JP2000026940A - HIGH Cr FERRITIC HEAT RESISTANT STEEL - Google Patents

HIGH Cr FERRITIC HEAT RESISTANT STEEL

Info

Publication number
JP2000026940A
JP2000026940A JP10193084A JP19308498A JP2000026940A JP 2000026940 A JP2000026940 A JP 2000026940A JP 10193084 A JP10193084 A JP 10193084A JP 19308498 A JP19308498 A JP 19308498A JP 2000026940 A JP2000026940 A JP 2000026940A
Authority
JP
Japan
Prior art keywords
steel
toughness
creep strength
resistant steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10193084A
Other languages
Japanese (ja)
Other versions
JP3982069B2 (en
Inventor
Yoshiatsu Sawaragi
義淳 椹木
Mitsuyuki Senba
潤之 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19308498A priority Critical patent/JP3982069B2/en
Priority to PCT/JP1999/003231 priority patent/WO2000003050A1/en
Priority to EP99925355A priority patent/EP1103626B1/en
Priority to DE69904336T priority patent/DE69904336T2/en
Publication of JP2000026940A publication Critical patent/JP2000026940A/en
Priority to US09/754,050 priority patent/US20020020473A1/en
Application granted granted Critical
Publication of JP3982069B2 publication Critical patent/JP3982069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow steel to withstand use under high temp. steam by allowing it to have a specified compsn. contg. C, Mn, P, S, Cr, W, Co, V, Ta, Nb, Nd, N, B, A1, M, Mo, Si, Ca, La, Ce, Y, Hf, and the balance Fe with inevitable impurities. SOLUTION: This steel contains, by mass, 0.02 to 0.15% C, 0.05 to 1.5% Mn, <=0.03% P, <=0.015% S, 8 to 13% Cr, 1.5 to 4% W, 2 to 6% Co, 0.1 to 0.5% V, 0.01 to 0.15% Ta, 0.01 to 0.15% Nb, 0.001 to 0.2% Nd, <0.02% N, 0.0005 to 0.02% B, 0.001 to 0.05% Al, 0 to 1% Mo, 0 to 1% Si, 0 to 0.02% Ca, 0 to 0.2% La, 0 to 0.2% Ce, 0 to 0.2% Y and 0 to 0.2% Hf. In this way, it can withstand use under high temp. steam. In the case great importance is attached to toughness, the contents of Nd and N are allowed to satisfy Nd(%)<=5×N(%)+0.10(%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高Crフェライト
系耐熱鋼に係わり、さらに詳しくはボイラ、原子力発電
設備および化学工業設備などの高温、高圧環境下で使用
される熱交換用鋼管、圧力容器用鋼板、タービン用材料
等に適した高温長時間クリープ強度と靭性に優れた高C
rフェライト系耐熱鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high Cr ferritic heat-resistant steel, and more particularly, to a heat exchange steel pipe and a pressure vessel used in a high temperature and high pressure environment such as a boiler, a nuclear power plant and a chemical industrial facility. C with excellent high-temperature long-time creep strength and toughness suitable for steel sheets and turbine materials
Related to r-ferritic heat-resistant steel.

【0002】[0002]

【従来の技術】ボイラ、原子力発電設備および化学工業
設備等の高温、高圧環境で使用される耐熱鋼には、一般
に高温における強度、耐食性、耐酸化性および靭性等が
要求される。
2. Description of the Related Art Heat-resistant steels used in high-temperature, high-pressure environments such as boilers, nuclear power plants, and chemical industrial facilities generally require high-temperature strength, corrosion resistance, oxidation resistance, toughness, and the like.

【0003】これらの用途には、従来JISのSUS3
21H、SUS347H鋼などのオーステナイト系ステ
ンレス鋼、2・1/4Cr−1Mo鋼などの低合金鋼、
さらには9〜12Cr系の高Crフェライト鋼が用いら
れてきた。なかでも、高Crフェライト鋼は500℃〜
650℃の温度において、強度および耐食性の点で低合
金鋼よりも優れている。また、高Crフェライト鋼は、
オーステナイト系ステンレス鋼に比べて安価であるこ
と、熱伝導率が高く、かつ熱膨張率が小さいことから耐
熱疲労特性やスケール剥離が起こりにくいこと、さらに
は応力腐食割れを起こさないことなど数々の利点があ
る。
[0003] For these uses, JIS SUS3
Austenitic stainless steel such as 21H, SUS347H steel, low alloy steel such as 2.1 / 4Cr-1Mo steel,
Further, high Cr ferritic steels of 9-12Cr type have been used. Among them, high Cr ferritic steel is 500 ℃ ~
At a temperature of 650 ° C., it is superior to low alloy steel in strength and corrosion resistance. Also, high Cr ferritic steel is
Numerous advantages such as being less expensive than austenitic stainless steel, having high thermal conductivity and low thermal expansion coefficient, making it less likely to have thermal fatigue resistance and scale peeling, and not causing stress corrosion cracking There is.

【0004】近年、火力発電において熱効率の一層の向
上を図るため、ボイラーの蒸気条件の高温高圧化が進め
られている。すなわち、超臨界圧条件である538℃、
246気圧から、将来は625℃で300気圧というよ
うな超々臨界圧条件での操業が計画されている。このよ
うな蒸気条件の変化に伴い、ボイラ用鋼管等に対する要
求性能は、ますます過酷化してきている。そのため、従
来の高Crフェライト鋼では、上記のような高温におけ
る長時間クリープ強度に対して十分に応えることができ
ない状況に至っている。
[0004] In recent years, in order to further improve thermal efficiency in thermal power generation, boiler steam conditions have been increased to high temperatures and high pressures. That is, the supercritical pressure condition of 538 ° C.
From 246 atm, operation under ultra-supercritical conditions such as 625 ° C. and 300 atm in the future is planned. With such changes in steam conditions, the required performance of steel pipes for boilers and the like has become increasingly severe. Therefore, the conventional high Cr ferritic steel has not been able to sufficiently respond to the long-term creep strength at high temperatures as described above.

【0005】オーステナイト系ステンレス鋼は上記のよ
うな過酷な条件に応えることのできる性能を備えている
が高価である。そのため、オーステナイト系ステンレス
鋼に比べて安価な高Crフェライト鋼を使用すべく、そ
の特性改善の試みがなされている。
[0005] Austenitic stainless steel is capable of meeting the above severe conditions, but is expensive. Therefore, attempts have been made to improve the properties of high-Cr ferritic steels, which are less expensive than austenitic stainless steels.

【0006】特開平8−85850号、特開平9−71
845号、特開平9−71846号各公報には、超超臨
界圧条件用鋼として溶接継手部の高温長時間クリープ特
性改善の点からNdを添加した耐熱鋼が開示されてい
る。
JP-A-8-85850, JP-A-9-71
JP-A-845 and JP-A-9-71846 disclose heat-resistant steels to which Nd is added as steel for super-supercritical pressure conditions from the viewpoint of improving the high-temperature long-term creep characteristics of a welded joint.

【0007】しかし、NdはNとの親和力が強い元素で
あり、Ndの一部は粗大なNdN介在物として残存する
ため、高N鋼においてはNdのクリープ強度改善効果が
必ずしも充分発揮できていないという問題があった。
[0007] However, Nd is an element having a strong affinity for N, and a part of Nd remains as coarse NdN inclusions, so that in high N steels, the effect of improving the creep strength of Nd cannot always be fully exhibited. There was a problem.

【0008】火力発電ボイラ等の蒸気条件が前記した超
々臨界圧条件での高Crフェライト鋼の使用に対して
は、さらなるクリープ強度の向上が必要であり、そのた
めには焼戻し軟化抵抗を高めマルテンサイト組織の回復
軟化現象をできるだけ高温長時間側まで遅らせることが
重要である。
In order to use a high Cr ferritic steel under ultra-supercritical pressure conditions such as in a thermal power boiler or the like, it is necessary to further improve the creep strength. It is important to delay the recovery softening phenomenon of the tissue as long as possible at a high temperature for a long time.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、62
5℃以上の高温蒸気下の使用に耐える高温長時間クリー
プ強度と靭性に優れた高Crフェライト系耐熱鋼を提供
することにある。
The problem to be solved by the present invention is to
An object of the present invention is to provide a high Cr ferritic heat-resistant steel excellent in high-temperature long-time creep strength and toughness that can withstand use under high-temperature steam of 5 ° C or more.

【0010】[0010]

【課題を解決するための手段】高Crフェライト系耐熱
鋼に係わる本発明の要旨は、以下の通りである。
The gist of the present invention relating to a high Cr ferritic heat resistant steel is as follows.

【0011】(1)質量%で、 C:0.02〜0.15%、 Mn:0.05〜1.5%、 P:0.03%以下、 S:0.015%以下、 Cr:8〜13%、 W:1.5〜4%、 Co:2〜6%、 V:0.1〜0.5%、 Ta:0.01〜0.15%、 Nb:0.01〜0.15%、 Nd:0.001〜0.2%、 N:0.02%未満、 B:0.0005〜0.02%、 Al:0.001〜0.05%、 Mo:0〜1%、 Si:0〜1%、 Ca:0〜0.02%、 La:0〜0.2%、 Ce:0〜0.2%、 Y:0〜0.2%、 Hf:0〜0.2% を含有し、残部がFe及び不可避的不純物からなる高温
長時間クリープ強度と靭性に優れた高Crフェライト系
耐熱鋼。
(1) In mass%, C: 0.02 to 0.15%, Mn: 0.05 to 1.5%, P: 0.03% or less, S: 0.015% or less, Cr: 8 to 13%, W: 1.5 to 4%, Co: 2 to 6%, V: 0.1 to 0.5%, Ta: 0.01 to 0.15%, Nb: 0.01 to 0 .15%, Nd: 0.001 to 0.2%, N: less than 0.02%, B: 0.0005 to 0.02%, Al: 0.001 to 0.05%, Mo: 0 to 1 %, Si: 0 to 1%, Ca: 0 to 0.02%, La: 0 to 0.2%, Ce: 0 to 0.2%, Y: 0 to 0.2%, Hf: 0 to 0% High Cr ferritic heat-resistant steel containing 0.2% and the balance being Fe and unavoidable impurities and having excellent high-temperature long-term creep strength and toughness.

【0012】(2)上記(1)記載の高Crフェライト
系耐熱鋼において、下記式を満足する高Crフェライト
系耐熱鋼。
(2) The high Cr ferritic heat resistant steel according to (1), which satisfies the following expression.

【0013】Nd(%)≦5×N(%)+0.1 本発明者らは、Ndを含有する高Crフェライト系耐熱鋼
の高温長時間クリープ特性および靭性におよぼすNの影
響について詳細に検討した。その結果、下記の知見を得
て本発明を完成させた。
Nd (%) ≦ 5 × N (%) + 0.1 The present inventors studied in detail the effect of N on the high-temperature long-time creep characteristics and toughness of a high Cr ferritic heat-resistant steel containing Nd. did. As a result, the following findings were obtained and the present invention was completed.

【0014】a)Ndは、Nd酸化物として鋼中の酸素
を固定し、クリープ強度に寄与する微細な炭化物を析出
させる析出強化元素としてのNbやVの一部が酸化物に
なるのを抑制する効果がある。また、NdはNdC2
の炭化物を生成する作用があり、これらの炭化物は高温
長時間側まで微細かつ安定に析出するため高温長時間ク
リープ強度の向上に寄与する。ところが、N(窒素)との
親和力も大きく、Nを含有する鋼においては粗大なNd
Nが介在物となるため、NbやVの酸化物の生成を抑制
する効果やNdC2 等の微細な炭化物を析出させること
による析出強化効果が不十分となり、クリープ強度改善
効果が十分に発揮できない。
A) Nd fixes oxygen in steel as Nd oxide and suppresses a part of Nb or V as a precipitation strengthening element that precipitates fine carbides contributing to creep strength from becoming an oxide. Has the effect of doing In addition, Nd has an action of generating carbides such as NdC 2 , and these carbides are finely and stably precipitated to a high temperature and a long time side, thereby contributing to an improvement in a high temperature and a long time creep strength. However, it has a high affinity for N (nitrogen), and coarse Nd in steel containing N.
Since N acts as an inclusion, the effect of suppressing the formation of oxides of Nb and V and the effect of precipitating precipitation by depositing fine carbides such as NdC 2 become insufficient, and the effect of improving creep strength cannot be sufficiently exhibited. .

【0015】b)Ndを含有する高Crフェライト系耐
熱鋼においては、鋼中のN量を0.02%未満に抑制す
ることにより、粗大なNdNの生成を防止することがで
き、その結果NbやVの微細な炭化物やNdC2 等の微
細な炭化物が高温長時間側まで安定して析出し、その結
果、マルテンサイト組織の回復軟化現象が高温長時間側
まで抑制され、クリープ強度が大幅に向上する。
B) In a high Cr ferritic heat-resistant steel containing Nd, the formation of coarse NdN can be prevented by suppressing the N content in the steel to less than 0.02%. And carbides such as NdC 2 precipitate stably up to high temperature and long time, and as a result, the recovery softening phenomenon of the martensitic structure is suppressed up to high temperature and long time, and the creep strength is greatly reduced. improves.

【0016】[0016]

【発明の実施の形態】以下、本発明の耐熱鋼の化学組成
を限定した理由について説明する(以下、%は質量%を
示す)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical composition of the heat-resistant steel of the present invention will be described below (hereinafter,% indicates% by mass).

【0017】C:0.02〜0.15% Cは炭化物MC(Mは合金元素)、M73およびM23
6 型炭化物を形成する[炭窒化物M(C、N)として形
成される場合もある]。この炭化物は、クリープ強度の
向上に寄与するとともに、C自身がオーステナイト安定
化元素として組織を安定化する。0.02%未満では炭
化物の析出が不十分であり、かつ、δフェライト量も多
くなり充分なクリープ強度、靱性が得られない。しか
し、0.15%を超えて多量に含有すると、使用時の初
期から炭化物の凝集粗大化が起こるので、逆に長時間ク
リープ強度の低下を招き、加工性や溶接性も劣化させる
ので上限は0.15%とした。
C: 0.02 to 0.15% C is carbide MC (M is an alloying element), M 7 C 3 and M 23 C
Form a 6- type carbide [may be formed as carbonitride M (C, N)]. This carbide contributes to the improvement of the creep strength, and C itself stabilizes the structure as an austenite stabilizing element. If it is less than 0.02%, the precipitation of carbides is insufficient, and the amount of δ ferrite increases, so that sufficient creep strength and toughness cannot be obtained. However, if it is contained in a large amount exceeding 0.15%, the carbides are coarsened and coarsened from the beginning of use, so that the creep strength is reduced for a long time and the workability and weldability are also deteriorated. 0.15%.

【0018】Mn:0.05〜1.5% Mnは、脱酸およびSを固定する元素として有効で、オ
ーステナイト安定化元素としても寄与する。それらの効
果を得るためには0.05%以上必要であるが、1.5
%を超えると靭性を劣化させるので0.05%〜1.5
%とした。
Mn: 0.05-1.5% Mn is effective as an element for deoxidizing and fixing S, and also contributes as an austenite stabilizing element. To obtain those effects, 0.05% or more is required, but 1.5% or more is required.
%, The toughness is deteriorated.
%.

【0019】P:0.003%以下、S:0.015%
以下 不純物PおよびSは、熱間加工性、溶接性および靭性の
観点からは低い方が望ましいが、それぞれ0.03%、
0.015%までであれば本発明鋼の特性に直接影響し
ないため、上限をそれぞれ0.03%および0.015
%とした。
P: 0.003% or less, S: 0.015%
The impurities P and S are preferably lower from the viewpoints of hot workability, weldability and toughness.
If the content is not more than 0.015%, it does not directly affect the properties of the steel of the present invention, so the upper limits are 0.03% and 0.015%, respectively.
%.

【0020】Cr:8〜13% Crは、本発明鋼の高温における耐食性や耐酸化性、特
に耐水蒸気酸化特性を確保するために不可欠な元素であ
る。さらには炭化物を形成してクリープ強度を向上させ
る。その他、Cr主体の緻密な酸化皮膜を形成して耐食
性および耐酸化性を向上させる作用があり、それらの効
果を得るためには8%以上とする必要がある。しかし多
量に含有させるとδ−フェライトの生成を促進して靭性
の劣化をもたらすため、上限を13%とした。
Cr: 8 to 13% Cr is an indispensable element for ensuring the corrosion resistance and oxidation resistance at high temperatures of the steel of the present invention, particularly the steam oxidation resistance. Further, a carbide is formed to improve the creep strength. In addition, there is an effect of forming a dense oxide film mainly composed of Cr to improve corrosion resistance and oxidation resistance, and in order to obtain these effects, the content needs to be 8% or more. However, when contained in a large amount, the formation of δ-ferrite is promoted and the toughness is deteriorated, so the upper limit was made 13%.

【0021】W:1.5〜4 Wは、本発明鋼の主要な強化元素の一つである。Wは高
温使用中にFe76型の μ相やFe2W型のラーベス相
等の金属間化合物として微細に分散析出し、長時間クリ
ープ強度の向上に寄与する。さらには、Cr炭化物中に
も一部固溶して、炭化物の凝集、粗大化を抑制して強度
の維持に寄与する。しかしながら、多量に含有させると
δ−フェライトの生成を促進するため、含有量を1.5
%〜4%とした。
W: 1.5-4 W is one of the main strengthening elements of the steel of the present invention. W is finely dispersed and precipitated as an intermetallic compound such as a Fe 7 W 6 type μ phase or an Fe 2 W type Laves phase during use at a high temperature, and contributes to improvement in long-time creep strength. Furthermore, it also partially dissolves in the Cr carbide to suppress aggregation and coarsening of the carbide and contribute to maintenance of strength. However, if contained in a large amount, the formation of δ-ferrite is promoted.
% To 4%.

【0022】Co:2〜6% Coは、オーステナイト安定化元素であり、Wを積極的
に添加する本発明鋼においては必須の元素である。Co
は同じオーステナイト安定化元素のNiと異なり、クリ
ープ強度の低下をもたらすことなく、むしろクリープ強
度を向上させる効果がある。これらの効果を発揮させる
ためには2%以上の添加が必要であるが、6%を超えて
過剰添加すると鋼のAc1 変態点の低下が著しくなり、
逆にクリープ強度が低下する。
Co: 2 to 6% Co is an austenite stabilizing element and is an essential element in the steel of the present invention to which W is positively added. Co
Unlike Ni, which is the same austenitic stabilizing element, has the effect of improving the creep strength without lowering the creep strength. In order to exert these effects, the addition of 2% or more is necessary. However, if the addition exceeds 6%, the Ac 1 transformation point of the steel decreases significantly,
Conversely, the creep strength decreases.

【0023】V:0.1〜0.5% Vは、本発明鋼においては重要な元素で微細な炭窒化物
を形成して、クリープ強度の向上に寄与する。その効果
を発揮させるためには0.1%以上とする必要があり、
0.5%を超えて含有させてもその効果は飽和するの
で、0.1%〜0.5%とした。
V: 0.1-0.5% V is an important element in the steel of the present invention and forms fine carbonitrides, which contributes to improvement in creep strength. In order to exert the effect, it is necessary to be 0.1% or more,
If the content exceeds 0.5%, the effect is saturated, so the content is set to 0.1% to 0.5%.

【0024】Ta、Nb:0.01〜0.15% Ta、Nbは、Vと同様、微細な炭窒化物を形成して、
クリープ強度の向上に寄与する元素である。その効果を
発揮させるためには、それぞれ0.01%以上必要であ
るが、0.15%を超えて含有させてもその効果は飽和
するので0.01%〜0.15%とした。
Ta, Nb: 0.01 to 0.15% Ta and Nb form fine carbonitrides like V,
It is an element that contributes to improvement in creep strength. In order to exhibit the effect, 0.01% or more is required for each. However, the effect is saturated even if the content exceeds 0.15%, so the content is set to 0.01% to 0.15%.

【0025】Nd:0.001〜0.2% Ndは、NdC2 等の炭化物が高温長時間側でも微細か
つ安定に析出するためマルテンサイト組織の回復軟化の
抑制に大きく寄与し、クリープ強度を大きく向上させ
る。その効果を発揮させるためには0.001%以上を
含有させる必要があるが、0.2%を超えて過剰に含有
させると靱性が劣化するので0.001%〜0.2%と
した。
Nd: 0.001 to 0.2% Nd contributes greatly to suppressing the recovery and softening of the martensitic structure, since carbides such as NdC 2 precipitate finely and stably even at high temperatures for a long time, and reduces the creep strength. Greatly improve. In order to exhibit the effect, it is necessary to contain 0.001% or more. However, if the content exceeds 0.2%, the toughness is deteriorated. Therefore, the content is set to 0.001% to 0.2%.

【0026】N:0.02%未満 Nは、Cと同様オーステナイト安定化元素として有効で
あるが、Ndを含有する鋼においては、N量が高くなる
と粗大なNdNが介在物として鋼中に残存するため、ク
リープ強度の向上効果が十分に発揮されず、かつ靱性も
劣化する。したがって、Ndの効果を充分に発揮させる
ためには、鋼中のN量の上限は0.02%未満とする必
要がある。そして、特に靱性を重視する場合には、Nd
とN量とのバランスを下式を満足する範囲で調整するこ
とが望ましい。
N: less than 0.02% N is effective as an austenite stabilizing element like C. However, in a steel containing Nd, as the N content increases, coarse NdN remains in the steel as inclusions. Therefore, the effect of improving the creep strength is not sufficiently exhibited, and the toughness is deteriorated. Therefore, in order to sufficiently exert the effect of Nd, the upper limit of the amount of N in steel needs to be less than 0.02%. When the toughness is particularly important, Nd
It is desirable to adjust the balance between N and the amount of N within a range satisfying the following expression.

【0027】Nd(%)≦5×N(%)+0.10(%) B:0.0005〜0.02% Bは、微量添加された場合にM236 型炭化物を微細に
分散析出させる効果があり、高温長時間クリープ特性の
向上に寄与する。また、厚肉材などで熱処理後の冷却が
遅い場合には焼入れ性を高め、やはり高温強度の確保に
重要な役割を果たす。その効果は、0.0005%以上
で顕著となるが、0.02%を超えて含有させると粗大
な析出物を形成し靭性を劣化させる。したがって、B含
有量は0.0005〜0.02%とした。
Nd (%) ≦ 5 × N (%) + 0.10 (%) B: 0.0005-0.02% B is finely dispersed and precipitates M 23 C 6 type carbide when added in a small amount. And contributes to the improvement of high-temperature long-time creep characteristics. When the cooling after the heat treatment is slow in a thick material or the like, the quenching property is enhanced, and also plays an important role in ensuring high-temperature strength. The effect is remarkable at 0.0005% or more. However, when the content exceeds 0.02%, coarse precipitates are formed and the toughness is deteriorated. Therefore, the B content was set to 0.0005 to 0.02%.

【0028】Al:0.001〜0.05% Alは、溶鋼の脱酸剤として0.001%以上必要であ
る。一方、0.05%を超えて多量に含有させるとクリ
ープ強度の低下を招くので0.001〜0.05%とし
た。
Al: 0.001 to 0.05% Al is required to be at least 0.001% as a deoxidizing agent for molten steel. On the other hand, if it is contained in a large amount exceeding 0.05%, the creep strength is lowered, so that the content was made 0.001 to 0.05%.

【0029】Si:0〜1% Siは、必要により溶鋼の脱酸剤として用いる。Si
は、高温における耐水蒸気酸化特性の向上に対して有効
であるが、1%を超えて多量に含有させると靭性の劣化
を引き起こすため、本発明では0〜1%とした。特に耐
水蒸気酸化を重視する場合にはSi量の下限は0.10
%とするのが望ましい。
Si: 0 to 1% Si is used as a deoxidizing agent for molten steel if necessary. Si
Is effective for improving steam oxidation resistance at high temperatures, but if contained in a large amount exceeding 1%, toughness is deteriorated. In particular, when importance is attached to steam oxidation resistance, the lower limit of the amount of Si is 0.10.
% Is desirable.

【0030】Mo:0〜1% Moは、必要により含有させる元素で、固溶強化元素と
してクリープ強度の向上に寄与するが、1%を超えて含
有させると、ラーベス相等の金属間化合物が析出する。
Mo含有鋼では、このような金属間化合物は極めて粗大
に析出するためクリープ強度の向上には寄与せず、か
つ、時効後の靱性も低下させる。したがって、Moの含
有量は0〜1%とした。
Mo: 0 to 1% Mo is an element to be contained as necessary, and contributes to the improvement of creep strength as a solid solution strengthening element. However, if it exceeds 1%, intermetallic compounds such as Laves phase precipitate. I do.
In an Mo-containing steel, such an intermetallic compound precipitates extremely coarsely, so that it does not contribute to improvement in creep strength, and also reduces toughness after aging. Therefore, the content of Mo is set to 0 to 1%.

【0031】Ca、La、Ce、Y、Hf:Caは0〜
0.02%、その他は0〜0.2%Ca、La、Ce、
YおよびHfのうちの1種以上を必要により含有させ
る。これらの元素は、ごく微量の含有量でも結晶粒界を
強化させてクリープ強度を向上させるとともに、熱間加
工性の向上にも寄与する。しかし、過剰に添加すると熱
間加工性が低下するため、これら元素の上限はCaは
0.02%、La、Ce、YおよびHfは0.2%とし
た。
Ca, La, Ce, Y, Hf: Ca is 0 to
0.02%, others are 0 to 0.2% Ca, La, Ce,
One or more of Y and Hf are contained as necessary. These elements strengthen the crystal grain boundaries even with a very small content, improve the creep strength, and contribute to the improvement of hot workability. However, since the hot workability deteriorates when added excessively, the upper limits of these elements are set to 0.02% for Ca and 0.2% for La, Ce, Y and Hf.

【0032】[0032]

【実施例】真空誘導溶解炉にて、表1および表2に示す
化学組成の直径144mmの50kgインゴットを溶製
した。記号1〜24が本発明鋼、記号A〜Lが比較鋼で
ある。
EXAMPLES In a vacuum induction melting furnace, a 50 kg ingot having a chemical composition shown in Tables 1 and 2 and having a diameter of 144 mm was produced. Symbols 1 to 24 are steels of the present invention, and symbols AL are comparative steels.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】これらのインゴットを熱間鍛造後、熱間圧
延によって20mm厚の鋼板とした。次いで、1050℃
で1時間保持した後空冷(AC)し、さらに780℃で1
時間保持して空冷(AC)する焼戻し処理をおこなった。
これらの鋼板から、クリープ破断試験片およびシャルピ
ー衝撃試験片を作製し、下記する条件でクリープ破断試
験およびシャルピー衝撃試験を実施した。
These ingots were hot-forged and then hot-rolled to form steel plates having a thickness of 20 mm. Then, 1050 ° C
, And air-cooled (AC).
Tempering treatment was performed in which air was cooled (AC) while maintaining the time.
A creep rupture test piece and a Charpy impact test piece were prepared from these steel sheets, and a creep rupture test and a Charpy impact test were performed under the following conditions.

【0036】 (1)クリープ破断試験 試験片 : 直径 6.0mm 標点間距離 30mm 保持温度: 650℃ 負荷応力: 98MPa (2)シャルピー衝撃試験 試験片 : 10mm×10mm×55mm 2mmVノッチ 試験温度: 0℃ これらの試験で測定したクリープ破断時間およびシャル
ピー衝撃値(J/mm2)を表3および表4に示す。
(1) Creep rupture test Specimen: Diameter 6.0 mm Distance between gauge marks 30 mm Holding temperature: 650 ° C. Load stress: 98 MPa (2) Charpy impact test Specimen: 10 mm × 10 mm × 55 mm 2 mm V notch Test temperature: 0 ° C Creep rupture time and Charpy impact value (J / mm 2 ) measured in these tests are shown in Tables 3 and 4.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】N量が0.02%未満の本発明鋼の記号
1、2、3鋼および4、5、6鋼のクリープ破断時間
は、それぞれの比較鋼であるN含有量が本発明で規定す
る範囲を超える記号A鋼および記号B鋼に比べて明らか
に改善されていることがわかる。N低減によるクリープ
破断寿命の改善効果は、本発明鋼の記号7〜17鋼とそ
れぞれの比較鋼である記号C〜M鋼との比較においても
明瞭である。
The creep rupture times of the symbols 1, 2, 3 and 4, 5, and 6 of the steels of the present invention having an N content of less than 0.02% are defined by the N content of the comparative steels according to the present invention. It can be seen that it is clearly improved as compared with the symbol A steel and the symbol B steel which exceed the range shown in FIG. The effect of improving the creep rupture life by reducing N is also evident in the comparison between the steels 7 to 17 of the steel of the present invention and the comparative steels C to M.

【0040】また、本発明鋼の記号7、18、20、2
2、24鋼は、NdとNの含有量が下式を満足しない場
合である。この場合には下式を満足する本発明の記号1
7、19、21、23鋼に比べてクリープ破断寿命の差
はほとんどないが、衝撃値が低めになることがわかる。
したがって、靱性を重視する場合には下式を満足する範
囲内でNd、N含有量を調整することが望ましい。
The symbols 7, 18, 20, 2 of the steel of the present invention
In the case of the steel No. 2, 24, the contents of Nd and N do not satisfy the following formula. In this case, the symbol 1 of the present invention that satisfies the following equation:
It can be seen that there is almost no difference in the creep rupture life as compared with the 7, 19, 21 and 23 steels, but the impact value is lower.
Therefore, when importance is placed on toughness, it is desirable to adjust the Nd and N contents within a range satisfying the following expression.

【0041】Nd(%)≦5xN(%)+0.10(%)Nd (%) ≦ 5 × N (%) + 0.10 (%)

【0042】[0042]

【発明の効果】本発明の高Crフェライト耐熱鋼は、6
25℃以上の高温下で高温長時間クリープ強度と常温に
おける靭性に優れており、原子力発電や化学工業等の分
野で用いられる熱交換用鋼管、圧力容器用鋼板、タービ
ン用材料として使用して優れた効果を発揮し、産業上極
めて有益である。
The high Cr ferritic heat resistant steel of the present invention has 6
Excellent in high-temperature long-term creep strength at high temperatures of 25 ° C or higher and toughness at room temperature, and excellent for use in steel tubes for heat exchange, steel plates for pressure vessels, and turbine materials used in fields such as nuclear power generation and the chemical industry. It is extremely useful in industry.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、 C:0.02〜0.15%、 Mn:0.05〜1.5%、 P:0.03%以下、 S:0.015%以下、 Cr:8〜13%、 W:1.5〜4%、 Co:2〜6%、 V:0.1〜0.5%、 Ta:0.01〜0.15%、 Nb:0.01〜0.15%、 Nd:0.001〜0.2%、 N:0.02%未満、 B:0.0005〜0.02%、 Al:0.001〜0.05%、 Mo:0〜1%、 Si:0〜1%、 Ca:0〜0.02%、 La:0〜0.2%、 Ce:0〜0.2%、 Y:0〜0.2%、 Hf:0〜0.2% を含有し、残部がFe及び不可避的不純物からなること
を特徴とする高温長時間クリープ強度と靭性に優れた高
Crフェライト系耐熱鋼。
1. Mass%: C: 0.02 to 0.15%, Mn: 0.05 to 1.5%, P: 0.03% or less, S: 0.015% or less, Cr: 8 -13%, W: 1.5-4%, Co: 2-6%, V: 0.1-0.5%, Ta: 0.01-0.15%, Nb: 0.01-0. 15%, Nd: 0.001 to 0.2%, N: less than 0.02%, B: 0.0005 to 0.02%, Al: 0.001 to 0.05%, Mo: 0 to 1% , Si: 0 to 1%, Ca: 0 to 0.02%, La: 0 to 0.2%, Ce: 0 to 0.2%, Y: 0 to 0.2%, Hf: 0 to 0. A high Cr ferritic heat-resistant steel which is excellent in high-temperature long-time creep strength and toughness, containing 2% and the balance of Fe and inevitable impurities.
【請求項2】請求項1記載の高Crフェライト系耐熱鋼
において、下記式を満足することを特徴とする高温長時
間クリープ強度と靭性に優れた高Crフェライト系耐熱
鋼。 Nd(%)≦5×N(%)+0.1
2. The high Cr ferritic heat resistant steel according to claim 1, which satisfies the following expression, wherein the high Cr long term creep strength and the toughness are excellent. Nd (%) ≦ 5 × N (%) + 0.1
JP19308498A 1998-07-08 1998-07-08 High Cr ferritic heat resistant steel Expired - Lifetime JP3982069B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19308498A JP3982069B2 (en) 1998-07-08 1998-07-08 High Cr ferritic heat resistant steel
PCT/JP1999/003231 WO2000003050A1 (en) 1998-07-08 1999-06-16 HIGH Cr FERRITIC HEAT RESISTANCE STEEL
EP99925355A EP1103626B1 (en) 1998-07-08 1999-06-16 HIGH Cr FERRITIC HEAT RESISTANCE STEEL
DE69904336T DE69904336T2 (en) 1998-07-08 1999-06-16 HIGH CHROME, HEAT RESISTANT, FERITIC STEEL
US09/754,050 US20020020473A1 (en) 1998-07-08 2001-01-05 Heat resistant high chromium ferritic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19308498A JP3982069B2 (en) 1998-07-08 1998-07-08 High Cr ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2000026940A true JP2000026940A (en) 2000-01-25
JP3982069B2 JP3982069B2 (en) 2007-09-26

Family

ID=16301968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19308498A Expired - Lifetime JP3982069B2 (en) 1998-07-08 1998-07-08 High Cr ferritic heat resistant steel

Country Status (5)

Country Link
US (1) US20020020473A1 (en)
EP (1) EP1103626B1 (en)
JP (1) JP3982069B2 (en)
DE (1) DE69904336T2 (en)
WO (1) WO2000003050A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel
JP2002226946A (en) * 2001-01-31 2002-08-14 National Institute For Materials Science Martensitic heat-resistant alloy having excellent high temperature creep rupture strength and ductility and production method therefor
KR100708616B1 (en) * 2000-08-19 2007-04-18 두산중공업 주식회사 Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
JP2016216815A (en) * 2015-05-19 2016-12-22 新日鐵住金株式会社 High Cr ferritic heat resistant steel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696016B1 (en) * 1999-09-24 2004-02-24 Japan As Represented By Director General Of National Research Institute For Metals High-chromium containing ferrite based heat resistant steel
DK1867745T3 (en) * 2005-04-07 2014-08-25 Nippon Steel & Sumitomo Metal Corp FERRITIC HEAT RESISTANT STEEL
US20070087250A1 (en) * 2005-10-13 2007-04-19 Lewis Daniel J Alloy for fuel cell interconnect
DE102005061790A1 (en) * 2005-12-23 2007-07-05 Mtu Aero Engines Gmbh Material for component of gas turbine comprises matrix based on iron alloy with intermetallic material of Laves phase
WO2008119638A1 (en) * 2007-03-29 2008-10-09 Alstom Technology Ltd Creep resistant steel
EP2157202B1 (en) * 2007-06-04 2017-07-12 Nippon Steel & Sumitomo Metal Corporation Ferrite heat resistant steel
EA017766B1 (en) * 2008-03-11 2013-03-29 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Heat-resistant casting steel
CN104907470B (en) * 2015-04-27 2017-01-11 上海宏钢电站设备铸锻有限公司 13Cr9Mo2Co1NiVNbNB steel forged piece manufacturing method
CN108754335B (en) * 2018-08-22 2019-09-10 武汉钢铁有限公司 A kind of the welding structure fire-resistant and weather-resistant steel and production method of yield strength >=550MPa
JP2020131289A (en) * 2019-02-21 2020-08-31 株式会社神戸製鋼所 WELD MATERIAL FOR HIGH-Cr FERRITIC HEAT-RESISTANT STEEL
JP7136325B2 (en) * 2019-03-19 2022-09-13 日本製鉄株式会社 Ferritic heat-resistant steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364322B2 (en) * 1994-06-03 2003-01-08 川崎製鉄株式会社 Stainless steel for automotive exhaust manifolds with excellent manufacturability, workability and high-temperature strength after long-term aging at high temperatures
JP3480061B2 (en) * 1994-09-20 2003-12-15 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP3531228B2 (en) * 1994-09-20 2004-05-24 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP3310825B2 (en) * 1995-07-17 2002-08-05 三菱重工業株式会社 High temperature steam turbine rotor material
JP3301284B2 (en) * 1995-09-04 2002-07-15 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP3196587B2 (en) * 1995-09-05 2001-08-06 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP3322097B2 (en) * 1995-10-26 2002-09-09 住友金属工業株式会社 High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP3422658B2 (en) * 1997-06-25 2003-06-30 三菱重工業株式会社 Heat resistant steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708616B1 (en) * 2000-08-19 2007-04-18 두산중공업 주식회사 Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel
JP2002226946A (en) * 2001-01-31 2002-08-14 National Institute For Materials Science Martensitic heat-resistant alloy having excellent high temperature creep rupture strength and ductility and production method therefor
US7128791B2 (en) * 2001-01-31 2006-10-31 National Institute For Materials Science Heat-resistant martensite alloy excellent in high-temperature creep rupture strength and ductility and process for producing the same
JP4614547B2 (en) * 2001-01-31 2011-01-19 独立行政法人物質・材料研究機構 Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JP2016216815A (en) * 2015-05-19 2016-12-22 新日鐵住金株式会社 High Cr ferritic heat resistant steel

Also Published As

Publication number Publication date
WO2000003050A1 (en) 2000-01-20
EP1103626B1 (en) 2002-12-04
JP3982069B2 (en) 2007-09-26
DE69904336D1 (en) 2003-01-16
DE69904336T2 (en) 2003-08-21
US20020020473A1 (en) 2002-02-21
EP1103626A4 (en) 2002-01-16
EP1103626A1 (en) 2001-05-30

Similar Documents

Publication Publication Date Title
US5069870A (en) High-strength high-cr steel with excellent toughness and oxidation resistance
JP4561834B2 (en) Low alloy steel
JP3480061B2 (en) High Cr ferritic heat resistant steel
EP1445342A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2006109664A1 (en) Ferritic heat-resistant steel
JP5838933B2 (en) Austenitic heat resistant steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP5846076B2 (en) Austenitic heat-resistant alloy
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3508667B2 (en) High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same
JP2631250B2 (en) High-strength ferritic heat-resistant steel for steel tubes for boilers
JP3531228B2 (en) High Cr ferritic heat resistant steel
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3698058B2 (en) High Cr ferritic heat resistant steel
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPH05263196A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP3418884B2 (en) High Cr ferritic heat resistant steel
JP3196587B2 (en) High Cr ferritic heat resistant steel
JP3301284B2 (en) High Cr ferritic heat resistant steel
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH1161342A (en) High chromium ferritic steel
JP2001152293A (en) HIGH Cr FERRITIC HEAT RESISTING STEEL

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term