JP2000021866A - Semiconductor manufacturing apparatus and method of forming polyimide film - Google Patents

Semiconductor manufacturing apparatus and method of forming polyimide film

Info

Publication number
JP2000021866A
JP2000021866A JP10191798A JP19179898A JP2000021866A JP 2000021866 A JP2000021866 A JP 2000021866A JP 10191798 A JP10191798 A JP 10191798A JP 19179898 A JP19179898 A JP 19179898A JP 2000021866 A JP2000021866 A JP 2000021866A
Authority
JP
Japan
Prior art keywords
chamber
vapor deposition
raw material
film
deposition polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10191798A
Other languages
Japanese (ja)
Other versions
JP4283910B2 (en
Inventor
Masayuki Iijima
正行 飯島
Masatoshi Sato
昌敏 佐藤
Yoshiyuki Ukishima
禎之 浮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP19179898A priority Critical patent/JP4283910B2/en
Publication of JP2000021866A publication Critical patent/JP2000021866A/en
Application granted granted Critical
Publication of JP4283910B2 publication Critical patent/JP4283910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide with a simple process a semiconductor manufacturing apparatus for forming a low specific dielectric const. polymer composite film for an layer insulation film, having stable physical properties, and a method of easily forming the low specific dielectric const. polyimide film in a semiconductor element through evaporation-polymerization. SOLUTION: In this semiconductor manufacturing apparatus, gas flow rate controllers 11A, 11B are provided between an evaporation-polymerizing chamber 3, and monomer evaporation sources for controlling the feed rates of raw material monomers A, B are provided for the evaporation-polymerization into the evaporation-polymerizing chamber 3 which has evaporation sources of the raw material monomers A, B. With the use of such an apparatus for evaporation- polymerization of the raw material monomers to form a polyimide film on a substrate, the gas flow rate controllers 11A, 11B control the feed rates of the raw material monomers A, B gasified in the evaporation sources and feed to the evaporation-polymerizing chamber 3 to form the polyimide film on the substrate through the evaporation-polymerization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子内の層
間絶縁膜を蒸着重合により形成するための半導体製造装
置およびこの装置を用いるポリイミド膜の形成方法に関
する。
The present invention relates to a semiconductor manufacturing apparatus for forming an interlayer insulating film in a semiconductor element by vapor deposition polymerization and a method for forming a polyimide film using the apparatus.

【0002】[0002]

【従来の技術】従来、半導体素子の層間絶縁膜として
は、回転塗布法によるSOG(Spin onGlass)膜やCV
D法(化学蒸着法)によるSiO2膜が主に用いられて
いる。これらの方法によって形成された層間絶縁膜の比
誘電率は約4となるが、最近はLSIの高集積化の進展
により層間絶縁膜の低比誘電率化が大きな課題とされて
おり、比誘電率が4以下の層間絶縁膜が要求されるよう
になっている。
2. Description of the Related Art Conventionally, as an interlayer insulating film of a semiconductor device, an SOG (Spin on Glass) film or a CV
A SiO 2 film formed by a method D (chemical vapor deposition) is mainly used. The relative dielectric constant of the interlayer insulating film formed by these methods is about 4, but recently, with the progress of high integration of LSI, it has been regarded as a major issue to lower the relative dielectric constant of the interlayer insulating film. An interlayer insulating film having a ratio of 4 or less is required.

【0003】このような要求に対しては、近年、プラズ
マCVD法によって形成されたSiO2膜にフッ素を添
加したSiOF膜やアモルファスフッ素化カーボン膜が
提案されており、かかる膜の場合、層間絶縁膜の比誘電
率を前者は3.7−3.2程度、後者は2.7−2.3
程度に抑えることができる。
[0003] In response to such demands, in recent years, SiOF films or amorphous fluorinated carbon films in which fluorine has been added to an SiO 2 film formed by a plasma CVD method have been proposed. The relative dielectric constant of the film is about 3.7-3.2 for the former and 2.7-2.3 for the latter.
It can be suppressed to the extent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来技術においては、次のような問題があった。すなわ
ち、上述のプラズマCVD法によるSiOF膜は低比誘
電率化が達成できる反面、膜の形成方法や成膜条件によ
って膜特性が大きく異なったり、また膜中のフッ素の脱
離や吸湿性が大きいといった膜の不安定性により誘電率
を悪化させてしまうという問題が指摘されており、将来
の低比誘電率材料としての応用は難しい状況にある。
However, such a conventional technique has the following problems. That is, while the SiOF film formed by the above-described plasma CVD method can achieve a low dielectric constant, the film characteristics greatly differ depending on the film forming method and film forming conditions, and the desorption and moisture absorption of fluorine in the film are large. It has been pointed out that the instability of the film deteriorates the dielectric constant, and it is difficult to apply the material as a low dielectric constant material in the future.

【0005】また、上述のアモルファスフッ素化カーボ
ン膜の場合も、膜の形成方法や成膜条件によって膜特性
が大きく異なり、低誘電率を達成するためには耐熱性を
犠牲にする必要がある。そのため、層間絶縁膜作製プロ
セス以外のプロセス温度(約400℃)において分解し
たガスが発生しやすく、層間絶縁膜の上にさらに膜を作
製した場合に、層間にガスが発生し、半導体素子を破壊
する要因になると指摘されている。
Also, in the case of the above-mentioned amorphous fluorinated carbon film, the film characteristics greatly differ depending on the method of forming the film and the film forming conditions, and it is necessary to sacrifice the heat resistance to achieve a low dielectric constant. For this reason, decomposed gas is likely to be generated at a process temperature (about 400 ° C.) other than the interlayer insulating film forming process, and when a further film is formed on the interlayer insulating film, gas is generated between the layers and the semiconductor element is destroyed. It has been pointed out that this can be a factor.

【0006】耐熱性と低誘電率を満足させる材料の候補
としてフッ素化ポリイミドを用いることも提案されてお
り、蒸着重合法により従来のCVD法に近い成膜装置で
低誘電率のポリイミドをコーティングできるようになっ
た。しかし、この場合、原料モノマーの蒸発量または該
モノマーの成膜装置への供給量を精密にコントロールす
ることが困難であり、満足しうるものではなかった。
It has also been proposed to use fluorinated polyimide as a candidate for a material that satisfies heat resistance and a low dielectric constant. A low dielectric constant polyimide can be coated by a vapor deposition polymerization method using a film forming apparatus similar to a conventional CVD method. It became so. However, in this case, it is difficult to precisely control the evaporation amount of the raw material monomer or the supply amount of the monomer to the film forming apparatus, which is not satisfactory.

【0007】本発明は、このような従来の技術の課題を
解決するためになされたものであり、簡易な工程で安定
した特性を有する層間絶縁膜用の低比誘電率高分子複合
膜を形成するための半導体製造装置およびこの装置を用
いて半導体素子内の層間絶縁膜用のポリイミド膜を蒸着
重合により容易に形成する方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and forms a low dielectric constant polymer composite film for an interlayer insulating film having stable characteristics in a simple process. It is an object of the present invention to provide a semiconductor manufacturing apparatus and a method for easily forming a polyimide film for an interlayer insulating film in a semiconductor element by vapor deposition polymerization using the apparatus.

【0008】[0008]

【課題を解決するための手段】本発明の半導体製造装置
は、ウエハーの出し入れのための室とウエハーの搬送用
ロボットを備えたコア室と複数の半導体製造プロセス室
とからなり、該プロセス室の少なくとも一室が蒸着重合
用原料モノマーの蒸発源を有する蒸着重合室である枚葉
式の半導体製造装置において、該蒸着重合室と該原料モ
ノマー蒸発源との間に、該蒸発源から該蒸着重合室へ導
入される該原料モノマーの供給量を制御するための気体
流量コントローラーが設けられている。
The semiconductor manufacturing apparatus of the present invention comprises a chamber for loading and unloading wafers, a core chamber having a wafer transfer robot, and a plurality of semiconductor manufacturing process chambers. In a single-wafer semiconductor manufacturing apparatus in which at least one chamber is a vapor deposition polymerization chamber having an evaporation source of a raw material monomer for vapor deposition polymerization, between the vapor deposition polymerization chamber and the raw material monomer evaporation source, the vapor deposition polymerization is performed from the evaporation source. A gas flow controller for controlling the supply amount of the raw material monomer introduced into the chamber is provided.

【0009】また、本発明のポリイミド膜の形成方法
は、ウエハーの出し入れのための室とウエハーの搬送用
ロボットを備えたコア室と複数の半導体製造プロセス室
とからなり、該プロセス室の少なくとも一室が蒸着重合
用原料モノマーの蒸発源を有する蒸着重合室である枚葉
式の半導体製造装置を用いてポリアミド膜を形成する方
法において、該蒸着重合室内で基板上に該原料モノマー
を蒸着重合せしめてポリイミド膜を形成するに際し、該
蒸着重合室と該原料モノマー蒸発源との間に設けてある
気体流量コントローラーによって、該蒸発源で気化され
た該原料モノマーの供給量を制御して該蒸着重合室へ導
入し、該ウエハー上に蒸着重合によりポリイミド膜を形
成することからなる。これにより耐熱性と電気特性に優
れ、かつ特性にばらつきの少ないポリイミド膜が得られ
る。
Further, the method of forming a polyimide film according to the present invention comprises a chamber for loading and unloading a wafer, a core chamber having a wafer transfer robot, and a plurality of semiconductor manufacturing process chambers. In a method of forming a polyamide film using a single-wafer type semiconductor manufacturing apparatus in which a chamber is an evaporation polymerization chamber having an evaporation source of an evaporation polymerization raw material monomer, the raw material monomer is vapor-deposited and polymerized on a substrate in the evaporation polymerization chamber. When a polyimide film is formed by vapor deposition polymerization, the supply rate of the raw material monomer vaporized by the evaporation source is controlled by a gas flow rate controller provided between the vapor deposition polymerization chamber and the raw material monomer evaporation source. And forming a polyimide film on the wafer by vapor deposition polymerization. As a result, a polyimide film having excellent heat resistance and electrical properties and having little variation in properties can be obtained.

【0010】本発明においてポリイミド膜形成のために
用いられる原料モノマーは、特に制限はなく、反応性が
低いモノマー同士の組み合わせであっても、反応性が高
くかつ蒸気圧の低いモノマー同士の組み合わせであって
もよく、既知のポリイミドを形成するための原料モノマ
ー、例えば、4,4′−ジアミノジフェニルエーテル
(ODA)、ピロメリット酸二無水物(PMDA)等を
使用できる。また、蒸着重合の条件は、一般に、高真空
中(1×10-3Pa以下)で両モノマーの組成比が化学
量論比になるよう加熱蒸着するものである。ただし、基
板温度はモノマーの種類により異なる。
In the present invention, the raw material monomer used for forming the polyimide film is not particularly limited, and may be a combination of monomers having low reactivity or a combination of monomers having high reactivity and low vapor pressure. A known raw material monomer for forming a polyimide, for example, 4,4'-diaminodiphenyl ether (ODA), pyromellitic dianhydride (PMDA) or the like may be used. In general, the conditions for vapor deposition polymerization are such that heating and vapor deposition are performed in a high vacuum (1 × 10 −3 Pa or less) such that the composition ratio of both monomers becomes a stoichiometric ratio. However, the substrate temperature differs depending on the type of the monomer.

【0011】一般に、蒸着重合による成膜プロセスにお
いては、原料モノマーの反応性と蒸気圧とが成膜に大き
く影響する。反応性が低いモノマー同士の組み合わせで
は、基板温度を上げれば、モノマーの反応律速条件で重
合が起こり成膜するので、各モノマーの蒸着重合室への
導入量を精密に制御する必要はない。しかし、反応性が
高く、かつ蒸気圧の低いモノマー同士の組み合わせで
は、モノマーの供給律速条件で重合が起こり成膜するの
で、各モノマーの蒸着重合室への導入量を精密に制御す
ることが必要になる。2種以上のモノマーを使う蒸着重
合では、各モノマーの組成比が1:1に近いほど、得ら
れる重合体材料の耐熱性、機械的特性、電気的特性等の
物性は向上するが、逆に、組成比がずれるほど物性は低
下する。従来の方法では、モノマー供給量と気化温度の
みで各モノマーの蒸着重合室への導入量を制御していた
だけなので、この方法では精密な制御ができ難く、かく
して得られた膜の特性がばらつくという欠点があった。
しかし、本発明のように気体流量コントローラーを用い
て各モノマーの蒸着重合室への導入量を精密に制御すれ
ば、得られる膜の物性のばらつきは極めて小さくなる。
例えば、気体流量コントローラーを使用しないで成膜し
た膜の物性値のばらつきは平均値±10%程度である
が、気体流量コントローラーを使用して成膜した膜の物
性値のばらつきは平均値±3%程度のように低くなると
共に、物性値自体も5〜10%向上する。
In general, in a film forming process by vapor deposition polymerization, the reactivity and vapor pressure of a raw material monomer greatly affect the film formation. In the case of a combination of monomers having low reactivity, if the substrate temperature is increased, polymerization occurs under the reaction rate-determining conditions of the monomers, and a film is formed. Therefore, it is not necessary to precisely control the introduction amount of each monomer into the vapor deposition polymerization chamber. However, in the case of a combination of monomers with high reactivity and low vapor pressure, polymerization occurs under the rate-limiting condition of monomer supply and a film is formed, so it is necessary to precisely control the amount of each monomer introduced into the vapor deposition polymerization chamber. become. In vapor deposition polymerization using two or more monomers, as the composition ratio of each monomer is closer to 1: 1, the physical properties such as heat resistance, mechanical properties, and electrical properties of the obtained polymer material are improved. As the composition ratio deviates, the physical properties decrease. In the conventional method, the amount of each monomer introduced into the vapor deposition polymerization chamber was controlled only by the monomer supply amount and the vaporization temperature, so it was difficult to precisely control this method, and the characteristics of the film thus obtained would vary. There were drawbacks.
However, if the amount of each monomer introduced into the vapor deposition polymerization chamber is precisely controlled using a gas flow controller as in the present invention, the variation in the physical properties of the obtained film becomes extremely small.
For example, the variation of the physical properties of the film formed without using the gas flow controller is about ± 10% on average, while the variation of the physical properties of the film formed using the gas flow controller is about ± 3. %, And the physical properties themselves are improved by 5 to 10%.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を参照して詳細に説明する。図1は、本発明の
半導体製造装置の一例の概略構成を示すものであり、図
2は図1の一部を構成する蒸着重合室の一例の概略構成
を示すものである。
Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an example of the semiconductor manufacturing apparatus of the present invention, and FIG. 2 shows a schematic configuration of an example of a vapor deposition polymerization chamber forming a part of FIG.

【0013】図1に示すように、この装置においては、
シリコン基板等の基板の搬送用ロボットが組み込まれた
コア室1、シリコン基板等の基板のL/UL室2、蒸着
重合室(第1室)3、加熱処理室(第2室)4、および
アルミスパッタ室(第3室)5が設けられており、コア
室1を中心として、このコア室にL/UL室2、第1室
3、第2室4、および第3室5がそれぞれ、ゲートバル
ブ7を介して連結されるように構成されている。なお、
これらの室は、真空ポンプ等の真空排気系(図示せず)
に連結されている。コア室1に設けられた既知の基板搬
送用ロボットは、基板を、コア室を軸にしてL/UL室
2、蒸着重合室3、加熱処理室4、アルミスパッタ室5
等からまたこれらの各室に搬入・搬出可能なように設定
されており、L/UL室からこれらの各室にまたこれら
の室相互間で自由に搬送可能なようになっている。
As shown in FIG. 1, in this device,
A core chamber 1 in which a robot for transferring a substrate such as a silicon substrate is incorporated, an L / UL chamber 2 for a substrate such as a silicon substrate, a vapor deposition polymerization chamber (first chamber) 3, a heat treatment chamber (second chamber) 4, and An aluminum sputtering chamber (third chamber) 5 is provided, and the L / UL chamber 2, the first chamber 3, the second chamber 4, and the third chamber 5 are provided around the core chamber 1, respectively. It is configured to be connected via a gate valve 7. In addition,
These chambers are equipped with a vacuum exhaust system such as a vacuum pump (not shown).
It is connected to. A known substrate transfer robot provided in the core chamber 1 is configured to transfer a substrate into an L / UL chamber 2, a vapor deposition polymerization chamber 3, a heat treatment chamber 4, an aluminum sputter chamber 5 around the core chamber.
It is set so that it can be carried in and out of each of these chambers, and can be freely transported from the L / UL chamber to each of these chambers and between these chambers.

【0014】また、図2に示すように、蒸着重合室3に
は、2種類の原料モノマーA、Bの供給源が気化(蒸
発)器11a、11bと気体流量コントローラー12
a、12bを介して配置されており、蒸着重合室へ気化
された原料モノマーを導入できるようになっている。各
モノマー供給源のハウジング13a、13bにはそれぞ
れ、モノマーA、Bのモノマー容器14a、14bが設
けられ、また各容器の周りにはそれぞれに各モノマーを
加熱するためにのヒーターのような気化用熱源15a、
15bが設けられている。供給源(気化器11a、11
b)、気体流量コントローラー12a、12b、および
蒸着重合室3を連結し、かつ蒸着重合室へ各モノマーを
導入するための導入管16a、16bは、ヒーター等の
熱源Hで温度制御可能なようになっている。また、導入
管16a、16bの蒸着重合室3への連結部と基板支え
部材17上に載置された基板18との間には、各モノマ
ーが基板上に均一に供給できるようにするためヒーター
等の熱源Hにより保温されたモノマー混合槽19が配置
されている。
As shown in FIG. 2, in the vapor deposition polymerization chamber 3, supply sources of two types of raw material monomers A and B are provided with vaporizers (evaporators) 11a and 11b and a gas flow controller 12a.
a, 12b, so that the vaporized raw material monomer can be introduced into the vapor deposition polymerization chamber. The housings 13a and 13b of the respective monomer supply sources are provided with monomer containers 14a and 14b for the monomers A and B, respectively. Around each container for vaporization such as a heater for heating each monomer, respectively. Heat source 15a,
15b are provided. Supply source (vaporizer 11a, 11
b), the gas flow controllers 12a and 12b and the vapor deposition polymerization chamber 3 are connected, and the introduction pipes 16a and 16b for introducing each monomer into the vapor deposition polymerization chamber are controlled so that the temperature can be controlled by a heat source H such as a heater. Has become. A heater is provided between the connecting portions of the introduction pipes 16a and 16b to the vapor deposition polymerization chamber 3 and the substrate 18 placed on the substrate support member 17 so that each monomer can be uniformly supplied onto the substrate. A monomer mixing tank 19 kept warm by a heat source H is disposed.

【0015】各導入管16a、16bの管路の途中には
バルブ20a、20bが配置されており、蒸着重合膜形
成時にこれらのバルブを開閉することにより膜厚を制御
できる。
Valves 20a and 20b are arranged in the middle of the conduits of the introduction pipes 16a and 16b, and the film thickness can be controlled by opening and closing these valves when forming the vapor-deposited polymerized film.

【0016】上記装置を用いて基板18上に成膜する場
合には、基板をL/UL室2からコア室を経由して蒸着
重合室3へ移動した後バルブ20a、20bを開け、所
定の時間の間成膜プロセスを実施し、次いでバルブ20
a、20bを閉め、基板を加熱処理室4に搬送する。こ
の加熱処理室内で、所定の条件下熱処理を行う。一般
に、熱処理は、昇温速度10℃/分で400℃まで加熱
し、1時間この温度に保持し、最後に自然冷却するよう
にして行われる。雰囲気としては、高真空中または不活
性ガス中のような条件下で行われる。また、必要に応
じ、基板をアルミスパッタ5室へ搬送して、一般に、A
r:1000sccm、1×10-2Pa、RFパワー:
2KW、基板バイアスなし、成膜速度(rate):5
0Å/sec、膜厚:200nmのような条件下でアル
ミ電極を成膜することもできる。
When a film is formed on the substrate 18 using the above apparatus, the substrate is moved from the L / UL chamber 2 to the vapor deposition polymerization chamber 3 via the core chamber, and then the valves 20a and 20b are opened. Perform the deposition process for a period of time and then
a, 20b are closed, and the substrate is transported to the heat treatment chamber 4. Heat treatment is performed in this heat treatment chamber under predetermined conditions. Generally, the heat treatment is performed by heating to 400 ° C. at a rate of temperature increase of 10 ° C./min, holding at this temperature for 1 hour, and finally cooling naturally. The atmosphere is performed under conditions such as in a high vacuum or in an inert gas. Also, if necessary, the substrate is transferred to the aluminum sputtering 5 chamber,
r: 1000 sccm, 1 × 10 -2 Pa, RF power:
2KW, no substrate bias, deposition rate (rate): 5
An aluminum electrode can be formed under conditions such as 0 ° / sec and a film thickness of 200 nm.

【0017】以下、本発明の装置を用いてポリイミド膜
からなる半導体素子の層間絶縁膜を形成する工程の一つ
の実施の形態を示す。
Hereinafter, one embodiment of a process for forming an interlayer insulating film of a semiconductor element made of a polyimide film using the apparatus of the present invention will be described.

【0018】まず、ポリイミド膜を形成するための半導
体基板として、基板表面に形成され、かつ所定の位置に
窓開けがされたシリコン熱酸化膜と、その上に成膜され
かつパターニングが施された第1層目の配線とを有す
る、例えばSiからなる基板を用意する。この基板の表
面に、上述の蒸着法によってポリイミド膜を所望の厚み
に全面成膜して層間絶縁膜を形成する。次いで、この層
間絶縁膜の表面に所定のパターニングが施されたレジス
ト膜を形成し、通常のドライエッチングを行ってレジス
ト膜の窓開け部分に露出した層間絶縁膜を除去する。そ
して、上述のレジスト膜を除去した後、配線薄膜を全面
成膜し、パターニングを施して第2層目の配線を形成す
る。このようにすることにより、層間絶縁膜が除去され
た窓開け部分で、第1層目の配線と第2層目の配線とが
電気的に接続され、その結果、多層配線を有する半導体
素子を得ることができる。
First, as a semiconductor substrate for forming a polyimide film, a silicon thermal oxide film formed on a substrate surface and having a window opened at a predetermined position, and a silicon thermal oxide film formed thereon and patterned A substrate made of, for example, Si having a first layer wiring is prepared. On the surface of the substrate, a polyimide film is entirely formed to a desired thickness by the above-described vapor deposition method to form an interlayer insulating film. Next, a resist film having a predetermined pattern is formed on the surface of the interlayer insulating film, and ordinary dry etching is performed to remove the interlayer insulating film exposed at a window opening portion of the resist film. Then, after removing the above-described resist film, a wiring thin film is formed on the entire surface and patterned to form a second-layer wiring. By doing so, the first layer wiring and the second layer wiring are electrically connected at the window opening where the interlayer insulating film is removed, and as a result, the semiconductor element having the multilayer wiring is connected. Obtainable.

【0019】本実施の形態によれば、低比誘電率化した
ポリイミド膜によって層間絶縁膜を構成しているので、
第1層目の配線と第2層目の配線との間で形成されるコ
ンデンサーの容量が小さくなり、半導体素子の動作速度
を向上させることが可能になる。
According to the present embodiment, since the interlayer insulating film is constituted by the polyimide film having a reduced relative dielectric constant,
The capacitance of the capacitor formed between the first-layer wiring and the second-layer wiring is reduced, and the operation speed of the semiconductor element can be improved.

【0020】[0020]

【実施例】以下、本発明の具体的な実施例を比較例と共
に説明する。
EXAMPLES Hereinafter, specific examples of the present invention will be described together with comparative examples.

【0021】(実施例1)図1および2に示す装置を用
いて次のようにして基板上にポリイミド膜を形成した。
まず、コア室1に設けられた基板搬送用ロボットを用い
て、L/UL室2からコア室1を経由して導電率が0.
02Ωcmである6インチ径のシリコン基板17を真空
蒸着室3へ搬送し、ここでポリイミド膜を蒸着重合し
た。ポリイミド膜を形成するための原料モノマーとし
て、4,4′−ジアミノジフェニルエーテル(ODA)
とピロメリット酸二無水物(PMDA)とを用い、これ
らをそれぞれ気化器11a、11b内の容器14a、1
4bへ入れ、熱源(15a、15b)を用いて蒸発させ
た。ODAは158.0+0.1℃で、またPMDAは
182+0.1℃の温度で蒸発させ、各モノマーの供給
量を制御した。得られた各蒸気をそれぞれ導入管16
a、16bを通し、気体流量コントローラー12a、1
2bで一定流量(例えば、100sccm)とし、モノ
マー混合槽19を経て蒸着重合室3に供給し、基板17
上で蒸着重合せしめた。なお、モノマーの組成比は化学
量論比で1:1となるように制御し、また導入管16
a、16bを通過する間にモノマー温度が下がらないよ
うに導入管を所定の温度に保温した。この蒸着重合条件
は、基板温度:25℃、圧力:1×10-3Pa、成膜速
度(rate):100Å/secであった。
Example 1 A polyimide film was formed on a substrate as follows using the apparatus shown in FIGS.
First, by using the substrate transfer robot provided in the core chamber 1, the electric conductivity is set to 0.4 from the L / UL chamber 2 via the core chamber 1.
A 6-inch diameter silicon substrate 17 of 02 Ωcm was transported to the vacuum evaporation chamber 3, where a polyimide film was vapor-deposited and polymerized. 4,4'-diaminodiphenyl ether (ODA) as a raw material monomer for forming a polyimide film
And pyromellitic dianhydride (PMDA), and these are supplied to the containers 14a and 14a in the vaporizers 11a and 11b, respectively.
4b and evaporated using heat sources (15a, 15b). ODA was evaporated at a temperature of 158.0 + 0.1 ° C. and PMDA was evaporated at a temperature of 182 + 0.1 ° C. to control the supply of each monomer. Each of the obtained steams is introduced into an inlet pipe 16.
a, 16b through the gas flow controllers 12a, 1
2b, a constant flow rate (for example, 100 sccm) is supplied to the vapor deposition polymerization chamber 3 through the monomer mixing tank 19,
The above was polymerized by vapor deposition. The composition ratio of the monomers was controlled so as to be 1: 1 in stoichiometric ratio.
The inlet tube was kept at a predetermined temperature so that the monomer temperature did not drop during the passage through a and 16b. The deposition polymerization conditions were as follows: substrate temperature: 25 ° C., pressure: 1 × 10 −3 Pa, and film formation rate (rate): 100 ° / sec.

【0022】蒸着重合室3で成膜後、得られた基板を基
板搬送用ロボットを用いてコア室1を経由して加熱処理
室4へ搬送し、熱処理を行った。この熱処理は、昇温速
度5℃/minで350℃まで加熱し、30分間保持後
10℃/minで400℃まで加熱することによって行
った。この時点での膜厚は500nmであった。
After the film formation in the vapor deposition polymerization chamber 3, the obtained substrate was transferred to the heat treatment chamber 4 via the core chamber 1 by using a substrate transfer robot, and heat-treated. This heat treatment was performed by heating to 350 ° C. at a rate of 5 ° C./min, holding for 30 minutes, and then heating to 400 ° C. at 10 ° C./min. The film thickness at this point was 500 nm.

【0023】上記成膜・加熱処理過程を同じ装置中で1
0回行い、かくして得られた10種のポリイミド膜につ
いて、赤外吸収スペクトルを測定すると共に、耐熱性お
よび電気特性を測定した。耐熱性は該膜の5%重量減少
温度により評価し、また電気特性は比誘電率で評価し
た。この場合、比誘電率の値は、横河ヒューレットパッ
カード社製のマルチ・フリケンシLCRメータ(モデル
4275A)を使用して静電容量Cを測定し、計算によ
って求めた。
The above-mentioned film formation and heat treatment process was performed in the same apparatus for one time.
The measurement was performed 0 times, and the ten kinds of polyimide films thus obtained were measured for infrared absorption spectrum, heat resistance, and electric properties. The heat resistance was evaluated by the 5% weight loss temperature of the film, and the electrical properties were evaluated by relative permittivity. In this case, the value of the relative dielectric constant was determined by calculation by measuring the capacitance C using a multi-frequency LCR meter (model 4275A) manufactured by Yokogawa Hewlett-Packard Company.

【0024】(比較例1)実施例1で用いた装置におい
て、蒸着重合の際に気体流量コントローラーを用いない
で、すなわち各モノマーの供給量を蒸発温度のみで制御
して、上記実施例1と同様の蒸着重合・加熱処理条件下
で蒸着重合・加熱処理を行って、基板上にポリイミド膜
を形成せしめた。得られた膜について、実施例1と同様
の方法により、赤外吸収スペクトルを測定すると共に、
耐熱性および比誘電率を測定した。
(Comparative Example 1) In the apparatus used in Example 1, the gas flow controller was not used at the time of vapor deposition polymerization, that is, the supply amount of each monomer was controlled only by the evaporation temperature. Under the same conditions of vapor deposition polymerization and heat treatment, vapor deposition polymerization and heat treatment were performed to form a polyimide film on the substrate. With respect to the obtained film, an infrared absorption spectrum was measured in the same manner as in Example 1;
Heat resistance and relative permittivity were measured.

【0025】上記実施例および比較例で得られたポリイ
ミド膜は、実施例1の場合、10種ともほぼ同じ膜厚
(バッチ間平均±2%のばらつき)、赤外吸収スペクト
ルも全く同じスペクトルであったが、比較例1の場合、
膜厚は平均±8%とばらつきが高く、また操り返しとと
もに膜厚が減少する傾向が見られた。また、耐熱性は、
実施例1の場合、523±20℃であり、そのばらつき
は小さかったが、比較例1の場合、485±50℃と低
く、そのばらつきは大きかった。比誘電率は、実施例1
の場合、3.0±0.1と低く、そのばらつきも小さか
ったが、比較例1の場合、3.2±0.25とやや高
く、そのばらつきも大きかった。
In the case of Example 1, the polyimide films obtained in the above Examples and Comparative Examples had substantially the same film thickness (variation of ± 2% between batches) and infrared absorption spectra for all 10 types. However, in the case of Comparative Example 1,
The film thickness was highly variable with an average of ± 8%, and the film thickness tended to decrease with repetition. The heat resistance is
In the case of Example 1, the temperature was 523 ± 20 ° C., and the variation was small, but in the case of Comparative Example 1, it was low, 485 ± 50 ° C., and the variation was large. The relative dielectric constant was determined according to Example 1.
In the case of Comparative Example 1, the variation was small, that is, 3.0 ± 0.1, but in the case of Comparative Example 1, it was slightly high, 3.2 ± 0.25, and the variation was large.

【0026】[0026]

【発明の効果】本発明の半導体製造装置によれば、蒸着
重合用原料モノマーの蒸発源を有する蒸着重合室と原料
モノマー蒸発源との間に、蒸着重合室へ導入されるモノ
マーの導入量を制御するための気体流量コントローラー
を設けることによって、簡易な工程で安定した物性を有
する層間絶縁膜用の低比誘電率高分子複合膜を容易に形
成することができるようになる。
According to the semiconductor manufacturing apparatus of the present invention, the amount of the monomer introduced into the vapor deposition polymerization chamber is set between the vapor deposition polymerization chamber having the vaporization polymerization raw material monomer evaporation source and the raw material monomer evaporation source. By providing a gas flow controller for controlling, a low relative dielectric constant polymer composite film for an interlayer insulating film having stable physical properties can be easily formed in a simple process.

【0027】また、かかる半導体製造装置を用いて、基
板上に原料モノマーを蒸着重合せしめてポリイミド膜を
形成するに際し、気体流量コントローラーによって、原
料モノマー蒸発源で気化された原料モノマーの供給量を
制御して蒸着重合室へ導入し、該基板上に蒸着重合によ
りポリイミド膜を形成することができるので、簡易な工
程で安定した物性(耐熱性、電気特性)を有する層間絶
縁膜用の低比誘電率ポリイミド膜を得ることができる。
Further, when a raw material monomer is vapor-deposited and polymerized on a substrate to form a polyimide film using such a semiconductor manufacturing apparatus, the supply rate of the raw material monomer vaporized by the raw material monomer evaporation source is controlled by a gas flow rate controller. Into a vapor deposition polymerization chamber, and a polyimide film can be formed on the substrate by vapor deposition polymerization. Therefore, a low dielectric constant for an interlayer insulating film having stable physical properties (heat resistance and electrical properties) in a simple process. Rate polyimide film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体製造装置の一例の概略構成を示
す模式的平面図。
FIG. 1 is a schematic plan view showing a schematic configuration of an example of a semiconductor manufacturing apparatus of the present invention.

【図2】本発明の半導体製造装置の一部を構成する蒸着
重合室の一例の概略構成を示す模式的断面図。
FIG. 2 is a schematic sectional view showing a schematic configuration of an example of a vapor deposition polymerization chamber constituting a part of the semiconductor manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 コア室 2 L/UL室 3 蒸着重合室 4 加熱処理室 5 アルミスパッタ室 6 ゲートバルブ 11a、11b 気化器 12a、12b
気体流量コントローラー 13a、13b ハウジング 14a、14b
モノマー容器 15a、15b 気化用熱源 16a、16b
導入管 17 基板支え部材 18 基板 19 モノマー混合槽 20a、20b
バルブ A、B モノマー H 熱源
DESCRIPTION OF SYMBOLS 1 Core room 2 L / UL room 3 Deposition polymerization room 4 Heat treatment room 5 Aluminum sputter room 6 Gate valve 11a, 11b Vaporizer 12a, 12b
Gas flow controller 13a, 13b Housing 14a, 14b
Monomer container 15a, 15b Heat source for vaporization 16a, 16b
Introduction pipe 17 Substrate support member 18 Substrate 19 Monomer mixing tank 20a, 20b
Valve A, B Monomer H Heat source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浮島 禎之 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 4J043 PA02 QB15 QB26 QB31 RA35 SA06 SB01 TA22 TB01 UA122 UA131 UA662 UA672 UB121 VA021 VA041 XA07 XA40 XB39 XB40 ZA43 ZA46 4K030 BA35 CA04 CA12 FA10 GA12 JA05 KA41 5F031 CC11 KK07 LL02 5F045 AA03 AB39 AC07 DC63 DQ17 EB08 EE04 HA16 5F058 AC02 AF01 AG01 AH01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiyuki Ukishima 5-9-7 Tokodai, Tsukuba, Ibaraki Pref. TB01 UA122 UA131 UA662 UA672 UB121 VA021 VA041 XA07 XA40 XB39 XB40 ZA43 ZA46 4K030 BA35 CA04 CA12 FA10 GA12 JA05 KA41 5F031 CC11 KK07 LL02 5F045 AA03 AB39 AC07 DC63 DQ17 EB08 EE04 A0201

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウエハーの出し入れのための室とウエハ
ーの搬送用ロボットを備えたコア室と複数の半導体製造
プロセス室とからなり、該プロセス室の少なくとも一室
が蒸着重合用原料モノマーの蒸発源を有する蒸着重合室
である枚葉式の半導体製造装置において、該蒸着重合室
と該原料モノマー蒸発源との間に、該蒸発源から該蒸着
重合室へ導入される該原料モノマーの供給量を制御する
ための気体流量コントローラーが設けられていることを
特徴とする半導体製造装置。
1. A chamber for loading and unloading wafers, a core chamber having a wafer transfer robot, and a plurality of semiconductor manufacturing process chambers, wherein at least one of the process chambers is an evaporation source of a raw material monomer for vapor deposition polymerization. In a single-wafer semiconductor manufacturing apparatus which is a vapor deposition polymerization chamber having, between the vapor deposition polymerization chamber and the raw material monomer evaporation source, the supply amount of the raw material monomer introduced into the vapor deposition polymerization chamber from the evaporation source is controlled. A semiconductor manufacturing apparatus, comprising a gas flow controller for controlling the semiconductor flow.
【請求項2】 ウエハーの出し入れのための室とウエハ
ーの搬送用ロボットを備えたコア室と複数の半導体製造
プロセス室とからなり、該プロセス室の少なくとも一室
が蒸着重合用原料モノマーの蒸発源を有する蒸着重合室
である枚葉式の半導体製造装置を用いてポリアミド膜を
形成する方法において、該蒸着重合室内で基板上に該原
料モノマーを蒸着重合せしめてポリイミド膜を形成する
に際し、該蒸着重合室と該原料モノマー蒸発源との間に
設けてある気体流量コントローラーによって、該蒸発源
で気化された該原料モノマーの供給量を制御して該蒸着
重合室へ導入し、該ウエハー上に蒸着重合によりポリイ
ミド膜を形成することを特徴とするポリイミド膜の形成
方法。
2. A semiconductor device comprising a chamber for loading and unloading wafers, a core chamber having a wafer transfer robot, and a plurality of semiconductor manufacturing process chambers, wherein at least one of the process chambers is an evaporation source of a raw material monomer for vapor deposition polymerization. In the method of forming a polyamide film using a single-wafer type semiconductor manufacturing apparatus which is a vapor deposition polymerization chamber having a vapor deposition polymerization chamber, the raw material monomers are vapor-deposited and polymerized on a substrate in the vapor deposition polymerization chamber to form a polyimide film. A gas flow controller provided between the polymerization chamber and the raw material monomer evaporation source controls the supply amount of the raw material monomer vaporized by the evaporation source, introduces the raw material monomer into the vapor deposition polymerization chamber, and vapor-deposits on the wafer. A method for forming a polyimide film, comprising forming a polyimide film by polymerization.
JP19179898A 1998-07-07 1998-07-07 Semiconductor manufacturing apparatus and method for forming polyimide film Expired - Fee Related JP4283910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19179898A JP4283910B2 (en) 1998-07-07 1998-07-07 Semiconductor manufacturing apparatus and method for forming polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19179898A JP4283910B2 (en) 1998-07-07 1998-07-07 Semiconductor manufacturing apparatus and method for forming polyimide film

Publications (2)

Publication Number Publication Date
JP2000021866A true JP2000021866A (en) 2000-01-21
JP4283910B2 JP4283910B2 (en) 2009-06-24

Family

ID=16280722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19179898A Expired - Fee Related JP4283910B2 (en) 1998-07-07 1998-07-07 Semiconductor manufacturing apparatus and method for forming polyimide film

Country Status (1)

Country Link
JP (1) JP4283910B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059507A (en) * 2008-09-04 2010-03-18 Ulvac Japan Ltd Film deposition system and film deposition method
JP2010095756A (en) * 2008-10-16 2010-04-30 Ulvac Japan Ltd Film deposition apparatus
US20120160169A1 (en) * 2010-12-22 2012-06-28 Tokyo Electron Limited Film forming apparatus
JP2013229622A (en) * 2013-06-25 2013-11-07 Tokyo Electron Ltd Film formation device and cleaning method of the same
JP2013247285A (en) * 2012-05-28 2013-12-09 Tokyo Electron Ltd Film forming method
JP2013247287A (en) * 2012-05-28 2013-12-09 Tokyo Electron Ltd Film forming method
JP2014170764A (en) * 2012-04-27 2014-09-18 Tokyo Electron Ltd Film formation method and film formation device
JP2015050344A (en) * 2013-09-02 2015-03-16 東京エレクトロン株式会社 Deposition method and deposition apparatus
JP2015099808A (en) * 2013-11-18 2015-05-28 東京エレクトロン株式会社 Cleaning method for polyimide film formation device
US9163311B2 (en) 2010-12-22 2015-10-20 Tokyo Electron Limited Film forming apparatus
JP2019183115A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polyamic acid manufacturing system and manufacturing method, and polyimide manufacturing system and manufacturing method
WO2024055142A1 (en) * 2022-09-13 2024-03-21 Acm Research (Shanghai) , Inc. Gas supply apparatus and substrate processing apparatus including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236755B2 (en) 2011-01-14 2013-07-17 東京エレクトロン株式会社 Film forming apparatus and film forming method
JP5350424B2 (en) 2011-03-24 2013-11-27 東京エレクトロン株式会社 Surface treatment method
JP5296132B2 (en) * 2011-03-24 2013-09-25 東京エレクトロン株式会社 Deposition equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059507A (en) * 2008-09-04 2010-03-18 Ulvac Japan Ltd Film deposition system and film deposition method
JP2010095756A (en) * 2008-10-16 2010-04-30 Ulvac Japan Ltd Film deposition apparatus
US20120160169A1 (en) * 2010-12-22 2012-06-28 Tokyo Electron Limited Film forming apparatus
US9163311B2 (en) 2010-12-22 2015-10-20 Tokyo Electron Limited Film forming apparatus
JP2014170764A (en) * 2012-04-27 2014-09-18 Tokyo Electron Ltd Film formation method and film formation device
JP2013247287A (en) * 2012-05-28 2013-12-09 Tokyo Electron Ltd Film forming method
JP2013247285A (en) * 2012-05-28 2013-12-09 Tokyo Electron Ltd Film forming method
JP2013229622A (en) * 2013-06-25 2013-11-07 Tokyo Electron Ltd Film formation device and cleaning method of the same
JP2015050344A (en) * 2013-09-02 2015-03-16 東京エレクトロン株式会社 Deposition method and deposition apparatus
JP2015099808A (en) * 2013-11-18 2015-05-28 東京エレクトロン株式会社 Cleaning method for polyimide film formation device
JP2019183115A (en) * 2018-03-30 2019-10-24 株式会社カネカ Polyamic acid manufacturing system and manufacturing method, and polyimide manufacturing system and manufacturing method
JP7249801B2 (en) 2018-03-30 2023-03-31 株式会社カネカ Polyamic acid production system and production method, and polyimide production system and production method
WO2024055142A1 (en) * 2022-09-13 2024-03-21 Acm Research (Shanghai) , Inc. Gas supply apparatus and substrate processing apparatus including the same

Also Published As

Publication number Publication date
JP4283910B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4283910B2 (en) Semiconductor manufacturing apparatus and method for forming polyimide film
KR102430939B1 (en) Low-Temperature Formation of High-Quality Silicon Oxide Films in Semiconductor Device Manufacturing
JP4112702B2 (en) Deposition equipment
WO2000077275A1 (en) Method of processing films prior to chemical vapor deposition using electron beam processing
JPH10189569A (en) Method and apparatus for depositing multilayered film of low dielectric constant
JPH11288931A (en) Insulation film and its manufacture
US7879397B2 (en) Method for processing polysilazane film
JP3190886B2 (en) Polymer film growth method
JPH11172418A (en) Film forming device
JP3153190B2 (en) Apparatus for producing polymer film and film forming method using this apparatus
JPH10289902A (en) Film formation device
JP4283911B2 (en) Semiconductor manufacturing apparatus and method for forming polyimide film
JP4076245B2 (en) Low dielectric constant insulating film, method for forming the same, and interlayer insulating film
JP2000021867A (en) Semiconductor manufacturing apparatus and method of cleaning the apparatus
JP3897908B2 (en) Method for forming low dielectric constant insulating film, interlayer insulating film, and semiconductor device
JP3494572B2 (en) Method for forming low dielectric polymer film
JP3384487B2 (en) Method of forming insulating film and multilayer wiring
JP3675958B2 (en) Method for forming moisture-resistant insulating film and method for forming interlayer insulating film
JPS60197730A (en) Formation of polyimide film
JPH11106506A (en) Lowly permittive polymer membrane, formation thereof and layer insulation membrane
JP2008300749A (en) Method of manufacturing semiconductor device, and film deposition apparatus
JPH11289011A (en) Low-relative-dielectric constant insulating film, formation thereof, and interlayer insulating film
JP3481395B2 (en) Method of forming interlayer insulating film
JPH09326388A (en) Forming method of low specific dielectric constant polymer film, forming method of interlayer insulating film and low specific dielectric constant polymer film forming apparatus
JP3957811B2 (en) Method for forming low dielectric constant polymer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070309

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees