JP2000022279A - Mounting structure for optical element - Google Patents

Mounting structure for optical element

Info

Publication number
JP2000022279A
JP2000022279A JP10185291A JP18529198A JP2000022279A JP 2000022279 A JP2000022279 A JP 2000022279A JP 10185291 A JP10185291 A JP 10185291A JP 18529198 A JP18529198 A JP 18529198A JP 2000022279 A JP2000022279 A JP 2000022279A
Authority
JP
Japan
Prior art keywords
optical element
optical
solder
electrode pad
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185291A
Other languages
Japanese (ja)
Inventor
Yuji Masuda
雄治 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10185291A priority Critical patent/JP2000022279A/en
Publication of JP2000022279A publication Critical patent/JP2000022279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Abstract

PROBLEM TO BE SOLVED: To provide an optical element mounting structure in which the optical axes of an optical element and a light transmitting path can be aligned accurately through an extremely convenient arrangement without requiring any adjustment. SOLUTION: An optical element 31 to be coupled optically with a light transmitting path is arranged through a solder 3 on a metal pattern 2a where parts 4a, 4b for punching a pattern are formed at positions symmetric to the projection L of the optical axis of the light transmitting path on a substrate 1. Optical axis of the optical element 31 is aligned with that of the light transmitting path by surface tension of the solder 3 fused on the metal pattern 2a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光伝送や光通信等
に用いられる光モジュールに関し、特に光モジュールの
実装構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical module used for optical transmission, optical communication, and the like, and more particularly, to an optical module mounting structure.

【0002】[0002]

【従来の技術】通信分野では、情報の大容量化により、
電気信号より通信から大容量化に有利な光通信への移行
が進んでいる。光通信の一般加入者系への適用も考えら
れている。そのため光通信用光デバイスの低価格化が求
められている。
2. Description of the Related Art In the telecommunications field, with the increase of information capacity,
The transition from communication to optical communication, which is advantageous for increasing the capacity, is progressing from electric signals. Application of optical communication to general subscriber systems is also being considered. Therefore, there is a demand for a low price optical device for optical communication.

【0003】しかしながら、光デバイスの製造において
は、光素子の光軸を高精度に基板上に実装する必要があ
り、光軸調整に多くの工夫が必要とされる。そこで、低
価格化のために光素子を無調整で基板上に実装する方法
が検討されている。
However, in the manufacture of an optical device, it is necessary to mount the optical axis of an optical element on a substrate with high accuracy, and a great deal of effort is required for adjusting the optical axis. Therefore, a method of mounting an optical element on a substrate without adjustment has been studied for cost reduction.

【0004】無調整実装方法の一例として以下のように
半田バンプを利用する方法がある。例えば、図10
(a)〜(c)に示すように、基板1上に円形の電極パ
ッド2aを形成し、基板1上に半田バンプ3を供給し、
この半田バンプ3上に光素子31を仮置きして半田バン
プ3を加熱溶融させる。なお、図中、41は光ファイバ
や光導波路等の光伝送路を示し、11はその光軸であ
る。
As an example of a non-adjustment mounting method, there is a method using a solder bump as follows. For example, FIG.
As shown in (a) to (c), a circular electrode pad 2a is formed on a substrate 1 and a solder bump 3 is supplied on the substrate 1,
The optical element 31 is temporarily placed on the solder bump 3 and the solder bump 3 is heated and melted. In the drawing, reference numeral 41 denotes an optical transmission line such as an optical fiber or an optical waveguide, and reference numeral 11 denotes an optical axis thereof.

【0005】ここで、半田はその表面張力で光素子31
を接合した状態で表面積が最小になるように形状を変化
させるため、光素子31は半田の表面張力によって移動
し、光素子31が半田バンプ3の真上に来るように位置
決めされる。
[0005] Here, the optical element 31 is soldered by its surface tension.
In order to change the shape so that the surface area is minimized in the state in which the optical elements 31 are joined, the optical element 31 is moved by the surface tension of the solder, and the optical element 31 is positioned so as to be directly above the solder bump 3.

【0006】従来、シリコン基板上に円形の電極パッド
を作製し、電極パッド上に半田バンプを形成し、レーザ
ーダイオード側に作製した電極パッドを半田バンプ上に
搭載し水平方向の位置決めを行うことが提案されてい
る。また、垂直方向の位置決めは、半田パッド近傍に絶
縁体で作製した位置決め台を形成し、レーザーダイオー
ドをつき当てることで高さ方向の位置決めを行うことが
提案されている。これは、垂直方向の位置決めは半田の
供給量によってばらつきが生じやすいためである(例え
ば、特開平7-235566号公報を参照)。
Conventionally, a circular electrode pad is formed on a silicon substrate, a solder bump is formed on the electrode pad, and the electrode pad prepared on the laser diode side is mounted on the solder bump to perform horizontal positioning. Proposed. Further, for positioning in the vertical direction, it has been proposed to form a positioning table made of an insulator near a solder pad and perform positioning in the height direction by applying a laser diode. This is because the positioning in the vertical direction tends to vary depending on the supplied amount of solder (for example, see Japanese Patent Application Laid-Open No. 7-235566).

