.

【0009】一方、支持構造物については、展開型構造
物の複数箇所の結合部分と結合し、展開状態での剛性を
確保する必要がある。従って、支持構造物を鏡面を形成
する展開型構造物と同様に展開する構成にすることは可
能であるが、図7のように従来技術では軸周りの回転を
制御する2軸回転駆動機構の収納性が悪いため、結果と
してアンテナシステム全体の収納状態における収納効率
が悪くなるという問題があった。
On the other hand, the support structure needs to be connected to a plurality of connection portions of the deployable structure to secure rigidity in the deployed state. Therefore, it is possible to adopt a configuration in which the support structure is deployed in the same manner as the deployment type structure that forms a mirror surface. However, as shown in FIG. 7, in the related art, a two-axis rotation drive mechanism that controls rotation around an axis is used. Since the storage efficiency is poor, there is a problem that the storage efficiency in the storage state of the entire antenna system is deteriorated as a result.

【0010】また、展開状態で展開型構造物を制御する
支持構造物においては展開型構造物が過拘束でない場
合、展開動作のために回転あるいはスライドするジョイ
ント部分にがたが存在すると、がたの範囲で形状が安定
しないという問題があった。本発明は、展開状態では所
定の形状を形成する展開型構造物を所定の基部部材上に
支持する支持構造物において、展開型構造物とともに展
開及び収納を可能にし、展開状態での高い剛性を確保
し、更に基部部材と展開型構造物との相対的な位置の調
整を可能にすることを目的とする。
In a support structure for controlling the deployable structure in the deployed state, if the deployable structure is not over-constrained, there is a backlash in the joint that rotates or slides for the deployment operation. There is a problem that the shape is not stable within the range. The present invention provides a support structure that supports a deployable structure that forms a predetermined shape on a predetermined base member in a deployed state, and enables deployment and storage together with the deployable structure, and increases the rigidity in the deployed state. It is an object of the present invention to secure and further adjust the relative position between the base member and the deployable structure.

【0011】[0011]

【課題を解決するための手段】請求項1は、展開型構造
物とそれを支える基部部材とを接続する支持構造物にお
いて、第1の接続部と第2の接続部とが互いに異なる位
置に形成され所定の駆動手段の駆動により伸縮して前記
第1の接続部と第2の接続部との距離が変化する伸縮支
持部材を少なくとも1つ設け、前記伸縮支持部材の第1
の接続部及び第2の接続部を、それぞれ前記展開型構造
物及び前記基部部材に回転,移動及び弾性変形の少なく
とも1つが可能な連結部材を介して接続したことを特徴
とする。
According to a first aspect of the present invention, in a support structure for connecting a deployable structure and a base member supporting the same, a first connection portion and a second connection portion are located at different positions from each other. At least one telescopic support member, which is formed and expands and contracts by driving of a predetermined driving means to change the distance between the first connecting portion and the second connecting portion, is provided.
Are connected to the deployable structure and the base member, respectively, via a connecting member capable of at least one of rotation, movement, and elastic deformation.

【0012】この発明は、支持構造物を展開構造にする
とともに、展開する支持構造物を構成する少なくとも1
つの支持部材を伸縮支持部材で構成したものである。ま
た、支持構造物の展開状態では伸縮支持部材の部材長さ
に応じて鏡面などの展開型構造物の基部部材に対する位
置や姿勢が一意に決まる静定トラス構造となるように形
成したものである。
According to the present invention, the support structure has a deployed structure, and at least one of the support structures to be deployed is constituted.
One support member is constituted by a telescopic support member. Further, when the support structure is deployed, it is formed to have a statically-determined truss structure in which the position and posture of the deployable structure such as a mirror surface with respect to the base member are uniquely determined according to the length of the telescopic support member. .

【0013】伸縮支持部材の第1の接続部と展開型構造
物との間、並びに伸縮支持部材の第2の接続部と基部部
材との間は回転,移動及び弾性変形の少なくとも1つが
可能な連結部材を介して接続されている。
At least one of rotation, movement and elastic deformation is possible between the first connecting portion of the telescopic support member and the deployable structure, and between the second connection portion of the telescopic support member and the base member. They are connected via a connecting member.

【0014】従って、伸縮支持部材と展開型構造物との
傾き、並びに伸縮支持部材と基部部材との傾きは必要に
応じて変化する。すなわち、伸縮支持部材の伸縮に伴っ
て基部部材に対する展開型構造物の姿勢を変えることが
できる。伸縮支持部材の長さを短縮することにより、支
持構造物を展開型構造物とともにコンパクトに収納でき
る。また、展開型構造物の姿勢調整を伸縮支持部材の伸
縮により行うので、複数の位置で支持構造物と展開型構
造物とを接続できる。従って、展開状態で高い剛性が得
られる。
Therefore, the inclination between the telescopic support member and the deployable structure and the inclination between the telescopic support member and the base member change as required. That is, the posture of the deployable structure with respect to the base member can be changed with the expansion and contraction of the expansion and contraction support member. By shortening the length of the telescopic support member, the support structure can be compactly stored together with the deployable structure. Further, since the posture of the deployable structure is adjusted by the expansion and contraction of the extendable support member, the support structure and the deployable structure can be connected at a plurality of positions. Therefore, high rigidity can be obtained in the deployed state.

【0015】請求項2は、請求項1記載の支持構造物に
おいて、前記連結部材の少なくとも1つに球面ジョイン
トを用いたことを特徴とする。請求項3は、請求項1記
載の支持構造物において、前記連結部材の少なくとも1
つにユニバーサルジョイントを用いたことを特徴とす
る。請求項4は、請求項1記載の支持構造物において、
前記連結部材の少なくとも1つにスライド機構を設けた
ことを特徴とする。
According to a second aspect of the present invention, in the support structure according to the first aspect, a spherical joint is used for at least one of the connecting members. Claim 3 is the support structure according to claim 1, wherein at least one of the connecting members is provided.
One feature is that a universal joint is used. Claim 4 is the support structure according to claim 1,
A slide mechanism is provided on at least one of the connecting members.

【0016】請求項5は、請求項4記載の支持構造物に
おいて、前記スライド機構を備える連結部材に、回転ヒ
ンジを設けたことを特徴とする。請求項6は、請求項1
記載の支持構造物において、前記連結部材の少なくとも
1つに弾性軸受けを設けたことを特徴とする。請求項7
は、請求項1記載の支持構造物において、複数の前記伸
縮支持部材の前記第1の接続部及び第2の接続部の一方
を前記展開型構造物の1箇所に単一の共通連結部材を介
して共通に接続し、前記複数の伸縮支持部材の第1の接
続部及び第2の接続部の他方を独立した複数の連結部材
を介して前記基部部材の互いに異なる位置に接続し、前
記展開型構造物の1箇所に共通に接続された前記複数の
伸縮支持部材の伸縮量を共通にする制御手段を設けたこ
とを特徴とする。
According to a fifth aspect of the present invention, in the supporting structure according to the fourth aspect, a rotating hinge is provided on the connecting member having the slide mechanism. Claim 6 is Claim 1
The support structure according to any one of the preceding claims, wherein at least one of the connecting members is provided with an elastic bearing. Claim 7
The support structure according to claim 1, wherein one of the first connection portion and the second connection portion of the plurality of telescopic support members is provided with a single common connection member at one place of the deployment type structure. And connecting the other of the first connection portion and the second connection portion of the plurality of telescopic support members to different positions of the base member through a plurality of independent connection members, A control means for making the expansion and contraction amounts of the plurality of expansion and contraction support members connected in common to one location of the mold structure common is provided.

【0017】請求項7の発明は、複数の伸縮支持部材を
展開型構造物の1箇所に共通に接続して過拘束な不静定
トラス構造を実現したものである。また、支持構造物に
ひずみが生じないように、展開型構造物の1箇所に共通
に接続された複数の伸縮支持部材の伸縮量が同じになる
ように同期制御するものである。請求項8は、請求項1
記載の支持構造物において、前記展開型構造物及び前記
基部部材の一方に一端近傍が固定され、前記展開型構造
物及び前記基部部材の他方に回転,移動及び弾性変形の
少なくとも1つが可能な連結部材を介して他端近傍が接
続された固定支持部材を設けたことを特徴とする。
According to a seventh aspect of the present invention, a plurality of telescoping support members are commonly connected to a single location of the deployable structure to realize an over-constrained statically indeterminate truss structure. In addition, synchronous control is performed so that the expansion and contraction amounts of a plurality of expansion and contraction support members commonly connected to one location of the deployable structure are the same so that distortion is not generated in the support structure. Claim 8 is Claim 1
3. The supporting structure according to claim 1, wherein one end near one end of the deployable structure and the base member is fixed, and at least one of rotation, movement, and elastic deformation is connected to the other of the deployable structure and the base member. A fixed support member connected near the other end via a member is provided.

【0018】請求項8では、固定支持部材はその一端近
傍が展開型構造物又は前記基部部材に固定されているの
で、その位置は変化しない。従って、展開型構造物の基
部部材に対する姿勢は固定支持部材との接続位置を基準
として変化する。
In the eighth aspect, the position of the fixed support member does not change because the vicinity of one end thereof is fixed to the deployable structure or the base member. Therefore, the attitude of the deployable structure with respect to the base member changes based on the connection position with the fixed support member.

【0019】[0019]

【発明の実施の形態】(第1の実施の形態)この形態の
支持構造物とその周辺の構成要素を図1に示す。この形
態は、請求項1〜請求項3及び請求項8に対応する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a supporting structure of this embodiment and its peripheral components. This embodiment corresponds to claims 1 to 3 and claim 8.

【0020】この形態では、請求項1の展開型構造物及
び基部部材はそれぞれ展開型構造物10及び基部部材4
1に対応し、伸縮支持部材は伸縮支持部材22〜24に
対応し、連結部材は球面ジョイント32及びユニバーサ
ルジョイント33に対応する。また、請求項8の固定支
持部材は固定支持部材21に対応する。図1を参照する
と、この形態の支持構造物においては、長尺の固定支持
部材21と3本の伸縮支持部材22,23及び24と
で、基部部材41と展開型構造物10とが接続されてい
る。
In this embodiment, the deployable structure and the base member according to claim 1 are the deployable structure 10 and the base member 4 respectively.
1, the telescopic support member corresponds to the telescopic support members 22 to 24, and the connecting member corresponds to the spherical joint 32 and the universal joint 33. The fixed support member of claim 8 corresponds to the fixed support member 21. Referring to FIG. 1, in the support structure of this embodiment, a base member 41 and a deployable structure 10 are connected by a long fixed support member 21 and three telescopic support members 22, 23, and 24. ing.

【0021】なお、展開型構造物10は図5に示す展開
型構造物と同じものであり、図1には展開型構造物10
の一部分だけが示されている。図5と同様に、展開型構
造物10はその周辺部が支持構造物を介して基部部材4
1と接続されている。基部部材41は、ブーム42を介
して図示しない人工衛星と接続される。
The exploded structure 10 is the same as the exploded structure shown in FIG. 5, and FIG.
Is shown only. As in FIG. 5, the deployable structure 10 has a peripheral portion around the base member 4 via a support structure.
1 is connected. The base member 41 is connected to an artificial satellite (not shown) via a boom 42.

【0022】3本の伸縮支持部材22,23及び24
は、各々が例えば電気モータとボールねじとで構成され
る駆動機構31を内蔵している。駆動機構31を駆動す
ると、各伸縮支持部材22,23及び24が伸縮して各
々の長手方向の長さが変わる。各伸縮支持部材22,2
3及び24の一端には球面ジョイント32が接続され、
他端にはユニバーサルジョイント33が接続されてい
る。伸縮支持部材22,23及び24の一端は、球面ジ
ョイント32を介して、それぞれ展開型構造物10の接
続点12,13及び14と接続されている。
The three telescopic support members 22, 23 and 24
Has a built-in drive mechanism 31, which is composed of, for example, an electric motor and a ball screw. When the drive mechanism 31 is driven, each of the telescopic support members 22, 23, and 24 expands and contracts, and their lengths in the longitudinal direction change. Each telescopic support member 22, 2
A spherical joint 32 is connected to one end of each of 3 and 24,
A universal joint 33 is connected to the other end. One ends of the elastic supporting members 22, 23 and 24 are connected to connection points 12, 13 and 14 of the deployable structure 10 via spherical joints 32, respectively.

【0023】また、伸縮支持部材22,23及び24の
他端は、ユニバーサルジョイント33を介して、基部部
材41上の互いに異なる位置に接続されている。固定支
持部材21の一端にも、球面ジョイント34が接続され
ている。固定支持部材21の一端は、球面ジョイント3
4を介して展開型構造物10の接続点11と接続されて
いる。また、固定支持部材21の他端は基部部材41に
固定されている。
The other ends of the telescopic support members 22, 23 and 24 are connected to different positions on the base member 41 via a universal joint 33. A spherical joint 34 is also connected to one end of the fixed support member 21. One end of the fixed support member 21 is
4 and connected to a connection point 11 of the deployable structure 10. The other end of the fixed support member 21 is fixed to the base member 41.

【0024】固定支持部材21の一端に接続された球面
ジョイント34と基部部材41との相対位置が一定であ
るのに対し、伸縮支持部材22,23及び24の伸縮に
伴って、それらと接続された展開型構造物10の接続点
12,13及び14と基部部材41との相対位置は変化
する。すなわち、展開型構造物10は基部部材41に対
して、球面ジョイント34の中心をピボット点として、
姿勢を変えることができる。
While the relative position between the spherical joint 34 connected to one end of the fixed support member 21 and the base member 41 is constant, the spherical joint 34 is connected to the base member 41 as the telescopic support members 22, 23 and 24 expand and contract. The relative positions of the connection points 12, 13, and 14 of the expanded structure 10 and the base member 41 change. That is, the deployable structure 10 is configured such that, with respect to the base member 41, the center of the spherical joint 34 is a pivot point.
You can change your posture.

【0025】この例では、互いに独立した方向に延びた
3本の伸縮支持部材22,23及び24で球面ジョイン
ト32を介して展開型構造物10を支持することによ
り、展開型構造物10は、球面ジョイント34による結
合点まわりの姿勢変化に関し、3自由度の拘束を与えら
れている。従って、3本の伸縮支持部材22,23及び
24の長さに応じて、基部部材41に対する展開型構造
物10の相対位置及び姿勢が一意に決定される。しか
も、伸縮支持部材22,23及び24の各々の部材長を
支持構造物に余分な負荷を与えることなく独立に決定で
きる構造になっている。
In this example, the expandable structure 10 is supported by the three expandable support members 22, 23 and 24 extending in directions independent of each other via the spherical joint 32. The three-degree-of-freedom constraint is imposed on the posture change around the connection point by the spherical joint 34. Therefore, the relative position and posture of the deployable structure 10 with respect to the base member 41 are uniquely determined according to the lengths of the three elastic support members 22, 23 and 24. In addition, the length of each of the telescopic support members 22, 23 and 24 can be determined independently without applying an extra load to the support structure.

【0026】すなわち、展開状態で伸縮支持部材22,
23及び24の部材長さを制御することにより、展開型
構造物10の姿勢制御が可能である。一方、伸縮支持部
材22,23及び24は展開型構造物10に追随して、
収納あるいは展開する支持構造物の部材の一部であるた
め、収納時には展開型構造物とともに収納される。な
お、この例では連結部材として球面ジョイント32及び
ユニバーサルジョイント33を用いたが、他の種類の連
結部材を用いても良い。また、球面ジョイント32の代
わりにユニバーサルジョイント33を用い、ユニバーサ
ルジョイント33の代わりに球面ジョイント32を用い
ても良い。
That is, in the unfolded state, the telescopic support members 22,
By controlling the lengths of the members 23 and 24, the attitude of the deployable structure 10 can be controlled. On the other hand, the telescopic support members 22, 23 and 24 follow the deployable structure 10,
Since it is a part of the member of the support structure that is stored or deployed, it is stored together with the deployable structure during storage. In this example, the spherical joint 32 and the universal joint 33 are used as connecting members, but other types of connecting members may be used. Further, a universal joint 33 may be used instead of the spherical joint 32, and the spherical joint 32 may be used instead of the universal joint 33.

【0027】(第2の実施の形態)この形態の支持構造
物とその周辺の構成要素を図2に示す。この形態は、請
求項4及び請求項5に対応する。この形態は、前記第1
の実施の形態の変形例であり、固定支持部材21及び伸
縮支持部材22,23,24と展開型構造物10との接
続に用いる連結部材が変更された以外は第1の実施の形
態と同一である。
(Second Embodiment) FIG. 2 shows a support structure of this embodiment and its peripheral components. This embodiment corresponds to claims 4 and 5. This form is similar to the first
This is a modification of the first embodiment, and is the same as the first embodiment except that a connecting member used to connect the fixed support member 21 and the elastic support members 22, 23, and 24 to the deployable structure 10 is changed. It is.

【0028】図2に示すように、この形態では固定支持
部材21及び伸縮支持部材22,23,24の一端に、
回転ヒンジ71及びスライド機構72で構成される連結
部材が接続してある。各々のスライド機構72は、展開
型構造物10を構成する各部材に沿って図2中に示す矢
印の方向に摺動自在になっている。スライド機構72は
回転ヒンジ71を介して固定支持部材21及び伸縮支持
部材22,23,24と接続されている。
As shown in FIG. 2, in this embodiment, one end of the fixed support member 21 and one end of the telescopic support members 22, 23, 24
A connecting member composed of a rotating hinge 71 and a slide mechanism 72 is connected. Each slide mechanism 72 is slidable in the direction of the arrow shown in FIG. 2 along each member constituting the deployable structure 10. The slide mechanism 72 is connected to the fixed support member 21 and the telescopic support members 22, 23, 24 via the rotating hinge 71.

【0029】従って、展開型構造物10と固定支持部材
21,伸縮支持部材22,23,24との接続位置は、
展開型構造物10の展開/収納動作に追随して移動可能
である。
Therefore, the connection position between the deployable structure 10 and the fixed support member 21, the telescopic support members 22, 23, 24
The deployable structure 10 can be moved in accordance with the deployment / storage operation.

【0030】(第3の実施の形態)図示しないが、この
形態は前記第1の実施の形態の変形例であり、固定支持
部材21及び伸縮支持部材22,23,24と展開型構
造物10との接続に用いる連結部材が変更された以外は
第1の実施の形態と同一である。この形態は、請求項6
に対応する。
(Third Embodiment) Although not shown, this embodiment is a modification of the first embodiment, and includes the fixed support member 21, the telescopic support members 22, 23, and 24 and the deployable structure 10. The second embodiment is the same as the first embodiment except that a connecting member used for connection with the first embodiment is changed. This form is described in claim 6
Corresponding to

【0031】前記第1の実施の形態において、球面ジョ
イント32,ユニバーサルジョイント33などの結合部
にがた(遊び)が存在する場合、伸縮支持部材22,2
3,24の駆動順や重力に対する駆動方向の違いによっ
て、がたの量だけ伸縮精度が劣化する。そこで、この形
態では、図1における球面ジョイント32,34及びユ
ニバーサルジョイント33の結合部分において、球面ジ
ョイント32,34及びユニバーサルジョイント33の
代わりに弾性を有する弾性軸受けを介して結合する。
In the first embodiment, when there is play (play) at the joints such as the spherical joint 32 and the universal joint 33, the telescopic support members 22, 2 are provided.
The expansion / contraction accuracy is reduced by the amount of play due to the difference in the driving order of 3, 24 or the driving direction with respect to gravity. Therefore, in this embodiment, instead of the spherical joints 32, 34 and the universal joint 33, they are connected via elastic bearings at the connecting portions of the spherical joints 32, 34 and the universal joint 33 in FIG.

【0032】この形態では、伸縮支持部材22,23,
24の部材長さを変化させることにより、結合部は回転
しようとする力を受ける。そして、前記弾性軸受けが伸
縮支持部材22,23,24に比べてはるかに剛性が小
さければ、弾性納受けが変形することで、結合部で必要
となる回転変位が生じる。弾性納受けの弾性変形により
回転する場合にはがたの影響が生じないため、展開型構
造物10の姿勢を調整する場合に、伸縮支持部材22,
23,24の駆動履歴や駆動方向の影響を受けない。
In this embodiment, the telescopic support members 22, 23,
By changing the length of the member 24, the joint receives the force to rotate. If the elastic bearing has much lower rigidity than the elastic supporting members 22, 23, 24, the elastic receiving member is deformed, so that a necessary rotational displacement occurs at the joint. When rotating due to the elastic deformation of the elastic receiving member, no backlash is generated.
23 and 24 are not affected by the driving history or driving direction.

【0033】(第4の実施の形態)この形態の支持構造
物とその周辺の構成要素を図3及び図4に示す。この形
態は、請求項7に対応する。図3はこの形態の支持構造
物とその周辺の構成要素を示す斜視図である。図4はこ
の形態の支持構造物とそれを制御する電気系の要素を示
す斜視図である。なお、図3及び図4において展開型構
造物10の図示は省略されている。
(Fourth Embodiment) FIGS. 3 and 4 show a supporting structure of this embodiment and its peripheral components. This embodiment corresponds to claim 7. FIG. 3 is a perspective view showing the support structure of this embodiment and components around the support structure. FIG. 4 is a perspective view showing the support structure of this embodiment and elements of an electric system for controlling the support structure. The illustration of the deployable structure 10 is omitted in FIGS. 3 and 4.

【0034】この形態では、請求項7の共通連結部材は
球面ジョイント55に対応し、複数の連結部材はユニバ
ーサルジョイント53,54に対応し、制御手段は制御
回路61に対応する。この形態は、前記第1の実施の形
態の変形例である。第1の実施の形態と異なる部分につ
いて、以下に説明する。
In this embodiment, the common connecting member of claim 7 corresponds to the spherical joint 55, the plurality of connecting members correspond to the universal joints 53 and 54, and the control means corresponds to the control circuit 61. This embodiment is a modification of the first embodiment. The differences from the first embodiment will be described below.

【0035】図3に示す支持構造物においては、図1の
伸縮支持部材22の代わりに2本の伸縮支持部材51及
び52が備わっている。伸縮支持部材51及び52は、
伸縮支持部材22と同様の構成になっている。但し、伸
縮支持部材51及び52は、それらの一端が単一の球面
ジョイント55に共通に接続されている。また、伸縮支
持部材51及び52の他端には、それぞれユニバーサル
ジョイント54及び53が接続されている。
In the support structure shown in FIG. 3, two telescopic support members 51 and 52 are provided instead of the telescopic support member 22 of FIG. The telescopic support members 51 and 52 are
It has the same configuration as the telescopic support member 22. However, the elastic support members 51 and 52 have one ends thereof commonly connected to a single spherical joint 55. Universal joints 54 and 53 are connected to the other ends of the telescopic support members 51 and 52, respectively.

【0036】従って、2本の伸縮支持部材51及び52
は、一端が球面ジョイント55を介して展開型構造物1
0の1箇所と接続されている。伸縮支持部材51及び5
2の他端は、それぞれユニバーサルジョイント54及び
53を介して、基部部材41上の互いに異なる位置と接
続されている。この形態の支持構造物においては、基部
部材41と展開型構造物10とを結ぶ伸縮支持部材5
1,52の両端間の距離のみを拘束してあるので、支持
構造物の3自由度のうち1自由度だけが過拘束な構造に
なっている。
Therefore, the two telescopic support members 51 and 52
Is a deployable structure 1 at one end via a spherical joint 55.
0. Telescopic support members 51 and 5
The other end of 2 is connected to different positions on the base member 41 via universal joints 54 and 53, respectively. In the support structure of this embodiment, the telescopic support member 5 that connects the base member 41 and the deployable structure 10 is used.
Since only the distance between both ends of the support structure 1 and 52 is restricted, only one of the three degrees of freedom of the support structure is over-restricted.

【0037】この支持構造物には、展開型構造物10の
位置及び姿勢を制御するために図4に示すような制御要
素が設けてある。図4を参照すると、伸縮支持部材5
1,52,23及び24には、それぞれエンコーダ6
3,64,65及び62が設置されている。エンコーダ
63,64,65及び62は、それぞれ伸縮支持部材5
1,52,23及び24に駆動要素として備わった電気
モータの回転数を計測する。伸縮支持部材51,52,
23及び24は、制御ケーブル66を介して制御回路6
1と接続されている。
The support structure is provided with control elements as shown in FIG. 4 for controlling the position and posture of the deployable structure 10. Referring to FIG.
1, 52, 23 and 24 each have an encoder 6
3, 64, 65 and 62 are provided. The encoders 63, 64, 65 and 62 are respectively
The number of revolutions of the electric motor provided as a driving element in 1, 52, 23 and 24 is measured. Telescopic support members 51, 52,
23 and 24 are connected to the control circuit 6 via the control cable 66.
1 is connected.

【0038】制御回路61は、制御ケーブル66を介し
てエンコーダ63,64,65及び62の出力信号を入
力する。伸縮支持部材51,52,23及び24を駆動
する電気モータには、制御ケーブル66を介して制御回
路61から駆動電力が供給される。従って、制御回路6
1は各伸縮支持部材51,52,23及び24の長さの
変化量を計測しながら電気モータを駆動できる。
The control circuit 61 inputs the output signals of the encoders 63, 64, 65 and 62 via the control cable 66. The electric motor that drives the telescopic support members 51, 52, 23, and 24 is supplied with drive power from a control circuit 61 via a control cable 66. Therefore, the control circuit 6
1 can drive the electric motor while measuring the amount of change in the length of each of the telescopic support members 51, 52, 23 and 24.

【0039】この形態においては、制御回路61は1つ
の球面ジョイント55に共通に接続された2本の伸縮支
持部材51,52の動作が一定の関係を満たすように制
御する。具体的には、制御回路61は伸縮支持部材51
及び52に設置された2つのエンコーダ63及び64が
検出した駆動量が常に等しくなるように伸縮支持部材5
1及び52の電気モータを駆動する。
In this embodiment, the control circuit 61 controls the operations of the two telescopic support members 51 and 52 commonly connected to one spherical joint 55 so as to satisfy a certain relationship. Specifically, the control circuit 61 controls the telescopic support member 51.
And the telescopic support member 5 so that the drive amounts detected by the two encoders 63 and 64 installed in the
The electric motors 1 and 52 are driven.

【0040】従って、伸縮支持部材51及び52の伸縮
量が常に等しくなるように制御される。このように制御
するので、図3及び図4に示す支持構造物において独立
に駆動できる自由度は、図1の支持構造物と同じにな
る。2本の伸縮支持部材51及び52の伸縮量を等しく
する以外の駆動条件については、第1の実施の形態と変
わらない。従って、伸縮支持部材51,23及び24の
各々の部材長の調整により、基部部材41に対する展開
型構造物10の姿勢を制御可能である。
Accordingly, the expansion and contraction amount of the expansion and contraction support members 51 and 52 is controlled to be always equal. Due to such control, the degrees of freedom of independently driving the support structures shown in FIGS. 3 and 4 are the same as those of the support structure of FIG. The drive conditions other than equalizing the amount of expansion and contraction of the two expandable support members 51 and 52 are the same as those in the first embodiment. Therefore, the posture of the deployable structure 10 with respect to the base member 41 can be controlled by adjusting the length of each of the telescopic support members 51, 23, and 24.

【0041】一方、個々の伸縮支持部材51及び52を
独立に駆動しようとすると、互いに拘束しあい、独立に
は長さを変えることができない。そのため、外力など部
材長がなんらかの影響で変化しようとしても、容易には
変化しない。なお、図3及び図4においては2本の伸縮
支持部材51,52を共通の球面ジョイント55を介し
て展開型構造物10の一箇所と接続する場合を示した
が、1つの接続部に3本以上の伸縮支持部材を接続して
も良い。その場合でも、共通に接続される複数の伸縮支
持部材の伸縮量の関係を一定に保つことで、同様に1つ
の伸縮支持部材と等価な駆動自由度を持つ構成になる。
On the other hand, if the individual expansion and contraction support members 51 and 52 are to be driven independently, they are mutually restrained and the length cannot be changed independently. Therefore, even if the length of the member is changed due to some influence such as an external force, the length is not easily changed. Although FIGS. 3 and 4 show the case where the two elastic supporting members 51 and 52 are connected to one place of the deployable structure 10 via a common spherical joint 55, one connecting portion has three connecting members. More than two telescopic support members may be connected. Even in such a case, by maintaining a constant relationship between the amount of expansion and contraction of the plurality of commonly-supported telescopic support members, a configuration having a driving degree of freedom equivalent to one telescopic support member is obtained.

【0042】複数の伸縮支持部材51,52を1箇所の
接続部と共通に接続することにより、個々の接続部の連
結部材のがたつきや外力により生じる部材の変形による
姿勢精度の劣化が軽減される。なお、この形態では、1
箇所の接続部に複数の伸縮支持部材51,52を共通に
接続する場合を示したが、同様に複数箇所の接続部のそ
れぞれについて、複数の伸縮支持部材51,52を共通
に接続しても良い。
By connecting the plurality of telescopic support members 51 and 52 in common with one connection part, the deterioration of the posture accuracy due to the backlash of the connection member of each connection part and the deformation of the member caused by an external force is reduced. Is done. In this embodiment, 1
Although the case where the plurality of elastic supporting members 51 and 52 are commonly connected to the connecting portions at the locations has been described, similarly, the plurality of elastic supporting members 51 and 52 may be commonly connected to each of the connecting portions at the multiple locations. good.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば支
持構造物も展開及び収納できるので、収納性が向上す
る。しかも、伸縮支持部材の部材長の制御により支持姿
勢の制御が可能である。また、連結部材に弾性軸受けを
設ける場合には、結合部のがたによる影響が軽減され、
高精度な姿勢制御が可能になる。
As described above, according to the present invention, the support structure can be deployed and stored, so that the storability is improved. In addition, the support posture can be controlled by controlling the length of the telescopic support member. In addition, when an elastic bearing is provided on the connecting member, the influence of the play of the connecting portion is reduced,
Highly accurate attitude control becomes possible.

【0044】更に、伸縮支持部材を過拘束にする場合に
は、がたなどによって伸縮支持部材に予期しない部材長
変化が生じる場合でも姿勢変化は防止される。
Further, when the telescopic support member is over-constrained, the posture change is prevented even when an unexpected change in the length of the telescopic support member occurs due to backlash or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態の支持構造物とその周辺の構
成要素を示す斜視図である。
FIG. 1 is a perspective view illustrating a support structure according to a first embodiment and components around the support structure.

【図2】第2の実施の形態の支持構造物とその周辺の構
成要素を示す斜視図である。
FIG. 2 is a perspective view illustrating a support structure according to a second embodiment and components around the support structure.

【図3】第4の実施の形態の支持構造物とその周辺の構
成要素を示す斜視図である。
FIG. 3 is a perspective view illustrating a support structure according to a fourth embodiment and components around the support structure.

【図4】第4の実施の形態の支持構造物とそれを制御す
る電気系の要素を示す斜視図である。
FIG. 4 is a perspective view showing a support structure according to a fourth embodiment and electric components for controlling the support structure.

【図5】展開型構造物及びそれを支持する支持構造物の
従来例を示す斜視図である。
FIG. 5 is a perspective view showing a conventional example of a deployable structure and a support structure for supporting the same.

【図6】可動機構を備える支持構造物の従来例を示す斜
視図である。
FIG. 6 is a perspective view showing a conventional example of a support structure having a movable mechanism.

【図7】2軸回転駆動機構を備える支持構造物の従来例
を示す斜視図である。
FIG. 7 is a perspective view showing a conventional example of a support structure provided with a two-axis rotation drive mechanism.

【符号の説明】[Explanation of symbols]

10 展開型構造物 11,12,13,14 接続点 21 固定支持部材 22,23,24 伸縮支持部材 31 駆動機構 32,34 球面ジョイント 33 ユニバーサルジョイント 41 基部部材 42 ブーム 51,52 伸縮支持部材 53,54 ユニバーサルジョイント 55 球面ジョイント 61 制御回路 62,63,64,65 エンコーダ 66 制御ケーブル 71 回転ヒンジ 72 スライド機構 REFERENCE SIGNS LIST 10 deployment type structure 11, 12, 13, 14 connection point 21 fixed support member 22, 23, 24 telescopic support member 31 drive mechanism 32, 34 spherical joint 33 universal joint 41 base member 42 boom 51, 52 telescopic support member 53, 54 Universal Joint 55 Spherical Joint 61 Control Circuit 62, 63, 64, 65 Encoder 66 Control Cable 71 Rotary Hinge 72 Slide Mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01Q 15/14 H01Q 15/14 A (72)発明者 中川 潤 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 大和 光輝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5J020 AA03 BA07 BC02 CA01 CA02 DA00 5J046 AA00 AA10 AB00 DA02 KA03 5J047 AA00 AA10 AB00 BG04 BG08 BG10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01Q 15/14 H01Q 15/14 A (72) Inventor Jun Nakagawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. AA10 AB00 BG04 BG08 BG10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 展開型構造物とそれを支える基部部材と
を接続する支持構造物において、 第1の接続部と第2の接続部とが互いに異なる位置に形
成され、所定の駆動手段の駆動により伸縮して前記第1
の接続部と第2の接続部との距離が変化する伸縮支持部
材を少なくとも1つ設け、 前記伸縮支持部材の第1の接続部及び第2の接続部を、
それぞれ前記展開型構造物及び前記基部部材に回転,移
動及び弾性変形の少なくとも1つが可能な連結部材を介
して接続したことを特徴とする支持構造物。
1. A supporting structure for connecting a deployable structure and a base member supporting the same, wherein a first connecting portion and a second connecting portion are formed at different positions from each other, and a predetermined driving means is driven. Expand and contract by the first
At least one telescopic support member in which the distance between the connecting portion and the second connecting portion changes is provided, and a first connecting portion and a second connecting portion of the telescopic supporting member are provided.
A support structure, wherein the support structure is connected to the deployable structure and the base member via a connection member capable of at least one of rotation, movement, and elastic deformation.
【請求項2】 請求項1記載の支持構造物において、前
記連結部材の少なくとも1つに球面ジョイントを用いた
ことを特徴とする支持構造物。
2. The support structure according to claim 1, wherein a spherical joint is used for at least one of said connecting members.
【請求項3】 請求項1記載の支持構造物において、前
記連結部材の少なくとも1つにユニバーサルジョイント
を用いたことを特徴とする支持構造物。
3. The support structure according to claim 1, wherein a universal joint is used for at least one of the connecting members.
【請求項4】 請求項1記載の支持構造物において、前
記連結部材の少なくとも1つにスライド機構を設けたこ
とを特徴とする支持構造物。
4. The support structure according to claim 1, wherein a slide mechanism is provided on at least one of said connecting members.
【請求項5】 請求項4記載の支持構造物において、前
記スライド機構を備える連結部材に、回転ヒンジを設け
たことを特徴とする支持構造物。
5. The support structure according to claim 4, wherein a rotation hinge is provided on the connecting member provided with the slide mechanism.
【請求項6】 請求項1記載の支持構造物において、前
記連結部材の少なくとも1つに弾性軸受けを設けたこと
を特徴とする支持構造物。
6. The support structure according to claim 1, wherein at least one of said connecting members is provided with an elastic bearing.
【請求項7】 請求項1記載の支持構造物において、複
数の前記伸縮支持部材の前記第1の接続部及び第2の接
続部の一方を前記展開型構造物の1箇所に単一の共通連
結部材を介して共通に接続し、前記複数の伸縮支持部材
の第1の接続部及び第2の接続部の他方を独立した複数
の連結部材を介して前記基部部材の互いに異なる位置に
接続し、前記展開型構造物の1箇所に共通に接続された
前記複数の伸縮支持部材の伸縮量を共通にする制御手段
を設けたことを特徴とする支持構造物。
7. The support structure according to claim 1, wherein one of the first connection portion and the second connection portion of the plurality of telescopic support members is a single common member at one place of the deployable structure. A common connection is made via a connecting member, and the other of the first connecting portion and the second connecting portion of the plurality of telescopic supporting members is connected to different positions of the base member via a plurality of independent connecting members. A support structure provided with control means for making the expansion / contraction amounts of the plurality of expansion / contraction support members commonly connected to one position of the deployable structure common.
【請求項8】 請求項1記載の支持構造物において、前
記展開型構造物及び前記基部部材の一方に一端近傍が固
定され、前記展開型構造物及び前記基部部材の他方に回
転,移動及び弾性変形の少なくとも1つが可能な連結部
材を介して他端近傍が接続された固定支持部材を設けた
ことを特徴とする支持構造物。
8. The support structure according to claim 1, wherein one end near one end of the deployable structure and the base member is fixed, and rotation, movement, and elasticity are performed on the other of the deployable structure and the base member. A support structure, comprising: a fixed support member connected near the other end via a connection member capable of at least one deformation.
JP10195795A 1998-07-10 1998-07-10 Support structure Pending JP2000027303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195795A JP2000027303A (en) 1998-07-10 1998-07-10 Support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195795A JP2000027303A (en) 1998-07-10 1998-07-10 Support structure

Publications (1)

Publication Number Publication Date
JP2000027303A true JP2000027303A (en) 2000-01-25

Family

ID=16347109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195795A Pending JP2000027303A (en) 1998-07-10 1998-07-10 Support structure

Country Status (1)

Country Link
JP (1) JP2000027303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466341A (en) * 2014-10-13 2015-03-25 浙江理工大学 Spherical antenna supporting mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466341A (en) * 2014-10-13 2015-03-25 浙江理工大学 Spherical antenna supporting mechanism

Similar Documents

Publication Publication Date Title
US6402329B1 (en) Assembly for mounting and correcting the position of an element, such as a mirror, of a space telescope
JP6044000B2 (en) Small flexible cardan joints and spacecraft with such cardan joints
WO2005027186A2 (en) Expansion-type reflection mirror
US9172128B2 (en) Antenna pointing system
KR20170037551A (en) Deployable assembly
JP2000338430A (en) Mirror tilting mechanism
JP2000027303A (en) Support structure
JP3422404B2 (en) Spherical approximation frame structure
JP4375400B2 (en) Reflector support mechanism
JP2002043820A (en) Antenna- or radar-mounted driving unit
JP2618911B2 (en) Truss structure
JP2000332512A (en) Support structure
JP6068129B2 (en) Antenna pointing system
EP3869611B1 (en) Articulated mechanism and articulated aiming system comprising the mechanism
WO2021117647A1 (en) Parallel link device
JP2609673B2 (en) Deployable antenna structure
JP2538619B2 (en) Deployment Trust
CN112373736A (en) Satellite device for omnidirectional observation
JP3195055B2 (en) Deployable truss structure
JPH08288732A (en) Device for adjusting pointing direction of antenna
JPH087685Y2 (en) Antenna mount
JP2002223110A (en) Multi-beam antenna system
JPH11177316A (en) Expandable antenna device
WO2024034274A1 (en) Auxiliary support device and test device provided with same
JPH0537221A (en) Antenna driving device