JP2000018492A - Photodetector for doorway - Google Patents

Photodetector for doorway

Info

Publication number
JP2000018492A
JP2000018492A JP10184764A JP18476498A JP2000018492A JP 2000018492 A JP2000018492 A JP 2000018492A JP 10184764 A JP10184764 A JP 10184764A JP 18476498 A JP18476498 A JP 18476498A JP 2000018492 A JP2000018492 A JP 2000018492A
Authority
JP
Japan
Prior art keywords
light
doorway
door
receiver
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10184764A
Other languages
Japanese (ja)
Other versions
JP3680199B2 (en
Inventor
Masahiro Yamada
雅宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Co Ltd
Hitachi Building Systems Co Ltd
Original Assignee
Toyo Electric Co Ltd
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Co Ltd, Hitachi Building Systems Co Ltd filed Critical Toyo Electric Co Ltd
Priority to JP18476498A priority Critical patent/JP3680199B2/en
Publication of JP2000018492A publication Critical patent/JP2000018492A/en
Application granted granted Critical
Publication of JP3680199B2 publication Critical patent/JP3680199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photodetector for a doorway, surely capable of detecting an object on the doorway by the presence of the shade of a beam of light to be generated in a space between a light projector and a receiver set up in door ends each. SOLUTION: This doorway photodetector has a light projector 1 generating a beam of light and projecting it, and a light receiver 2 being opposedly set up to the light projector 1 and receiving the light, and the projector 1 and receiver 2 opposedly set up to both side ends of a door or a side end and a fixed part of the door, through which detects an object on the doorway on the basis of light receiving and shading conditions of the light receiver 2. In the case where photoelectric operations are carried out in time of on-off operations of the door, a distance between the projector 1 and receiver 2 is largely varied, but the amplification factor of a factor variable amplifier to amplify a light receiving signal is controlled on the basis of a light receiving quantity of the light receiver by a central processing unit. Therefore, any possible saturation in a light receiving element of the light receiver 2 and in the factor variable amplifier is prevented from occurring, thereby any small object on the doorway at the time of closing the door can surely be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレベータ等のド
アウエイ上の物体を、ドアウエイ上に発生させた光線の
遮光の有無により検出する光電検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric detecting device for detecting an object on a doorway such as an elevator by detecting the presence or absence of a light beam generated on the doorway.

【0002】[0002]

【従来の技術】例えば、エレベータの出入り口の自動ド
ア(かごドアと乗り場ドアを含む)は、エレベータの操
作スイッチやタイマー動作などにより自動的に閉じる
が、そのドアウエイ上に人などの物体がある場合、ドア
がそれに触れる前に、その物体を自動的に検知して、ド
アの閉動作を停止し或は開放動作を行なうことが望まし
い。
2. Description of the Related Art For example, automatic doors (including a car door and a landing door) at an entrance of an elevator are automatically closed by an operation switch or a timer operation of the elevator, but when an object such as a person is on the doorway. It is desirable to automatically detect the object before the door touches it and stop or open the door.

【0003】そこで、従来、エレベータのドアの両側端
(片開きドアの場合はドアの端部とドアの固定側受部)
に、多数の投光素子と受光素子を各々対向させて所定間
隔で配置し、各投光素子からの投光により、ドアウエイ
上に多数の光線(光ビーム)を水平に発生させ、それら
の光線の遮光を検出することにより、ドアウエイ上の物
体を検出する光電検出装置が、特開平8−208162
号公報などにより提案されている。
Therefore, conventionally, both ends of an elevator door (in the case of a one-sided door, the end of the door and a fixed-side receiving portion of the door).
A large number of light-emitting elements and light-receiving elements are arranged at predetermined intervals so as to face each other, and a large number of light beams (light beams) are generated horizontally on the doorway by the light emitted from each light-emitting element, and these light beams are emitted. JP-A-8-208162 discloses a photoelectric detection device that detects an object on a doorway by detecting light-shielded light.
It is proposed in Japanese Patent Publication No.

【0004】[0004]

【発明が解決しようとする課題】この種のドアウエイの
光電検出装置は、開閉動作するドアの先端部(又はドア
端部と固定側受部)に投光素子と受光素子が対向して配
置されるため、ドアが閉じる際には、投光素子と受光素
子間の距離が最短距離に近づき、開く際には最大距離ま
で広がる。このため、ドアが全開の状態で物体を検出で
きるように、投光素子の投光強度を十分な強度に設定
し、受光回路の受光感度を十分高く設定した場合、ドア
が完全閉鎖付近まで閉じた位置では、受光素子が高い照
度の光を受けて飽和し易くなる。このため、ドアが閉じ
かけたとき、ドアの間に手の指などの比較的小さい物体
或は薄く透光性のある物体が入った場合、受光素子の受
光信号は遮光と非遮光間で非常に変化が少なく、その物
体を検出しにくいという問題があった。
In this type of doorway photoelectric detecting device, a light projecting element and a light receiving element are arranged at the front end (or the door end and a fixed side receiving part) of a door that opens and closes. Therefore, when the door is closed, the distance between the light emitting element and the light receiving element approaches the shortest distance, and when the door is opened, the distance increases to the maximum distance. For this reason, if the light emitting intensity of the light emitting element is set to a sufficient level and the light receiving sensitivity of the light receiving circuit is set to a sufficiently high level so that an object can be detected when the door is fully open, the door closes to near the fully closed position. In the position where the light is received, the light receiving element receives light of high illuminance and is easily saturated. For this reason, when a relatively small object such as a finger or a thin translucent object enters between the doors when the door is closing, the light receiving signal of the light receiving element is very light between the light shielding and the non-light shielding. However, there is a problem that the object is hard to detect and the object is hard to detect.

【0005】このため、上記従来の光電検出装置では、
投光素子の投光動作により発生する光ビームの平均強度
をドアの開閉状態に応じて算出し、この平均強度からあ
る係数を減算した値を可変閾値として所定時間毎に算出
し、その閾値を用いて光ビームの遮光の有無の判定つま
り物体検出の判定を行なっているが、投光素子と受光素
子が非常に接近する閉鎖まぢかのドアの間に、指などの
小さい物体が入った場合、上記と同様に、やはり受光素
子が高い照度の光を受けて飽和し、また、受光信号を増
幅する増幅器の増幅動作が飽和するため、小さい物体が
検出しにくいという問題があった。
For this reason, in the above-mentioned conventional photoelectric detecting device,
The average intensity of the light beam generated by the light emitting operation of the light emitting element is calculated according to the opening / closing state of the door, and a value obtained by subtracting a certain coefficient from the average intensity is calculated as a variable threshold every predetermined time, and the threshold is calculated. Although the judgment of the presence or absence of light beam shading, that is, the judgment of object detection, is performed using a light-emitting element and a light-receiving element, when a small object such as a finger enters between doors close to each other that are very close, Similarly to the above, the light receiving element also receives light of high illuminance and saturates, and the amplification operation of the amplifier for amplifying the light receiving signal is saturated, so that there is a problem that a small object is difficult to detect.

【0006】本発明は、上記の点に鑑みてなされたもの
で、ドアウエイ上の物体を、ドアの端部に配置した投光
器と受光器間に発生させた光線の遮光の有無によって、
確実に検出することができるドアウエイの光電検出装置
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and an object on a doorway is controlled by the presence or absence of a light beam generated between a light emitter and a light receiver arranged at an end of a door.
An object of the present invention is to provide a doorway photoelectric detection device that can reliably detect a doorway.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光電検出装置は、光線を発生させ投光する
投光器と、投光器に対向して配置され光線を受光する受
光器とを有し、投光器と受光器がドアの両側端或はドア
の側端と固定部に対向して設置され、受光器における光
線の受光と遮光の状態に基づき、ドアウエイ上の物体を
検出するドアウエイの光電検出装置において、受光器か
ら出力される受光信号を増幅する増幅器と、受光器が受
光したときの受光量に基づき、増幅器の増幅率を制御す
る増幅率制御手段と、を備えたことを特徴とする。
In order to achieve the above object, a photoelectric detecting device according to the present invention comprises a light projector for generating and projecting a light beam, and a light receiving device arranged opposite to the light projector for receiving the light beam. A light emitter and a light receiver are installed opposite to both sides of the door or a side end of the door and the fixed portion, and based on a state of light reception and light shielding in the light receiver, a doorway for detecting an object on the doorway. The photoelectric detection device includes: an amplifier for amplifying a light reception signal output from the light receiver; and amplification factor control means for controlling an amplification factor of the amplifier based on an amount of light received by the light receiver. And

【0008】[0008]

【発明の作用・効果】このような構成の光電検出装置で
は、投光器からの投光動作により光線がドアウエイ上に
発生し、受光器が光線を受光し、受光信号を出力する。
その受光信号の受光量により受光か遮光かを判定し、遮
光の場合、ドアウエイ上の物体を検出する。ドアの開閉
動作時に光電検出動作が行なわれた場合、投光器と受光
器間の距離は大きく変化するが、受光信号を増幅する増
幅器の増幅率は、増幅率制御手段によって受光器の受光
量に基づき制御される。
In the photoelectric detecting device having such a configuration, a light beam is generated on the doorway by the light emitting operation from the light emitting device, and the light receiving device receives the light beam and outputs a light receiving signal.
Whether light reception or light blocking is determined based on the amount of light received from the light receiving signal. In the case of light blocking, an object on the doorway is detected. When the photoelectric detection operation is performed during the opening and closing operation of the door, the distance between the light emitter and the light receiver changes greatly, but the amplification factor of the amplifier for amplifying the light reception signal is based on the amount of light received by the light receiver by the amplification ratio control means. Controlled.

【0009】このため、ドアが閉じる場合、投光器と受
光器間の距離が短くなり、受光器の受光量が増大するた
め、受光素子やその信号を増幅する増幅器が飽和して、
小さい物体が検出しにくいが、本発明では、受光器の受
光量が増大した時、増幅率制御手段が増幅器の増幅率を
下げるように動作するため、受光素子の飽和や増幅器の
飽和を防止して、ドアが閉じる際のドアウエイ上の小物
体を確実に検出することができる。
For this reason, when the door is closed, the distance between the light emitter and the light receiver becomes short, and the amount of light received by the light receiver increases, so that the light receiving element and the amplifier for amplifying the signal are saturated,
Although it is difficult to detect a small object, in the present invention, when the amount of light received by the light receiver increases, the gain control means operates to lower the gain of the amplifier, thereby preventing saturation of the light receiving element and saturation of the amplifier. Thus, a small object on the doorway when the door closes can be reliably detected.

【0010】また、受光器が受光したときの受光量に基
づき、投光器の投光駆動電流を制御する電流制御手段を
設ければ、ドアが閉じるとき、投光器と受光器間の距離
が短くなって、受光器の受光量が増大すると、電流制御
手段が投光器の投光駆動電流を下げるように制御するこ
とができる。このため、投光器の投光量が低下し、それ
に応じて受光器の受光量が下がり、受光素子の飽和や増
幅器の飽和を防止して、ドアが閉じる際のドアウエイ上
の小物体を、一層確実に検出することができる。
Further, if a current control means for controlling the light emission drive current of the light emitter based on the amount of light received by the light receiver is provided, when the door is closed, the distance between the light emitter and the light receiver becomes shorter. When the amount of light received by the light receiver increases, the current control means can control the light emission drive current of the light emitter to decrease. For this reason, the amount of light emitted from the light emitter decreases, and accordingly, the amount of light received by the light receiver decreases, preventing saturation of the light-receiving element and saturation of the amplifier, so that small objects on the doorway when the door closes can be more reliably detected. Can be detected.

【0011】更に、受光素子にフォトトランジスタを使
用し、暗い部分に投光器、受光器を設置した場合、受光
器の受光量が低いと、受光限界性能が低下するが、受光
器の各受光素子の近傍に、受光素子にバイアス光を与え
るバイアス光付与器を配置すれば、受光動作時にバイア
ス光付与器が発光して、バイアス光を各受光素子に与え
るため、受光限界性能を向上させることができる。
Further, when a phototransistor is used as a light receiving element and a light emitting device and a light receiving device are installed in a dark portion, if the light receiving amount of the light receiving device is low, the light receiving limit performance is deteriorated. If a bias light applicator that applies bias light to the light receiving element is disposed in the vicinity, the bias light applicator emits light during the light receiving operation and applies the bias light to each light receiving element, so that the light receiving limit performance can be improved. .

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1はエレベータの光電検出装置
のブロック図を示している。1は多数の光線を一定間隔
で水平に発生させる投光器であり、多数の投光素子1
1 、12 〜1n を一定間隔で配置して構成される。2は
投光器1に対向して配置される受光器であり、多数の投
光素子1 1 、12 〜1n に対向して配置された多数の受
光素子21 、22 〜2n から構成される。
Embodiments of the present invention will be described below with reference to the drawings.
It will be described based on. Figure 1 shows an elevator photoelectric detector
FIG. 1 is for many rays at regular intervals
Is a light projector that is generated horizontally by a large number of light emitting elements 1
1 , 1Two ~ 1n Are arranged at regular intervals. 2 is
This is a light receiver that is placed opposite to the light
Optical element 1 1 , 1Two ~ 1n Multiple receivers
Optical element 21 , 2Two ~ 2n Consists of

【0013】投光器1と受光器2は、エレベータのドア
(かごドア或は乗り場ドア)の両側端(片開きドアの場
合はドアの端部とドアの固定側受部)に対向して取り付
けられる。投光器1の投光素子11 、12 〜1n には例
えば発光ダイオードが使用され、受光器2の受光素子2
1 、22 〜2n には、例えばフォトトランジスタが使用
される。受光素子にフォトトランジスタを用いた場合、
より安価に受光器2を製作できるが、フォトトランジス
タはその特性上、微弱な光に対する入力感度が低い。こ
のために、受光器2の各受光素子21 、22 〜2n の近
傍に、バイアス光付与器3として、補助投光素子31
2 〜3n を配置し、補助投光素子の光をバイアス光と
して各受光素子21 、22 〜2n に与えるようにしてい
る。nはドアウエイ上に発生させる光線の数、つまり投
光素子、受光素子の数を示す。
The light transmitter 1 and the light receiver 2 are attached to both ends of a door (a car door or a landing door) of an elevator (in the case of a one-sided door, opposed to a door end and a fixed-side receiving portion of the door). . Light projecting device 1 1 of the light projector 1, 1 to 2 to 1 n for example, a light-emitting diode is used, the light receiver 2 receiving element 2
For example, a phototransistor is used for 1 , 2 2 to 2 n . When a phototransistor is used for the light receiving element,
Although the light receiver 2 can be manufactured at lower cost, the phototransistor has low input sensitivity to weak light due to its characteristics. For this, in the vicinity of the light receiving elements 2 1, 2 2 to 2 n of the light receiver 2, as a bias light applying device 3, the auxiliary light projecting element 3 1,
3 2 to 3 n are arranged, and to give to each light receiving element 2 1, 2 2 ~2 n light of the auxiliary light projecting element as a bias light. n indicates the number of light beams generated on the doorway, that is, the number of light projecting elements and light receiving elements.

【0014】4は投光駆動回路であり、投光器1の各発
光素子に電流を供給して発光させる。投光駆動回路4の
出力電流は電流制御回路9により制御され、これによっ
て投光器1の投光量(投光素子の発光量)が制御され
る。電流制御回路9は、後述のコントローラ20からの
制御信号CTLに応じて、投光駆動回路4の出力電流値
を制御する。制御信号CTLは、例えば電流大と電流小
の2種類である。
Reference numeral 4 denotes a light emitting drive circuit, which supplies a current to each light emitting element of the light emitting device 1 to emit light. The output current of the light emitting drive circuit 4 is controlled by a current control circuit 9, which controls the amount of light emitted from the light projector 1 (the amount of light emitted from the light emitting element). The current control circuit 9 controls an output current value of the light emitting drive circuit 4 according to a control signal CTL from a controller 20 described later. The control signal CTL is of two types, for example, a large current and a small current.

【0015】6は投光側の時分割分回路であり、各投光
素子に対応した出力端子を持つカウンタから構成され、
後述のコントローラ20からのクロック信号CLKを入
力し、各投光サイクル毎に、ゲート回路5に対し各投光
素子用の投光タイミング信号を順に出力する。ゲート回
路5は、各投光素子に対応した出力回路を有し、搬送波
発生用の発振回路7から送られた搬送波を、時分割回路
6から出力される投光用の投光タイミング信号に重畳さ
せる。
Reference numeral 6 denotes a time-division circuit on the light emitting side, which comprises a counter having an output terminal corresponding to each light emitting element.
A clock signal CLK from a controller 20 described later is input, and a light emitting timing signal for each light emitting element is sequentially output to the gate circuit 5 for each light emitting cycle. The gate circuit 5 has an output circuit corresponding to each light emitting element, and superimposes the carrier wave sent from the carrier wave generating oscillation circuit 7 on the light emitting timing signal for light emission output from the time division circuit 6. Let it.

【0016】8は発振回路7の出力側に接続された搬送
波の出力制御回路であり、発振回路7から送られた搬送
波用のパルス信号を、各投光サイクル毎に分けるよう
に、時分割回路6からの(n+1)番目の信号を入力
し、搬送波を各投光サイクル毎に分割する。
Reference numeral 8 denotes a carrier output control circuit connected to the output side of the oscillation circuit 7, and a time division circuit for dividing the carrier pulse signal sent from the oscillation circuit 7 into each light emitting cycle. The (n + 1) th signal from 6 is input, and the carrier is divided for each light emitting cycle.

【0017】10はマルチプレクサ等から構成されるア
ナログスイッチであり、受光器2の出力側に設けられ、
後述の受光側の時分割回路11から出力される受光タイ
ミング信号に応じて、受光器2の各受光素子21 、22
〜2n の出力回路を順に切り換え、それをプリアンプ1
4の入力側に接続する。時分割回路11はコントローラ
20からのクロック信号CLKと同期信号SYNCを入
力し、同期信号SYNCによって指定される各受光サイ
クル毎に、n個の受光タイミングを作るように、クロッ
ク信号CLKに応じて時分割された受光タイミング信号
を順にアナログスイッチ10に出力する。
Reference numeral 10 denotes an analog switch constituted by a multiplexer or the like, which is provided on the output side of the light receiver 2.
Each light-receiving element 2 1 , 2 2 of the light-receiving device 2 according to a light-receiving timing signal output from a later-described light-receiving side time-division circuit 11.
~ 2 n output circuits are switched in sequence, and
4 input side. The time-division circuit 11 receives the clock signal CLK and the synchronization signal SYNC from the controller 20, and sets the time according to the clock signal CLK so as to generate n light reception timings for each light reception cycle specified by the synchronization signal SYNC. The divided light receiving timing signals are sequentially output to the analog switch 10.

【0018】12は上記バイアス光付与器3の各補助投
光素子31 、32 〜3n を所定の受光タイミングに合わ
せて順に駆動する駆動回路であり、時分割回路11の出
力側にオア回路等からなるゲート回路13を介して接続
される。
Reference numeral 12 denotes a drive circuit for sequentially driving the auxiliary light projecting elements 3 1 , 3 2 to 3 n of the bias light applicator 3 in accordance with a predetermined light receiving timing. It is connected via a gate circuit 13 composed of a circuit or the like.

【0019】図2はコントローラ20のブロック図を示
している。コントローラ20は、CPU21を中心に構
成され、CPU21は、予め記憶されたプログラムに基
づき、比較回路26からの出力信号V6に基づき、受光
か遮光かの判定を行なう。さらに、CPU21は、投光
回路側からの搬送波CARを入力し、各投光サイクルの
始めと終わりに切れ目を入れるための同期信号SYNC
を出力し、受光器2の受光量に応じて、その受光信号D
Pを増幅する増幅率可変増幅器22の増幅率を増幅率調
整信号によって増減するように動作し、且つ投光器1を
投光駆動する投光駆動回路4の出力電流を制御信号CT
Lによって増減し、投光量(投光素子の発光量)を制御
するように動作する。
FIG. 2 shows a block diagram of the controller 20. The controller 20 is mainly configured by a CPU 21. The CPU 21 determines whether light reception or light blocking is performed based on an output signal V6 from the comparison circuit 26 based on a program stored in advance. Further, the CPU 21 receives the carrier wave CAR from the light emitting circuit side, and generates a synchronization signal SYNC for making a cut at the beginning and end of each light emitting cycle.
And outputs the light reception signal D according to the amount of light received by the light receiver 2.
The amplification factor of the variable gain amplifier 22 for amplifying P is increased or decreased by the amplification factor adjustment signal, and the output current of the light projection drive circuit 4 for driving the light projector 1 is controlled by the control signal CT.
It operates so as to control the projected light amount (light emission amount of the light emitting element) by increasing or decreasing by L.

【0020】増幅率可変増幅器22は受光側からプリア
ンプ14を通して受光信号DPを入力し、CPU21か
ら指令された増幅率で受光信号を増幅し、同期検波回路
23に出力する。増幅率は、例えば0〜31の値でCP
U21により設定される。同期検波回路23は、増幅率
可変増幅器22で増幅された受光信号V2を入力すると
共に、投光側の出力制御回路8からの搬送波CARを遅
延回路25を通して入力し、搬送波に同期して受光信号
を検波し、出力する。遅延回路25には、投光器1の投
光時から受光器2の受光信号の出力時までの時間、例え
ば数μ秒〜10μ秒程度が設定される。
The variable gain amplifier 22 receives the light receiving signal DP from the light receiving side through the preamplifier 14, amplifies the light receiving signal at the gain specified by the CPU 21, and outputs it to the synchronous detection circuit 23. The amplification factor is, for example, CP
It is set by U21. The synchronous detection circuit 23 receives the received light signal V2 amplified by the variable amplification factor amplifier 22, inputs the carrier wave CAR from the output control circuit 8 on the light projecting side through the delay circuit 25, and synchronizes the received light signal with the carrier wave. Is detected and output. In the delay circuit 25, a time period from the time when the light projector 1 emits light to the time when the light receiving signal is output from the light receiver 2 is set, for example, about several μsec to 10 μsec.

【0021】24は同期検波回路23の出力側に接続さ
れる電圧蓄積回路で、検波された受光信号の電圧V3
を、予め設定された蓄積時間t3の範囲で蓄積し、これ
によって受光信号の蓄積量を電圧に変換し、それを電圧
信号V4として比較回路26に出力する。時間t3は1
光軸の概略的な受光時間である。比較回路26は予め設
定された設定値V5と電圧蓄積回路4からの受光信号の
電圧値V4とを比較し、設定値以上となる電圧値の幅を
パルス幅として持つ受光検出信号V6をCPU21に出
力する。
Reference numeral 24 denotes a voltage storage circuit connected to the output side of the synchronous detection circuit 23, which is a voltage V3 of the detected light reception signal.
Is accumulated within a preset accumulation time t3, thereby converting the accumulated amount of the received light signal into a voltage, and outputting it as a voltage signal V4 to the comparison circuit 26. Time t3 is 1
This is a schematic light receiving time of the optical axis. The comparing circuit 26 compares a preset set value V5 with the voltage value V4 of the light receiving signal from the voltage storage circuit 4, and sends to the CPU 21 a light receiving detection signal V6 having a pulse width equal to or larger than the set value as a pulse width. Output.

【0022】CPU21は、蓄積時間t3の立ち上がり
から受光検出信号V6の立ち上がりまでの時間t5を算
出し、この時間t5を受光データとして記憶し、この受
光データt5が予め設定した設定値より短い時、受光と
判定し、設定値以上の時、遮光と判定する。また、CP
U21は、投光・受光走査時、1本の光線でも、遮光と
判定すれば、物体検出信号を出力する。27はリレー回
路等からなるCPU21の出力回路で、CPU21から
出力される物体検出信号を入力しドア制御回路を駆動さ
せるためにリレー回路等を動作させる。
The CPU 21 calculates a time t5 from the rise of the accumulation time t3 to the rise of the light reception detection signal V6, stores this time t5 as light reception data, and when the light reception data t5 is shorter than a preset value, It is determined that light is received. Also, CP
U21 outputs an object detection signal if it is determined that even one light beam is blocked during the light projection / light reception scanning. Reference numeral 27 denotes an output circuit of the CPU 21 comprising a relay circuit or the like, which operates the relay circuit or the like to input the object detection signal output from the CPU 21 and drive the door control circuit.

【0023】次に、上記光電検出装置の動作を、図3、
図4のフローチャート、図5のタイミングチャートを参
照して説明する。
Next, the operation of the photoelectric detection device will be described with reference to FIG.
This will be described with reference to the flowchart of FIG. 4 and the timing chart of FIG.

【0024】エレベータのドアが開から閉動作に移り、
光電検出装置の動作が開始されると、コントローラ20
のCPU21は、先ず、ステップ100で増幅率可変増
幅器22の増幅率を設定する。増幅率は例えば0〜31
が用意され、運転開始時にはその中間値例えば18が設
定される。
The door of the elevator moves from the opening operation to the closing operation,
When the operation of the photoelectric detection device starts, the controller 20
First, the CPU 21 sets the gain of the variable gain amplifier 22 in step 100. The amplification rate is, for example, 0 to 31.
Is prepared, and an intermediate value, for example, 18 is set at the start of operation.

【0025】投光側の時分割回路6は、コントローラ2
0から送られるクロック信号CLKに同ゲート回路5に
順にパルス信号を出力し、ゲート回路5では発振回路7
からの搬送波が重畳され、それらが投光駆動回路4に送
られる。投光駆動回路4は投光器1の各投光素子11
2 〜1n を順に投光動作させ、各投光素子11 、1 2
〜1n から順に光線を、対向する受光器2に向けて発生
させていく。
The time-division circuit 6 on the light emitting side includes a controller 2
0 to the same gate circuit 5
A pulse signal is output in order, and the gate circuit 5
Are transmitted to the light emitting drive circuit 4.
Can be The light emitting drive circuit 4 is provided for each light emitting element 1 of the light emitting device 1.1 ,
1Two ~ 1n Are sequentially operated to emit light, and each light emitting element 11 , 1 Two 
~ 1n Light rays are generated in order from
Let me do it.

【0026】各光線は受光器2の各受光素子21 、22
〜2n に順に受光されていくが、このとき、受光側の時
分割回路11は、投光時に使用したものと同じクロック
信号CLK及び同期信号SYNCに基づき、アナログス
イッチ10を順に切り換え、受光素子21 、22 〜2n
の出力側を順にプリアンプ14に接続し、各受光信号D
Pをプリアンプ14を通してコントローラ20に送出し
ていく。
Each light beam is applied to each light receiving element 2 1 , 2 2 of the light receiver 2.
2n , the time-division circuit 11 on the light-receiving side sequentially switches the analog switches 10 based on the same clock signal CLK and synchronization signal SYNC used during light emission, and 2 1 , 2 2 to 2 n
Are sequentially connected to the preamplifier 14 so that each light receiving signal D
P is transmitted to the controller 20 through the preamplifier 14.

【0027】各受光信号DPは増幅率可変増幅器22に
入力され、CPU21により設定されている増幅率で増
幅される。増幅された後、各受光信号DPは同期検波回
路23に送られ、同期検波回路23は、投光側の出力制
御回路8からの搬送波CARを遅延回路25を通して入
力し、その搬送波CARに同期して受光信号を検波し、
検波した信号V3を電圧蓄積回路24に出力する。この
とき、電圧蓄積回路24は、CPU21から与えられた
蓄積時間t3の範囲で信号V3の電圧を蓄積し、これに
よって受光信号の蓄積量を電圧に変換し、それを電圧信
号V4として比較回路26に出力する。
Each light receiving signal DP is input to the variable gain amplifier 22 and amplified at the gain set by the CPU 21. After being amplified, each received light signal DP is sent to the synchronous detection circuit 23, which inputs the carrier wave CAR from the light output side output control circuit 8 through the delay circuit 25 and synchronizes with the carrier wave CAR. To detect the received light signal,
The detected signal V3 is output to the voltage storage circuit 24. At this time, the voltage accumulation circuit 24 accumulates the voltage of the signal V3 within the accumulation time t3 given by the CPU 21, thereby converting the accumulation amount of the received light signal into a voltage, and converting it into a voltage signal V4 as a voltage signal V4. Output to

【0028】比較回路26は、予め設定された設定値V
5とこの電圧信号V4とを比較し、設定値以上となる電
圧信号V4の幅をパルス幅として持つ受光検出信号V6
をCPU21に出力する(ステップ110)。CPU2
1は、蓄積時間t3の立ち上がりから受光検出信号V6
の立ち上がりまでの時間t5を算出し、この時間t5を
受光データとして記憶し、この受光データt5が予め設
定した設定値より短い場合、受光と判定し、設定値以上
の場合、遮光と判定する(ステップ120)。受光の場
合はステップ130に進み、受光フラグをセットし、遮
光の場合はステップ150に進み、遮光フラグをセット
する。
The comparison circuit 26 has a predetermined set value V
5 is compared with this voltage signal V4, and a light reception detection signal V6 having a pulse width equal to or greater than the set value as the pulse width of the voltage signal V4.
Is output to the CPU 21 (step 110). CPU2
1 is the light reception detection signal V6 from the rise of the accumulation time t3.
Is calculated as time t5, and this time t5 is stored as received light data. If the received light data t5 is shorter than a preset set value, it is determined that light is received. Step 120). In the case of light reception, the process proceeds to step 130, where a light reception flag is set. In the case of light reception, the process proceeds to step 150, in which a light shielding flag is set.

【0029】そして、遮光の場合は、1光軸の遮光であ
っても、次にステップ160に進み、遮光処理として出
力回路27に物体検出信号を出力し、ドアの停止や開放
制御を行なう。一方、受光の場合は、次にステップ14
0に進み、全光軸について判定したか否かを判断し、全
光軸判定を行なっていない場合、次にステップ170に
進み、上記ステップ100〜170を繰り返す。
In the case of shading, even if shading is performed on one optical axis, the process proceeds to step 160, where an object detection signal is output to the output circuit 27 as shading processing, and stop and open control of the door is performed. On the other hand, in the case of light reception, the next step 14 is
The process proceeds to 0, and it is determined whether or not all the optical axes have been determined. If all the optical axes have not been determined, the process proceeds to step 170, and the above steps 100 to 170 are repeated.

【0030】全光軸について判定を行なった場合、次
に、ステップ180に進み、遮光フラグがセットされて
いるか否かを判定し、遮光フラグがセットされてない場
合、ステップ190に進み、投光側の電流制御回路9に
出力する投光電流の制御値が「小」か否かを判定し、投
光電流の制御値が「小」のとき、ステップ200に進
み、増幅率可変増幅器22へ与える増幅率が「29」以
上か否かを判定し、増幅率が「29」以上の場合、ステ
ップ230に進み、光電検出距離を「遠距離」に設定す
る。
If the determination has been made for all the optical axes, the process proceeds to step 180, where it is determined whether or not the light-shielding flag has been set. It is determined whether or not the control value of the light emission current output to the current control circuit 9 on the side is “small”. If the control value of the light emission current is “small”, the process proceeds to step 200, and It is determined whether or not the amplification factor to be applied is equal to or greater than “29”. If the amplification factor is equal to or greater than “29”, the process proceeds to step 230, and the photoelectric detection distance is set to “long distance”.

【0031】一方、ステップ190で、投光電流の制御
値が「小」ではないと判定したとき、ステップ210に
進み、増幅率可変増幅器22へ与える増幅率が「9」以
上か否かを判定し、増幅率が「9」以上の場合、ステッ
プ220に進み、光電検出距離を「遠距離」に設定す
る。一方、ステップ210で増幅率が「9」以上でない
場合、ステップ200で増幅率が「29」以上でない場
合、ステップ240に進む。
On the other hand, when it is determined in step 190 that the control value of the projection current is not "small", the process proceeds to step 210, and it is determined whether or not the amplification factor given to the amplification factor variable amplifier 22 is "9" or more. If the amplification factor is “9” or more, the process proceeds to step 220, and the photoelectric detection distance is set to “far distance”. On the other hand, if the amplification factor is not “9” or more in step 210, or if the amplification factor is not “29” or more in step 200, the process proceeds to step 240.

【0032】ステップ240では、受光量が規定値以下
か否かを、CPU21が取り込んでだ受光データt5が
予め設定した設定値より長いか否かにより判定し、受光
データt5が予め設定した設定値より長い場合、受光量
が規定値以下と判断して次にステップ250に進み、増
幅率を例えば1つ上げる。受光データt5が予め設定し
た設定値より短い場合、受光量が規定値以下ではないと
判断して次にステップ260に進み、受光量が規定値以
上か否かを判定する。
In step 240, it is determined whether or not the amount of received light is equal to or less than a specified value based on whether or not the received light data t5 captured by the CPU 21 is longer than a preset set value. If it is longer, it is determined that the amount of received light is equal to or less than the specified value, and the process proceeds to step 250, where the amplification factor is increased by, for example, one. If the received light data t5 is shorter than the preset value, it is determined that the received light amount is not less than the specified value, and then the process proceeds to step 260, where it is determined whether the received light amount is not less than the specified value.

【0033】ここで、受光データt5が予め設定した設
定値より短い場合、受光量が規定値以上であると判断
し、次にステップ270に進み、増幅率可変増幅器22
の増幅率が最小か否かを判定し、その増幅率が最小であ
る場合、次にステップ280に進み、光電検出距離を
「近距離」に設定する。一方、ステップ270で、増幅
率が最小ではないと判断した場合、次にステップ290
に進み、増幅率を例えば1つ下げる。一方、ステップ2
60で、受光データt5が予め設定した設定値より短く
なく、受光量が規定値以上ではないと判断した場合、次
に、ステップ300に進む。このように、受光データt
5が予め設定した設定値より短く、受光量が規定値より
大きい場合、増幅率可変増幅器22の増幅率を下げるよ
うに制御する。
If the received light data t5 is shorter than a preset value, it is determined that the amount of received light is equal to or greater than a specified value.
It is determined whether the amplification factor is minimum. If the amplification factor is minimum, the process proceeds to step 280 to set the photoelectric detection distance to “short distance”. On the other hand, if it is determined in step 270 that the amplification factor is not the minimum, then in step 290
To reduce the amplification factor by, for example, one. Step 2
If it is determined at 60 that the received light data t5 is not shorter than the preset value and the amount of received light is not more than the specified value, the process proceeds to step 300. Thus, the received light data t
When 5 is shorter than a preset value and the amount of received light is larger than a specified value, the gain of the variable gain amplifier 22 is controlled to be reduced.

【0034】ステップ300では、全光軸の判定を行な
ったか否かを判定し、全光軸の判定をしてない場合、次
のステップ310で、次の光軸の受光信号を入力した
後、上記ステップ180に戻り、ステップ180〜30
0までの処理を繰り返す。
In step 300, it is determined whether or not all the optical axes have been determined. If all of the optical axes have not been determined, in step 310, after receiving the light receiving signal of the next optical axis, Returning to step 180, steps 180-30
The process up to 0 is repeated.

【0035】そして、全光軸の判定を行なった場合、ス
テップ320に進み、投光側の電流制御回路9に出力す
る投光電流の制御値が「小」か否かを判定し、投光電流
の制御値が「小」のとき、ステップ360に進む。ここ
で、光電検出距離の設定が「遠距離」か否かを判定し、
「遠距離」に設定されている場合、ステップ370で、
投光電流の制御値を「大」に設定し、この処理を終え
る。また、ステップ360で、「遠距離」に設定されて
いないと判定した場合はそのままこの処理を終え、再び
上記のステップ100以下を繰り返す。
If all the optical axes have been determined, the process proceeds to step 320, where it is determined whether or not the control value of the projection current output to the current control circuit 9 on the projection side is "small". When the control value of the current is “small”, the process proceeds to step 360. Here, it is determined whether the setting of the photoelectric detection distance is “far distance”,
If “far distance” is set, in step 370,
The control value of the light emission current is set to “large”, and this processing ends. If it is determined in step 360 that "far distance" has not been set, the process is terminated as it is, and the above steps 100 and thereafter are repeated again.

【0036】一方、ステップ320で、投光側の電流制
御回路9に出力する投光電流の制御値が「小」ではない
と判定した時、次に、ステップ330に進み、光電検出
距離の設定が「遠距離」か否かを判定し、「遠距離」に
設定されている場合、このままこの処理を終え、再び上
記のステップ100以下を繰り返す。一方、「遠距離」
に設定されていないと判定した場合、次にステップ34
0に進み、光電検出距離の設定が「近距離」か否かを判
定し、「近距離」に設定されている場合、次にステップ
350に進み、投光電流の制御値を「小」に設定し、こ
の処理を終え、再び上記のステップ100以下を繰り返
す。
On the other hand, when it is determined in step 320 that the control value of the light emission current output to the current control circuit 9 on the light emission side is not "small", the flow advances to step 330 to set the photoelectric detection distance. Is determined to be "far distance", and if it is set to "far distance", this processing is finished as it is, and the above-mentioned step 100 and subsequent steps are repeated again. On the other hand, "far distance"
If it is determined that is not set to
The process proceeds to 0, and it is determined whether or not the setting of the photoelectric detection distance is “short distance”. If it is set to “short distance”, the process proceeds to step 350, and the control value of the light emission current is set to “small”. After setting, this processing is completed, and the above-mentioned step 100 and subsequent steps are repeated again.

【0037】従って、増幅率可変増幅器22の増幅率が
最小で、光電検出距離が「近距離」に設定される場合、
投光電流の制御値が「小」に設定され、これによって、
投光量を減少するように制御する。なお、ステップ34
0で、「近距離」に設定されていないと判定した場合は
そのままこの処理を終え、再び上記のステップ100以
下を繰り返す。
Therefore, when the amplification factor of the variable amplification factor amplifier 22 is minimum and the photoelectric detection distance is set to “short distance”,
The control value of the emission current is set to "small",
Control is performed so as to reduce the amount of projected light. Step 34
If it is determined at 0 that the distance is not set to "short distance", this processing is terminated as it is, and the above-mentioned steps 100 and thereafter are repeated again.

【0038】このように、光電検出装置の投光器1の各
投光素子11 、12 〜1n が順に投光動作して受光器2
に向けて投光が行なわれ、各受光素子21 、22 〜2n
が順にその投光つまり各光軸を受光し、その受光量つま
り受光データがCPU21に取り込まれ、CPU21は
受光か遮光かの判定を行なっていくが、この間、エレベ
ータのドアが徐々に閉じていく場合、投光器1と受光器
2間の距離は徐々に短くなり、受光素子の受光量が増大
してくる。
[0038] Thus, the light projecting element 1 1 of the projector 1 of the photoelectric detection device, 1 2 to 1 n is sequentially operating light projecting and receiving unit 2
Are projected toward the respective light receiving elements 2 1 , 2 2 to 2 n
Sequentially receive the light, that is, each light axis, and the amount of received light, that is, the received light data, is taken into the CPU 21, and the CPU 21 determines whether the light is received or blocked, and during this time, the door of the elevator gradually closes. In this case, the distance between the light projector 1 and the light receiver 2 gradually decreases, and the amount of light received by the light receiving element increases.

【0039】しかし、上記のような処理を行なうことに
より、受光量が増大すると、電流制御回路9に出力する
投光電流の制御値を「小」にして投光電流を減少させる
ように制御し、且つ増幅率可変増幅器22へ与える増幅
率の指令値を徐々に低下させるように制御するため、ド
アの間つまり投光器1と受光器2間の距離が短くなるに
伴い、投光器1の投光量が減少し、受光量も減少してく
る。このため、受光器2の受光素子が飽和することを防
止し、また増幅器22の増幅動作の飽和を防止して、ド
アウエイ上の物体を確実に検出することができる。
However, when the amount of received light increases by performing the above processing, the control value of the light emission current output to the current control circuit 9 is set to "small" to control the light emission current to decrease. In addition, since the control is performed so that the command value of the amplification factor given to the amplification factor variable amplifier 22 is gradually reduced, the projection light amount of the projector 1 becomes smaller as the distance between the doors, that is, the distance between the projector 1 and the light receiver 2 becomes shorter. And the amount of received light also decreases. For this reason, it is possible to prevent the light receiving element of the light receiver 2 from being saturated and prevent the amplification operation of the amplifier 22 from being saturated, and to reliably detect the object on the doorway.

【0040】更に、エレベータのドアウエイの光電検出
装置の場合、投光器1或は受光器2がドアの内側の暗い
部分に設置される場合が多いが、受光素子にフォトトラ
ンジスタを使用し、このような暗い部分に設置された場
合、受光器2の受光量が低いと、受光限界性能が低下す
る。しかし、上記のように、受光器2の各受光素子2
1 、22 〜2n の近傍にバイアス光付与器3として、補
助投光素子31 、32 〜3n が配置され、受光動作時に
各補助投光素子が発光して、バイアス光を各受光素子2
1 、22 〜2n に与えるため、受光限界性能を向上させ
ることができる。
Further, photoelectric detection of an elevator doorway.
In the case of the device, the light emitter 1 or the light receiver 2 is dark inside the door.
It is often installed in a part,
If you use a transistor and place it in such a dark area,
In this case, if the light receiving amount of the light receiver 2 is low, the light receiving limit performance is reduced.
You. However, as described above, each light receiving element 2 of the light receiver 2
1 , 2Two ~ 2n Is provided as a bias light applicator 3 in the vicinity of
Auxiliary light emitting element 31 , 3Two ~ 3n Are arranged, and during light receiving operation
Each auxiliary light emitting element emits light, and bias light is emitted from each light receiving element 2.
1 , 2Two ~ 2n To improve the light receiving limit performance
Can be

【0041】なお、上記実施例ではエレベータのドアに
適用した例を説明したが、他の開閉可能なドアのドアウ
エイ上の物体を検出する装置にも適用することもでき
る。
In the above embodiment, an example in which the present invention is applied to an elevator door has been described. However, the present invention can also be applied to an apparatus for detecting an object on a doorway of another openable and closable door.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す光電検出装置のブロ
ック図である。
FIG. 1 is a block diagram of a photoelectric detection device according to an embodiment of the present invention.

【図2】同装置のコントローラ20のブロック図であ
る。
FIG. 2 is a block diagram of a controller 20 of the apparatus.

【図3】装置の動作を説明するためのフローチャートで
ある。
FIG. 3 is a flowchart for explaining the operation of the apparatus.

【図4】装置の動作を説明するためのフローチャートで
ある。
FIG. 4 is a flowchart for explaining the operation of the apparatus.

【図5】装置の回路各部の信号波形を示すタイミングチ
ャートである。
FIG. 5 is a timing chart showing signal waveforms of various parts of the circuit of the device.

【符号の説明】[Explanation of symbols]

1−投光器 2−受光器 3−バイアス光付与器 4−投光駆動回路 9−電流制御回路 20−コントローラ 21−CPU 22−増幅率可変増幅器 23−同期検波回路 24−電圧蓄積回路 26−比較回路 Reference Signs List 1-light emitter 2-light receiver 3-bias light applicator 4-light emission drive circuit 9-current control circuit 20-controller 21-CPU 22-variable gain amplifier 23-synchronous detection circuit 24-voltage storage circuit 26-comparison circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光線を発生させ投光する投光器と、該投
光器に対向して配置され該光線を受光する受光器とを有
し、該投光器と受光器がドアの両側端或はドアの側端と
固定部に対向して設置され、該受光器における該光線の
受光と遮光の状態に基づき、ドアウエイ上の物体を検出
するドアウエイの光電検出装置において、 前記受光器から出力される受光信号を増幅する増幅器
と、 該受光器が受光したときの受光量に基づき、該増幅器の
増幅率を制御する増幅率制御手段と、 を備えたことを特徴とするドアウエイの光電検出装置。
1. A light source for generating and projecting a light beam, and a light receiving device arranged opposite to the light emitting device and receiving the light beam, wherein the light emitting device and the light receiving device are on both side ends of the door or on the side of the door. A doorway photoelectric detection device that is installed to face the end and the fixed portion and detects an object on the doorway based on a state of light reception and light blocking in the light receiver, wherein a light reception signal output from the light receiver is A doorway photoelectric detection device, comprising: an amplifier for amplifying; and amplification factor control means for controlling an amplification factor of the amplifier based on an amount of light received by the light receiver.
【請求項2】 前記受光器が受光したときの受光量に基
づき、前記投光器の投光駆動電流を制御する電流制御手
段を設けたことを特徴とする請求項1記載のドアウエイ
の光電検出装置。
2. The doorway photoelectric detecting device according to claim 1, further comprising current control means for controlling a light emitting drive current of the light emitting device based on an amount of light received by the light receiving device.
【請求項3】 前記受光器の各受光素子の近傍に、該受
光素子にバイアス光を与えるバイアス光付与器が配置さ
れたことを特徴とする請求項1又は2記載のドアウエイ
の光電検出装置。
3. The doorway photoelectric detection device according to claim 1, wherein a bias light applicator for applying a bias light to the light receiving element is arranged near each light receiving element of the light receiving element.
JP18476498A 1998-06-30 1998-06-30 Doorway photoelectric detector Expired - Lifetime JP3680199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18476498A JP3680199B2 (en) 1998-06-30 1998-06-30 Doorway photoelectric detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18476498A JP3680199B2 (en) 1998-06-30 1998-06-30 Doorway photoelectric detector

Publications (2)

Publication Number Publication Date
JP2000018492A true JP2000018492A (en) 2000-01-18
JP3680199B2 JP3680199B2 (en) 2005-08-10

Family

ID=16158929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18476498A Expired - Lifetime JP3680199B2 (en) 1998-06-30 1998-06-30 Doorway photoelectric detector

Country Status (1)

Country Link
JP (1) JP3680199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100975A (en) * 2000-09-22 2002-04-05 Mitsubishi Electric Corp Closing safety device for elevator door
US8882440B2 (en) 2009-05-20 2014-11-11 Voith Patent Gmbh Wave chamber for a wave power plant, and method for producing the same
KR101780732B1 (en) * 2015-09-09 2017-09-22 주식회사 오디텍 Elevator monitoring method using by multi-beam sensor
JP2021514450A (en) * 2018-02-20 2021-06-10 フラバ ベスローテン ヴェンノーツハップFraba B.V. How to monitor the movement of optoelectronic safety devices and machines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100975A (en) * 2000-09-22 2002-04-05 Mitsubishi Electric Corp Closing safety device for elevator door
US8882440B2 (en) 2009-05-20 2014-11-11 Voith Patent Gmbh Wave chamber for a wave power plant, and method for producing the same
KR101780732B1 (en) * 2015-09-09 2017-09-22 주식회사 오디텍 Elevator monitoring method using by multi-beam sensor
JP2021514450A (en) * 2018-02-20 2021-06-10 フラバ ベスローテン ヴェンノーツハップFraba B.V. How to monitor the movement of optoelectronic safety devices and machines
JP7026244B2 (en) 2018-02-20 2022-02-25 フラバ ベスローテン ヴェンノーツハップ How to monitor the movement of optoelectronic safety devices and machines
US11781363B2 (en) 2018-02-20 2023-10-10 Cedes Ag Optoelectronic safety device and method for monitoring a movement of a machine

Also Published As

Publication number Publication date
JP3680199B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US4733081A (en) Method and apparatus for sensing a human body
EP1439619A3 (en) Semiconductor laser drive apparatus, optical write apparatus, imaging apparatus, and semiconductor laser drive method
GB2342714A (en) Lift door protection apparatus with power saving circuitry
US4942385A (en) Photoelectric intrusion detector
US5696362A (en) Weak beam detection
JP2000018492A (en) Photodetector for doorway
US7064311B2 (en) Optical image detector and method for controlling illumination of the same
JP3510736B2 (en) Object detector
JPH08201519A (en) Light reception circuit
JP6926359B2 (en) Detection device
JPH0735858A (en) Distance measuring equipment
JP3401800B2 (en) Photoelectric switch
JP2002217703A (en) Multi-optical axis photoelectric sensor
JP2597636Y2 (en) Optical object detector
JP3358095B2 (en) Photoelectric switch
JPH06318855A (en) Photoelectric switch
JPH05206821A (en) Photoelectric switch and controlling method thereof
JPH0694843A (en) Photoelectric switch
JP2002100975A (en) Closing safety device for elevator door
JPH06177737A (en) Photoelectric switch
JPH10153062A (en) Shading device
JP3144590B2 (en) Water supply control device
JPS5967480A (en) Optical fiber type photoelectric switch
JPH0194720A (en) Optical detecting device
JPH06148341A (en) Human-body detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term