【0007】また、半田バンプを供給する電極パッドを
円形ではなく長方形に形成し、電極パッドの面積を大き
くすることで、供給する半田量のばらつきに起因するバ
ンプ高さばらつきを低減し高さ方向の精度を高くする方
法等が提案されている。図7〜9にこれらの例を示す。
The electrode pads for supplying the solder bumps are formed in a rectangular shape instead of a circle, and the area of the electrode pads is increased to reduce the variation in bump height due to the variation in the amount of solder to be supplied. And the like have been proposed to increase the accuracy of the image. 7 to 9 show these examples.

【0008】これら方法によれば、まず、光導波路41
や光ファイバ固定用V溝52を形成したSi基板1上
に、導波路41のコアや光ファイバ51のコアと光素子
31を接合するための電極パッド2aをフォトリソグラ
フィによって形成する。次に、電極パッド2a上に半田
バンプ3を形成する。
According to these methods, first, the optical waveguide 41
An electrode pad 2a for bonding the core of the waveguide 41 or the core of the optical fiber 51 to the optical element 31 is formed by photolithography on the Si substrate 1 on which the V-groove 52 for fixing the optical fiber is formed. Next, the solder bumps 3 are formed on the electrode pads 2a.

【0009】一方、光素子31の裏面には電極パッド2
aと同形の電極パッドが形成されている。次に、光素子
31を、光素子裏面の電極と電極パッド2aとの間に半
田を介在させて、半田バンプ3上に仮固定し、半田を溶
解することによって接合し、溶解した半田の表面張力に
よるセルフアライメント効果により無調整で高精度に位
置決めされる。これにより、光素子31の活性層と光導
波路41や光ファイバ51のコアとの光軸合わせが達成
される。なお、図中53はファイバストッパ溝である。
On the other hand, the electrode pad 2
An electrode pad having the same shape as a is formed. Next, the optical element 31 is temporarily fixed on the solder bumps 3 with solder interposed between the electrode on the back surface of the optical element and the electrode pad 2a, and is joined by melting the solder. Positioning is performed with high accuracy without adjustment by the self-alignment effect of tension. Thereby, optical axis alignment between the active layer of the optical element 31 and the core of the optical waveguide 41 or the optical fiber 51 is achieved. In the figure, reference numeral 53 denotes a fiber stopper groove.

【0010】また、水平方向と垂直方向の位置決めを同
時に正確に行う方法として、半田パッドの形状を長方形
に形成することで、供給する半田の量がばらついても垂
直方向の位置決めがばらつかないようにすることが提案
されている。このように、円形のバンプより長方形のバ
ンプの方が、より接合面積が確保できるので放熱性や、
接合強度も多少の改善が見られるのである(例えば、特
開平8-179154号公報を参照)。
As a method for simultaneously and accurately positioning in the horizontal and vertical directions, the shape of the solder pad is formed in a rectangular shape so that the positioning in the vertical direction does not vary even if the amount of supplied solder varies. It has been proposed to. In this way, a rectangular bump can secure a larger bonding area than a circular bump, so that heat dissipation and
The bonding strength is somewhat improved (see, for example, JP-A-8-179154).

【0011】[0011]

【発明が解決しようとする課題】上記従来の半田バンプ
による光素子の実装方法では、基板に対して水平方向の
位置決め精度は良好である。しかし、垂直方向を実装上
必要な±1μmの精度に位置決めするために、単なる円
形の電極パッドでは難しく、そのため基板側電極パッド
近傍に垂直方向位置決め台を作製し、光素子を押し付け
て垂直方向の光軸調整を行う必要があったり、また球状
の半田バンプは接合強度の面から直径が大きなものが必
要であるが、Si基板表面から光導波路のコアまでの高
さが20μm以下であることが多いため、直径に制約が
あり接合強度の減少、ひいては放熱性の低下という問題
が生じる。
In the above-mentioned conventional method for mounting an optical element using solder bumps, the positioning accuracy in the horizontal direction with respect to the substrate is good. However, in order to position the vertical direction to the required accuracy of ± 1 μm required for mounting, it is difficult to use a simple circular electrode pad. Therefore, a vertical positioning table is prepared near the substrate-side electrode pad, and the optical element is pressed against the vertical position. It is necessary to adjust the optical axis, and the spherical solder bump must have a large diameter in terms of bonding strength, but the height from the Si substrate surface to the core of the optical waveguide must be 20 μm or less. Because of the large number, the diameter is restricted, and the problem of a decrease in bonding strength and a decrease in heat dissipation arises.

【0012】この問題を回避するために、形成する球状
の半田バンプの数を多くすることも考えられるが、供給
する半田の量のばらつきによる半田バンプの高さのばら
つきが生じ、高さ方向の位置決めを困難にする。
To avoid this problem, it is conceivable to increase the number of spherical solder bumps to be formed. However, variations in the amount of solder to be supplied cause variations in the height of the solder bumps. Make positioning difficult.

【0013】また、この問題を回避するために、長方形
のバンプ構造では、バンプあたりの半田の供給量を多く
することで、半田の供給量のばらつきによる高さ方向の
ばらつきを改善することができ、また、従来の球状の半
田バンプよりも接合面積が広くなり接合強度や放熱性の
改善がみられるものの不十分である。
In order to avoid this problem, in a rectangular bump structure, by increasing the supply amount of solder per bump, it is possible to improve the variation in the height direction due to the variation in the supply amount of solder. In addition, the bonding area is larger than that of the conventional spherical solder bump, and the bonding strength and heat dissipation are improved, but are insufficient.

【0014】さらに、球状や長方形の半田バンプでは、
半田バンプの外周のみの表面張力を利用して位置決めを
行うので、電極構造として光素子31搭載部以外の外部
とのコンタクトを取る部分への電極の取り出す場合、半
田の溶融時に半田の一部が外部とのコンタクトを取り出
すための電極に流れ出してしまい円や長方形の形状が崩
れ、半田の量の不均一化、アライメント精度の低下とい
った問題が生じてくる。
Further, in the case of a spherical or rectangular solder bump,
Since the positioning is performed by using the surface tension of only the outer periphery of the solder bump, when the electrode is taken out to a portion for making contact with the outside other than the optical element 31 mounting portion as an electrode structure, a part of the solder is melted when the solder is melted. It flows into an electrode for taking out a contact with the outside, so that the shape of the circle or rectangle is broken, and problems such as unevenness in the amount of solder and reduction in alignment accuracy arise.

【0015】そこで、本発明では、きわめて簡便な構成
で、光素子の光軸と光伝送路の光軸と位置(光軸)合わ
せを無調整で高精度に行うことが可能な光素子の実装構
造を提供することを目的とする。
In view of the above, according to the present invention, the mounting of an optical element capable of adjusting the optical axis of the optical element and the optical axis and the position (optical axis) of the optical transmission line with high precision without adjustment is performed with a very simple configuration. The purpose is to provide a structure.

【0016】[0016]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の光素子の実装構造は、基板上の光伝送路
の光軸投影に対する対称位置にパターンの抜き部が形成
された金属パターン上に、前記光伝送路と光接続させる
光素子を半田を介在させて配置し、前記金属パターン上
で溶融せしめた半田の表面張力でもって、前記光素子の
光軸を前記光伝送路の光軸に位置合わせして成る。な
お、光素子は発光又は受光する発光ダイオード、半導体
レーザー素子、受光素子等の光半導体素子としてもよ
い。
In order to solve the above-mentioned problems, in the mounting structure of the optical element according to the present invention, a cutout portion of a pattern is formed at a position symmetrical to an optical axis projection of an optical transmission line on a substrate. An optical element to be optically connected to the optical transmission line is disposed on a metal pattern with solder interposed therebetween, and the optical axis of the optical element is set to the optical transmission path by the surface tension of the solder melted on the metal pattern. In alignment with the optical axis. The optical element may be an optical semiconductor element such as a light emitting diode for emitting or receiving light, a semiconductor laser element, a light receiving element, or the like.

【0017】このようにして、より大きな接合面積を有
し、かつ位置決め精度が高く、しかも半田溶融時のアラ
イメントズレが最少になる構造を提供する。これによ
り、光素子の水平方向の位置決めを、半田バンプの外周
と半田バンプ内に作製した空洞により可能とした。
In this manner, a structure is provided which has a larger bonding area, high positioning accuracy, and minimizes misalignment during solder melting. This makes it possible to position the optical element in the horizontal direction by the outer periphery of the solder bump and the cavity formed in the solder bump.

【0018】例えば、基板側電極パッド(金属パター
ン)と光素子裏面に設けた電極パッドの接合面積を十分
に確保するために、基板側電極パッドの光素子搭載部分
と光素子裏面の電極パッドを同形にする。上記電極パッ
ドには内部に例えば長方形を組み合わせた抜きパターン
を形成する。
For example, in order to secure a sufficient bonding area between the substrate-side electrode pad (metal pattern) and the electrode pad provided on the back surface of the optical element, an optical element mounting portion of the substrate-side electrode pad and the electrode pad on the back surface of the optical element are required. Make the same shape. For example, a cut pattern formed by combining rectangles is formed inside the electrode pad.

【0019】従来の円や長方形の半田パッドと比較する
と、電極パッドに抜きパターンを作製することで、半田
の表面張力によるセルフアライメント効果を有する辺
が、外周部と抜きパターンの外周部になり、従来構造よ
り多くなるので、そのアライメント効果もより大きくな
る。
Compared with the conventional circular or rectangular solder pad, the side having the self-alignment effect due to the surface tension of the solder becomes the outer peripheral portion and the outer peripheral portion of the punch pattern by forming the punch pattern on the electrode pad. Since the number is larger than that of the conventional structure, the alignment effect is larger.

【0020】また、アライメント効果のみを考慮する
と、円形の半田バンプの場合、半田バンプの大きさは小
さい方が良いが、半田バンプを小さくすると、接合面積
の低下により接合強度、放熱性の問題が生じる。例えば
長方形の半田バンプの場合、幅を細くするとアライメン
ト効果が良くなるが、やはり接合強度,放熱性の問題が
生じる。
In consideration of only the alignment effect, in the case of a circular solder bump, the smaller the size of the solder bump, the better. However, if the solder bump is small, the joint strength and heat dissipation will be reduced due to a decrease in the joint area. Occurs. For example, in the case of a rectangular solder bump, the narrower the width is, the better the alignment effect is, but the problems of the bonding strength and heat dissipation also arise.

【0021】抜きパターンの場合、電極パッドの面積を
変化させずに抜きパターンの位置を外周部に近づける事
によって、外周部と抜きパターンの間の半田バンプの幅
を細くすることができ、接合強度,放熱性を損なわずに
アライメント効果を上げることができる。
In the case of the punched pattern, the width of the solder bump between the outer peripheral portion and the punched pattern can be reduced by bringing the position of the punched pattern closer to the outer peripheral portion without changing the area of the electrode pad. In addition, the alignment effect can be improved without impairing the heat radiation.

【0022】次に、基板側電極パッドに半田を供給する
が、光素子実装時には、基板側電極パッドと光素子側電
極パッドの抜きパターンを合わせることによって仮固定
を行い、半田の加熱溶融時に生ずる抜きパターン周辺の
表面張力により、光素子の基板に対して水平方向の光軸
調整を行う。
Next, solder is supplied to the substrate-side electrode pads. At the time of mounting the optical element, temporary fixing is performed by matching the pattern of the substrate-side electrode pads and the optical element-side electrode pads. The optical axis in the horizontal direction is adjusted with respect to the substrate of the optical element by the surface tension around the cut pattern.

【0023】垂直方向の位置精度については、電極パッ
ド上に供給する半田の量が多くなるので、供給する半田
パッドの量のばらつきが生じても垂直方向の位置精度の
ばらつき低減が可能となる。抜きパターンの面積を電極
パッドの面積に比較して小さくすることで接合面積を充
分に確保することができ、放熱性や接合強度に関する問
題を解消する。
Regarding the positional accuracy in the vertical direction, the amount of solder supplied on the electrode pad is increased, so that even if the amount of the supplied solder pad varies, the variation in the positional accuracy in the vertical direction can be reduced. By making the area of the punched pattern smaller than the area of the electrode pad, a sufficient bonding area can be ensured, and problems relating to heat dissipation and bonding strength are eliminated.

【0024】本発明は、光素子裏面に形成された光素子
側電極パッドと基板表面に形成された基板側電極パッド
との間に介在させた半田を溶融させることによって接合
し、半田溶融時に生じる表面張力によって接合位置決め
を行い、光素子の光軸と光伝送路の光軸とを正確に合わ
せることができる光素子の実装構造である。
According to the present invention, the solder interposed between the optical element side electrode pad formed on the back surface of the optical element and the substrate side electrode pad formed on the surface of the substrate is joined by melting the solder, which is generated when the solder is melted. This is a mounting structure of an optical element capable of performing joint positioning by surface tension and accurately aligning the optical axis of the optical element with the optical axis of the optical transmission path.

【0025】特に、光軸方向と光軸に垂直な方向にそれ
ぞれ半田の表面張力が働くように、基板側電極パッドの
光素子搭載部に長方形が組み合わされた形状の抜きパタ
ーンを有するようにするとよい。光素子が発光素子であ
る場合は、放熱性を効率良くするために、光素子側電極
パッドおよび基板側電極パッド共に発光素子の活性層下
部領域には電極パッドの電極部を作製するようにしても
よい。
In particular, when the surface of the solder is applied in the optical axis direction and in the direction perpendicular to the optical axis, the optical element mounting portion of the substrate-side electrode pad has a cutout pattern formed by combining rectangles. Good. When the optical element is a light emitting element, in order to improve the heat radiation efficiency, both the optical element side electrode pad and the substrate side electrode pad are formed with an electrode part of the electrode pad in a lower region of the active layer of the light emitting element. Is also good.

【0026】また、光軸に対して垂直な方向に対して高
精度に位置決めできように、電極パッド内の抜きパター
ンの形状を光軸に対して線対称にするとよい。
Further, it is preferable that the shape of the cut pattern in the electrode pad is line-symmetric with respect to the optical axis so that positioning can be performed with high accuracy in a direction perpendicular to the optical axis.

【0027】また、抜きパターンの面積は結合面積を充
分に確保し、放熱性、接合強度の改善を行う目的で、抜
きパターンを含む電極パッドの面積に対して半分以下と
するとより好適である。
It is more preferable that the area of the punched pattern is not more than half the area of the electrode pad including the punched pattern for the purpose of securing a sufficient bonding area and improving heat dissipation and bonding strength.

【0028】[0028]

【作用】半田の表面張力により、光素子搭載部に抜きパ
ターンを有する基板側電極上への光素子のセルフアライ
メントが行うことができる。また、光素子搭載部の抜き
パターンの面積を小さくすることで、十分な接合面積を
得られ、放熱性や接合強度についての問題が回避でき
る。また、半田バンプの内部に空洞部を設けることによ
り、半田バンプの外周のみの表面張力だけでなく、内部
に作製した空洞部の外周の半田バンプの表面張力により
光素子は位置決めされる。したがって、光素子搭載部か
ら外部への電極の取り回しが出来る。
The self-alignment of the optical element on the substrate-side electrode having the cutout pattern in the optical element mounting portion can be performed by the surface tension of the solder. In addition, by reducing the area of the cutout pattern of the optical element mounting portion, a sufficient bonding area can be obtained, and problems with heat dissipation and bonding strength can be avoided. Further, by providing the hollow portion inside the solder bump, the optical element is positioned not only by the surface tension of the outer periphery of the solder bump but also by the surface tension of the solder bump on the outer periphery of the internally formed hollow portion. Therefore, the electrodes can be routed from the optical element mounting portion to the outside.

【0029】[0029]

【発明の実施の形態】以下に本発明の実施の形態につい
て図面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0030】図1に示すように、本発明の光素子31の
実装構造は、基板1上の光伝送路の光軸投影Lに対する
対称位置にパターンの抜き部4a,4bが形成された金
属パターン2a上に、光伝送路と光接続させる光素子3
1を半田3を介在させて配置し、金属パターン2a上で
溶融せしめた半田3の表面張力でもって、光素子31の
光軸を光伝送路の光軸に位置合わせして成るものであ
る。
As shown in FIG. 1, the mounting structure of the optical element 31 according to the present invention comprises a metal pattern in which pattern cutouts 4a and 4b are formed at symmetric positions with respect to the optical axis projection L of the optical transmission path on the substrate 1. An optical element 3 for optically connecting to an optical transmission line on 2a
1 is arranged with the solder 3 interposed therebetween, and the optical axis of the optical element 31 is aligned with the optical axis of the optical transmission path by the surface tension of the solder 3 melted on the metal pattern 2a.

【0031】具体的には、熱酸化したSi基板1上に、
Cr/AuまたはTi/Pt/Au等の電極パッド2a
をフォトリソグラフィと蒸着、スパッタ等にて形成す
る。また、電極パッド2aには光軸方向と光軸11に垂
直な方向に長方形の抜きパターン4a,4bを有する。
抜きパターンの位置かつ形状は、光軸に対して線対称に
形成する。
Specifically, on the thermally oxidized Si substrate 1,
Electrode pad 2a such as Cr / Au or Ti / Pt / Au
Is formed by photolithography, vapor deposition, sputtering and the like. The electrode pad 2a has rectangular removal patterns 4a and 4b in the optical axis direction and the direction perpendicular to the optical axis 11.
The positions and shapes of the cutout patterns are formed line-symmetrically with respect to the optical axis.

【0032】ここで、図1,図2に示すように、抜きパ
ターン4a,4b,4cの総面積は、電極パッド2aの
光素子搭載部の面積の半分以下とすることで、半田パッ
ド3の接合面積を広くすることになり、充分な接合強度
と放熱性が得られる。なお、光軸方向を長手方向とする
長方形の抜きパターン4aと光軸に垂直な方向を長手方
向とする長方形の抜きパターン4bを結合させた抜きパ
ターン4cとしてもよい。
Here, as shown in FIGS. 1 and 2, the total area of the cutout patterns 4a, 4b, and 4c is set to be less than half the area of the optical element mounting portion of the electrode pad 2a. As a result, the bonding area is increased, and sufficient bonding strength and heat dissipation are obtained. It should be noted that the cutout pattern 4c may be a combination of a rectangular cutout pattern 4a whose longitudinal direction is the optical axis direction and a rectangular cutout pattern 4b whose longitudinal direction is perpendicular to the optical axis.

【0033】次に、基板1側電極パッドの光素子搭載部
に、Au80wt%―Sn20wt%の共晶合金半田を
蒸着法、メッキ法やAuSn箔を打ち抜いて行うプレス
打ち抜き法等で供給し、溶解することにより、半田バン
プ3を形成する。
Next, a eutectic alloy solder of 80% by weight of Au—20% by weight of Sn is supplied to the optical element mounting portion of the electrode pad on the substrate 1 side by a vapor deposition method, a plating method, a press punching method of punching out an AuSn foil, or the like, and melting. By doing so, the solder bumps 3 are formed.

【0034】基板側電極パッド2aと光素子側電極パッ
ド2bとの間に半田バンプ3を介在させて、半田バンプ
3上に光素子31を仮固定する。光素子31の裏面には
基板側電極パッドと同一形状の電極パッド2bが形成さ
れている。
The optical element 31 is temporarily fixed on the solder bump 3 with the solder bump 3 interposed between the substrate-side electrode pad 2a and the optical element-side electrode pad 2b. On the back surface of the optical element 31, an electrode pad 2b having the same shape as the substrate-side electrode pad is formed.

【0035】最後に、窒素雰囲気中で加熱し、半田を溶
融させることによって接合する。このとき半田のセルフ
アライメント効果により高精度に光素子31を実装する
ことが可能となる。
Finally, bonding is performed by heating in a nitrogen atmosphere to melt the solder. At this time, the optical element 31 can be mounted with high precision by the self-alignment effect of the solder.

【0036】本発明により、基板側電極パッド2aと光
素子側電極パッド2bとの接合面積を充分に確保するこ
とができる。また、従来より接合面積が広くなり光素子
31から半田への熱伝導が良好となり放熱性が改善さ
れ、光素子31の発光強度の増大と高温での安定した動
作が可能となる。また、接合強度も接合面積比に比例し
て強度が得られるので、接合面積は従来よりも約4倍の
面積を有するので約4倍の接合強度が得られ信頼性の高
い構造とすることができる。
According to the present invention, a sufficient bonding area between the substrate-side electrode pad 2a and the optical element-side electrode pad 2b can be ensured. In addition, the bonding area is wider than before, the heat conduction from the optical element 31 to the solder is good, the heat dissipation is improved, and the light emission intensity of the optical element 31 can be increased and stable operation at high temperatures can be performed. In addition, since the bonding strength can be obtained in proportion to the bonding area ratio, the bonding area is about four times as large as the conventional one, so that about four times the bonding strength can be obtained and a highly reliable structure can be obtained. it can.

【0037】[0037]

【実施例】次に、本発明による光素子の実装方法および
その構造の具体的な実施例について説明する。
Next, specific examples of the method of mounting an optical element and the structure thereof according to the present invention will be described.

【0038】まず、熱酸化したSi基板1上に、Ti/
Pt/Au電極パッド2aをフォトグラフィと蒸着にて
形成した。電極パッド2aの大きさは、搭載する光素子
31の外形にあわせて、光軸方向に400ミクロン、幅
300ミクロンとした。
First, on the thermally oxidized Si substrate 1, Ti /
A Pt / Au electrode pad 2a was formed by photography and vapor deposition. The size of the electrode pad 2a was 400 microns in the optical axis direction and 300 microns in width according to the outer shape of the optical element 31 to be mounted.

【0039】電極パッド2aには光軸方向に長さ200
ミクロン、幅30ミクロンの抜きパターン4aと、光軸
11に垂直な方向に長さ100ミクロン、幅30ミクロ
ンの長方形の抜きパターン4bを有する。光素子側電極
パッド2bに基板側電極パッド2aと同型の抜きパター
ンを形成した。
The electrode pad 2a has a length of 200 in the optical axis direction.
It has a cutout pattern 4a having a width of 30 microns and a cutout pattern 4a having a length of 100 microns and a width of 30 microns in a direction perpendicular to the optical axis 11. The same pattern as the substrate-side electrode pad 2a was formed on the optical-element-side electrode pad 2b.

【0040】本実施例に用いた光素子31は発光素子で
あるので、活性層領域の直下の部分には放熱性を考慮し
て抜きパターンが形成されないようにした。
Since the optical element 31 used in this embodiment is a light emitting element, no pattern is formed in a portion immediately below the active layer region in consideration of heat dissipation.

【0041】基板側電極パッド2aの光素子搭載部に、
Au80wt%―Sn20wt%の共晶合金半田を蒸着
にて供給し溶解することにより、半田バンプ3を形成し
た。そして、基板側電極パッド2aと光素子側電極パッ
ド2bとの間に半田バンプ3を介在させて、半田バンプ
3上に光素子31を仮固定し、窒素雰囲気中で加熱し、
半田を300℃で溶融させることによって接合した。
In the optical element mounting portion of the substrate-side electrode pad 2a,
A eutectic alloy solder of 80 wt% Au-20 wt% of Sn was supplied by vapor deposition and melted to form a solder bump 3. Then, the optical element 31 is temporarily fixed on the solder bump 3 with the solder bump 3 interposed between the substrate-side electrode pad 2a and the optical element-side electrode pad 2b, and heated in a nitrogen atmosphere.
Bonding was performed by melting the solder at 300 ° C.

【0042】図2に光軸11(又は光軸投影(方向)
L)に対して長軸方向が垂直方向な長方形と長軸方向が
光軸方向の長方形が結合した抜きパターン4cの一例を
示している。
FIG. 2 shows the optical axis 11 (or the optical axis projection (direction)).
L) illustrates an example of a cutout pattern 4c in which a rectangle whose major axis direction is perpendicular to the rectangle and a rectangle whose major axis direction is optical axis are combined.

【0043】また、長方形パターンの短辺方向の位置決
め精度を高くするに従って、図3(a)〜(c)や図4
(a)〜(f)に示すように、光軸11に対して長軸方
向が垂直方向な長方形と長軸方向が光軸方向の長方形の
抜きパターンの組み合わせの実施例を示す。長方形の組
み合わせにより光軸に対して垂直方向と光軸方向のアラ
イメントを同時に行うことができる。
FIGS. 3 (a) to 3 (c) and FIGS.
As shown in (a) to (f), an example of a combination of a rectangle whose major axis direction is perpendicular to the optical axis 11 and a cutout pattern of a rectangle whose major axis direction is the optical axis direction will be described. Alignment in the direction perpendicular to the optical axis and in the optical axis direction can be performed simultaneously by combining the rectangles.

【0044】なお、図5に理解しやすいように、光導波
路41を有する基板1における光素子31の実装構造例
について、図6に光ファイバ固定用V溝52に光ファイ
バ51を搭載した基板1における光素子31の実装構造
例を示す。
For easy understanding, FIG. 5 shows an example of the mounting structure of the optical element 31 in the substrate 1 having the optical waveguide 41. FIG. 6 shows the substrate 1 having the optical fiber 51 mounted in the optical fiber fixing V-groove 52. 3 shows an example of a mounting structure of the optical element 31 in FIG.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
例えば光素子側電極パッドと基板側電極パッドに光軸方
向と光軸に垂直な方向に光軸に対して線対称な長方形の
抜きパターンを作製することにより、光素子実装時に半
田の表面張力により水平方向のセルフアライメント機能
を有し、従来の球状半田バンプや長方形の半田バンプに
比べて接合面積を拡大することにより、放熱性や接合強
度を改善することができる。
As described in detail above, according to the present invention,
For example, by making rectangular removal patterns that are line-symmetric with respect to the optical axis in the optical axis direction and the direction perpendicular to the optical axis in the optical element side electrode pad and the substrate side electrode pad, the surface tension of the solder during the optical element mounting By having a horizontal self-alignment function and increasing the bonding area as compared with conventional spherical solder bumps or rectangular solder bumps, heat dissipation and bonding strength can be improved.

【0046】また、高さ方向の精度については、供給す
る半田の量が多ければ、供給量の多少のばらつきがあっ
ても高さ精度には影響が少ないので、高精度に位置決め
を行うことができる。
As for the accuracy in the height direction, if the amount of solder to be supplied is large, even if there is a slight variation in the amount of supply, the height accuracy is hardly affected. it can.

【0047】また、半田バンプの外形のみの表面張力に
頼らずに位置決めを行うことができ、光素子搭載部以外
への電極の取り出しが可能になる。
Further, the positioning can be performed without relying on the surface tension of only the outer shape of the solder bump, and the electrode can be taken out of the portion other than the optical element mounting portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光素子の実装構造を説明する図で
あり、(a)は平面図、(b)は(a)のB−B線断面
図、(c)は(a)のC−C線断面図である。
1A and 1B are diagrams for explaining a mounting structure of an optical element according to the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line BB of FIG. It is CC sectional drawing.

【図2】本発明に係る他の光素子の実装構造を説明する
図であり、(a)は平面図、(b)は(a)のB−B線
断面図、(c)は(a)のC−C線断面図である。
2A and 2B are diagrams illustrating a mounting structure of another optical element according to the present invention, wherein FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along the line BB of FIG. () Is a sectional view taken along line CC.

【図3】(a)〜(c)はそれぞれ本発明に係る金属パ
ターンの変形例を説明する平面図である。
FIGS. 3A to 3C are plan views each illustrating a modification of the metal pattern according to the present invention.

【図4】(a)〜(f)はそれぞれ本発明に係る金属パ
ターンの変形例を説明する平面図である。
FIGS. 4A to 4F are plan views each illustrating a modified example of the metal pattern according to the present invention.

【図5】本発明に係る光素子の実装構造における光素子
と光伝送路との結合を示す図であり、(a)は平面図、
(b)は(a)のB−B線断面図、(c)は(a)のC
−C線断面図である。
5A and 5B are diagrams showing coupling between an optical element and an optical transmission line in the optical element mounting structure according to the present invention, wherein FIG.
(B) is a sectional view taken along the line BB of (a), and (c) is a sectional view of C of (a).
FIG. 4 is a sectional view taken along line C of FIG.

【図6】本発明に係る光素子の実装構造における光素子
と光伝送路との結合を示す図であり、(a)は平面図、
(b)は(a)のB−B線断面図、(c)は(a)のC
−C線断面図である。
6A and 6B are diagrams showing coupling between an optical element and an optical transmission line in a mounting structure of the optical element according to the present invention, wherein FIG.
(B) is a sectional view taken along the line BB of (a), and (c) is a sectional view of C of (a).
FIG. 4 is a sectional view taken along line C of FIG.

【図7】従来の光素子の実装構造における光素子と光伝
送路との結合を示す図であり、(a)は平面図、(b)
は(a)のB−B線断面図、(c)は(a)のC−C線
断面図である。
7A and 7B are diagrams showing coupling between an optical element and an optical transmission line in a conventional optical element mounting structure, where FIG. 7A is a plan view and FIG.
5A is a cross-sectional view taken along the line BB of FIG. 5A, and FIG. 5C is a cross-sectional view taken along the line CC of FIG.

【図8】従来の光素子の実装構造における光素子と光伝
送路との結合を示す図であり、(a)は平面図、(b)
は(a)のB−B線断面図、(c)は(a)のC−C線
断面図である。
8A and 8B are diagrams showing coupling between an optical element and an optical transmission line in a conventional optical element mounting structure, where FIG. 8A is a plan view and FIG.
5A is a cross-sectional view taken along the line BB of FIG. 5A, and FIG. 5C is a cross-sectional view taken along the line CC of FIG.

【図9】従来の光素子の実装構造における光素子と光伝
送路との結合を示す図であり、(a)は平面図、(b)
は(a)のB−B線断面図、(c)は(a)のC−C線
断面図である。
9A and 9B are diagrams showing coupling between an optical element and an optical transmission line in a conventional optical element mounting structure, where FIG. 9A is a plan view and FIG.
5A is a cross-sectional view taken along the line BB of FIG. 5A, and FIG. 5C is a cross-sectional view taken along the line CC of FIG.

【図10】従来の光素子の実装構造における光素子と光
伝送路との結合を示す図であり、(a)は平面図、
(b)は(a)のB−B線断面図、(c)は(a)のC
−C線断面図である。
10A and 10B are diagrams showing coupling between an optical element and an optical transmission line in a conventional optical element mounting structure, wherein FIG.
(B) is a sectional view taken along the line BB of (a), and (c) is a sectional view of C of (a).
FIG. 4 is a sectional view taken along line C of FIG.

【符号の説明】[Explanation of symbols]

1:基板 2a、2b:電極パッド(金属パターン) 3:半田パッド 4a、4b、4c:抜きパターン 11:光軸 31:光素子(レーザーダイオード) 41:光導波路 51:光ファイバ 52:光ファイバ固定用V溝 53:光ファイバストッパー用矩形溝 1: substrate 2a, 2b: electrode pad (metal pattern) 3: solder pad 4a, 4b, 4c: blank pattern 11: optical axis 31: optical element (laser diode) 41: optical waveguide 51: optical fiber 52: optical fiber fixed V-groove 53: Rectangular groove for optical fiber stopper

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上の光伝送路の光軸投影に対する対
称位置にパターンの抜き部が形成された金属パターン上
に、前記光伝送路と光接続させる光素子を半田を介在さ
せて配置し、前記金属パターン上で溶融せしめた半田の
表面張力でもって、前記光素子の光軸を前記光伝送路の
光軸に位置合わせして成る光素子の実装構造。
An optical element to be optically connected to an optical transmission line is disposed on a metal pattern having a pattern cutout formed at a position symmetrical to an optical axis projection of the optical transmission line on a substrate, with solder interposed therebetween. An optical element mounting structure in which the optical axis of the optical element is aligned with the optical axis of the optical transmission path by the surface tension of the solder melted on the metal pattern.
JP10185291A 1998-06-30 1998-06-30 Mounting structure for optical element Pending JP2000022279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10185291A JP2000022279A (en) 1998-06-30 1998-06-30 Mounting structure for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185291A JP2000022279A (en) 1998-06-30 1998-06-30 Mounting structure for optical element

Publications (1)

Publication Number Publication Date
JP2000022279A true JP2000022279A (en) 2000-01-21

Family

ID=16168296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185291A Pending JP2000022279A (en) 1998-06-30 1998-06-30 Mounting structure for optical element

Country Status (1)

Country Link
JP (1) JP2000022279A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442609B1 (en) * 2002-03-05 2004-08-02 삼성전자주식회사 Structure of flip chip bonding and method for bonding
US7164617B2 (en) 2004-03-09 2007-01-16 Nec Electronics Corporation Memory control apparatus for synchronous memory unit with switched on/off clock signal
JP2007073769A (en) * 2005-09-07 2007-03-22 Mitsubishi Electric Corp Optical semiconductor device and method of manufacturing same
US7499614B2 (en) 2003-10-24 2009-03-03 International Business Machines Corporation Passive alignment of VCSELs to waveguides in opto-electronic cards and printed circuit boards
US8139906B2 (en) 2006-09-29 2012-03-20 Electronics And Telecommunications Research Institute Optical wiring module
JP2017092137A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Semiconductor optical element, semiconductor assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442609B1 (en) * 2002-03-05 2004-08-02 삼성전자주식회사 Structure of flip chip bonding and method for bonding
US7499614B2 (en) 2003-10-24 2009-03-03 International Business Machines Corporation Passive alignment of VCSELs to waveguides in opto-electronic cards and printed circuit boards
US7164617B2 (en) 2004-03-09 2007-01-16 Nec Electronics Corporation Memory control apparatus for synchronous memory unit with switched on/off clock signal
JP2007073769A (en) * 2005-09-07 2007-03-22 Mitsubishi Electric Corp Optical semiconductor device and method of manufacturing same
US8139906B2 (en) 2006-09-29 2012-03-20 Electronics And Telecommunications Research Institute Optical wiring module
JP2017092137A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Semiconductor optical element, semiconductor assembly

Similar Documents

Publication Publication Date Title
JP3028791B2 (en) How to mount chip components
US5249733A (en) Solder self-alignment methods
JP2985830B2 (en) Optical module and manufacturing method thereof
JPH0894888A (en) Optical semiconductor module and its production
JP2629435B2 (en) Manufacturing method of sub-substrate for arrayed optical element
JPH0961674A (en) Optical module and its production
JP2828025B2 (en) Semiconductor laser module
JP2655112B2 (en) Optical module mounting method and structure
JP4429564B2 (en) Mounting structure and method of optical component and electric component
JP2004012803A (en) Printed board unit for optical transmission, and mounting method
JPH10170769A (en) Method for packaging optical element
JP2000022279A (en) Mounting structure for optical element
JP4605850B2 (en) Optical mounting substrate manufacturing method
US5028111A (en) Method of fixing cylindrical optical part and electric part
JPH11233877A (en) Array-type laser diode
JP2534263B2 (en) Optical element mounting method
JP3884903B2 (en) Optical module, optical transmission device and manufacturing method thereof
JP3393483B2 (en) Optical semiconductor module and manufacturing method thereof
JP2000137148A (en) Optical module and manufacture of the same
JP5534155B2 (en) Device and device manufacturing method
JP3348122B2 (en) Optical transmission module and manufacturing method thereof
JPH06201921A (en) Optical parts and its fixing method
TW200530555A (en) Etalon positioning using solder balls
JPH01302214A (en) Chip carrier
JP2001185800A (en) Optical module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees