JP2000017413A - Method for heat treating aluminum alloy - Google Patents

Method for heat treating aluminum alloy

Info

Publication number
JP2000017413A
JP2000017413A JP10182831A JP18283198A JP2000017413A JP 2000017413 A JP2000017413 A JP 2000017413A JP 10182831 A JP10182831 A JP 10182831A JP 18283198 A JP18283198 A JP 18283198A JP 2000017413 A JP2000017413 A JP 2000017413A
Authority
JP
Japan
Prior art keywords
treatment
artificial aging
temperature
time
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10182831A
Other languages
Japanese (ja)
Other versions
JP4110620B2 (en
Inventor
Shinsuke Ukai
伸介 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP18283198A priority Critical patent/JP4110620B2/en
Publication of JP2000017413A publication Critical patent/JP2000017413A/en
Application granted granted Critical
Publication of JP4110620B2 publication Critical patent/JP4110620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce the heat treating time in an alloy while the stability of its mechanical properties is secured and to attain the cost reduction by subjecting a casting of a cast aluminum alloy to solution heat treatment and artificial aging treatment using a high speed heat treating furnace of a fluidized grain heating mold or the like. SOLUTION: An aluminum alloy is cast, and the obtd. casting is subjected to heat treatment to improve its mechanical properties. This heat treatment is executed by using a high speed heat treating furnace of a fluidized grain heating mold or the like, and the casting is subjected to solution heat treatment and artificial aging treatment. At this time, as for the solution heat treatment, preferably, the solution heat treating temp. is set to 520 to 550 deg.C, and the solution heat treating time is set to >=35 min in the vicinity of 520 deg.C solution heat treating temp. and to >=25 min at 530 to 550 deg.C. Moreover, as for the artificial aging treatment, preferably, the artificial aging treating temp. is set to 200 to 230 deg.C, and the artificial aging treatment time is set to >=20 min at 200 to 210 deg.C artificial aging treating temp., to 10 to 40 min in the vicinity of 220 deg.C and to 10 to 15 min in the vicinity of 230 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Al―Si―Mg
系(JIS規格のAC4C等)のアルミニウム合金のT
6熱処理に関する。
TECHNICAL FIELD The present invention relates to an Al-Si-Mg
T (based on JIS standard AC4C) of aluminum alloy
6 Regarding heat treatment.

【0002】[0002]

【従来の技術】アルミニウム合金製の鋳造品は、鋳造後
に機械的性質(引っ張り強度、0.2%耐力等)を改善
するために、熱処理を行うことが望ましい。例えば、A
l―Si―Mg系合金では、共晶点より57℃低い温
度、すなわち520℃程度で5〜6時間以上保持した後
に急冷する溶体化処理を行い、次いで200℃以下で4
〜10時間保持する人工時効処理を行うT6熱処理を行
っている。
2. Description of the Related Art It is desirable that a cast product made of an aluminum alloy be subjected to a heat treatment after casting in order to improve mechanical properties (tensile strength, 0.2% proof stress, etc.). For example, A
In the case of an l-Si-Mg alloy, a solution treatment of rapidly cooling after holding at a temperature 57 ° C. lower than the eutectic point, that is, about 520 ° C. for 5 to 6 hours or more, and then performing a 4 ° C.
T6 heat treatment for performing artificial aging treatment for 10 to 10 hours is performed.

【0003】しかし、この方法では、溶体化処理、人工
時効処理ともに長時間を必要とするから、生産性が低い
とともに、エネルギー消費量が大きいという問題点があ
った。
However, in this method, since both the solution treatment and the artificial aging treatment require a long time, there are problems that the productivity is low and the energy consumption is large.

【0004】[0004]

【発明が解決しようとする課題】上記問題を解決するた
めに、特開平7―310150には、溶体化処理を簡素
化する技術が記載されている。すなわち、溶体化処理温
度をAl―Si系合金の共晶点577℃近傍の557℃
〜570℃程度に急速に昇温した後に急冷することで、
約1時間以内で溶体化処理が可能になるというものであ
る。しかし、実用面を考慮すると、溶体化処理温度は、
550℃以下にしておかないと鋳物のバーニング(局部
溶解)が起きる可能性がある。また、人工時効処理につ
いては、上述の従来技術と変わらないので、T6処理全
体で考えると、5時間程度必要であり、やはり生産性は
低い。
In order to solve the above-mentioned problem, Japanese Patent Application Laid-Open No. 7-310150 discloses a technique for simplifying a solution treatment. That is, the solution treatment temperature is set to 557 ° C. near the eutectic point of 577 ° C. of the Al—Si alloy.
By rapidly raising the temperature to about 570 ° C and then quenching,
The solution treatment can be performed within about one hour. However, considering the practical aspect, the solution treatment temperature is
If the temperature is not maintained at 550 ° C. or lower, burning (local melting) of the casting may occur. In addition, since the artificial aging treatment is not different from the above-described conventional technology, it takes about 5 hours when considering the entire T6 treatment, and the productivity is also low.

【0005】また、特開平9―228010には、溶体
化処理を省くために鋳物を型から取り出した直後(鋳物
温度が400℃〜470℃のとき)に直接焼入れをして
から人工時効処理を行う熱処理方法が記載されている。
この方法によれば、最短2時間程度で熱処理を行うこと
ができるので、生産性についてはかなり高いといえる
が、焼入れ直前の鋳物温度がばらつくと、機械的性質も
ばらつくという工程管理上の問題がある。
Japanese Patent Application Laid-Open No. 9-228010 discloses that in order to omit the solution treatment, immediately after the casting is removed from the mold (when the casting temperature is 400 ° C. to 470 ° C.), it is directly quenched and then subjected to artificial aging treatment. The heat treatment method to be performed is described.
According to this method, the heat treatment can be performed in a minimum of about 2 hours. Therefore, it can be said that the productivity is considerably high. However, if the casting temperature immediately before quenching varies, the mechanical properties also vary, which is a problem in process management. is there.

【0006】本発明は、上記不具合を解決したものであ
り、アルミニウム合金製の鋳造品の機械的性質を向上さ
せるための熱処理において、機械的性質の安定性を確保
しつつ熱処理時間を大幅に短縮し、生産性の向上、エネ
ルギー消費量削減を図り、製品のコストダウンを可能に
する熱処理方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and significantly reduces the heat treatment time while maintaining the stability of the mechanical properties in the heat treatment for improving the mechanical properties of an aluminum alloy casting. It is another object of the present invention to provide a heat treatment method capable of improving productivity, reducing energy consumption, and reducing the cost of a product.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、流動粒子加熱型等の高速
熱処理炉を用いて、鋳造した鋳物の溶体化処理及び、人
工時効処理を行うアルミニウム合金の熱処理方法とし
た。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 is a solution treatment of a casting cast using a high-speed heat treatment furnace such as a fluidized particle heating type, and an artificial aging treatment. The heat treatment of the aluminum alloy.

【0008】熱処理炉を、従来の雰囲気加熱型のものに
比して、鋳物の昇温速度が5〜10倍である流動粒子加
熱型等の高速熱処理炉のものに変更することで、鋳物の
昇温にかかる時間を短縮することができるとともに、溶
体化処理時間及び人工時効処理時間を大幅に短縮して
も、従来の熱処理条件を行った場合と同等の機械的性質
を有するアルミニウム合金鋳物を製造することができる
ものである。
By changing the heat treatment furnace to a high-speed heat treatment furnace such as a fluidized particle heating type in which the temperature rise rate of the casting is 5 to 10 times that of a conventional atmosphere heating type, It is possible to shorten the time required for the temperature rise, and even if the solution heat treatment time and the artificial aging time are significantly shortened, an aluminum alloy casting having the same mechanical properties as when the conventional heat treatment conditions are performed. It can be manufactured.

【0009】より好ましくは、請求項2に記載のよう
に、前記溶体化処理は、溶体化処理温度を520℃〜5
50℃に設定し、溶体化処理時間は、前記溶体化処理温
度が520℃近傍では35分以上、前記溶体化処理温度
が530℃〜550℃では25分以上に設定し、前記人
工時効処理は、人工時効処理温度を200℃〜230℃
に設定し、人工時効処理時間は、前記人工時効処理温度
が200℃〜210℃では20分以上、前記人工時効処
理温度が220℃近傍では10分〜40分、前記人工時
効処理温度が230℃近傍では10分〜15分に設定す
るとよい。
More preferably, as in claim 2, the solution treatment is carried out at a temperature of 520 ° C. to 5 ° C.
The solution treatment time is set to 50 ° C., the solution treatment time is set to 35 minutes or more when the solution treatment temperature is around 520 ° C., and set to 25 minutes or more when the solution treatment temperature is 530 ° C. to 550 ° C. , Artificial aging temperature 200 ~ 230 ℃
The artificial aging time is 20 minutes or more when the artificial aging temperature is 200 ° C. to 210 ° C., 10 minutes to 40 minutes when the artificial aging temperature is around 220 ° C., and the artificial aging temperature is 230 ° C. In the vicinity, it may be set to 10 to 15 minutes.

【0010】このような熱処理条件にて、流動粒子加熱
型等の高速熱処理炉を用いて、溶体化処理及び、人工時
効処理を行うことにより、さらに確実に、安定した機械
的性質を有するアルミニウム合金鋳物を短時間にて製造
することができる。
[0010] Under such heat treatment conditions, a solution treatment and an artificial aging treatment are performed using a high-speed heat treatment furnace such as a fluidized particle heating type, so that an aluminum alloy having more stable mechanical properties can be obtained more reliably. Castings can be manufactured in a short time.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】JIS規格AC4C合金に近い組成のAl
―Si―Mg系合金を鋳造し、試料を切り出し、各種の
温度と時間にて溶体化処理をした後、水焼入れを実施
し、その後、各種の温度と時間にて人工時効処理を行っ
た。このように熱処理を行った後、試料の硬度を測定し
た。
Al having a composition close to JIS standard AC4C alloy
-Si-Mg alloys were cast, samples were cut out, subjected to solution treatment at various temperatures and times, water quenched, and then subjected to artificial aging at various temperatures and times. After the heat treatment as described above, the hardness of the sample was measured.

【0013】図5は、今回試験を行った熱処理条件の一
覧である。ここで、溶体化処理時間は、試料を炉内に挿
入した直後から、試料を炉から取り出し水焼入れを行う
までの時間とする(すなわち、試料の昇温時間も溶体化
処理時間に含まれることになる。)。同様に、人工時効
処理時間も、試料を炉内に挿入した直後から、炉から取
り出すまでの時間とする(試料の昇温時間を含む。)。
尚、本試験に使用した試料の化学組成は、図6に示す通
りであった。
FIG. 5 is a list of heat treatment conditions used in this test. Here, the solution treatment time is the time from immediately after the sample is inserted into the furnace to the time when the sample is taken out of the furnace and water quenching is performed (that is, the time for raising the temperature of the sample is also included in the solution treatment time). become.). Similarly, the artificial aging treatment time is also defined as the time from immediately after the sample is inserted into the furnace to when the sample is removed from the furnace (including the time for heating the sample).
The chemical composition of the sample used in this test was as shown in FIG.

【0014】図1は、図5において、試験条件1〜4に
おいて処理時間を横軸に取った場合の試料の硬度を測定
した結果である。図5に示すように、試験条件1〜4
は、溶体化処理の温度の影響のみを把握するため、人工
時効処理は、従来の処理条件(雰囲気加熱型の炉にて1
70℃×300分)に固定して行った。溶体化処理は、
本発明に係る流動粒子加熱型の炉を用いて行い、処理温
度の影響を把握するため処理温度を520℃〜550℃
まで10℃きざみで変化させている。
FIG. 1 shows the results of measuring the hardness of the sample when the processing time is plotted on the horizontal axis under test conditions 1 to 4 in FIG. As shown in FIG.
In order to grasp only the effect of the temperature of the solution treatment, the artificial aging treatment is performed under the conventional treatment conditions (one atmosphere in an atmosphere heating type furnace).
(70 ° C. × 300 minutes). The solution treatment is
The process is performed using a fluidized particle heating type furnace according to the present invention, and the processing temperature is set to 520 ° C. to 550 ° C. in order to grasp the influence of the processing temperature.
Up to 10 ° C.

【0015】図1の結果より、条件1、すなわち溶体化
処理温度が520℃のときは25分以上、条件2〜条件
4、すなわち溶体化処理温度が530℃〜550℃のと
きは15分以上処理を行えば、従来条件(条件13)に
て処理した場合と同等以上の硬度が得られることが分か
る。ただし、試料内部の昇温時間も考慮すると、さらに
10分の余裕をとり、520℃では、35分以上、53
0℃〜550℃では、25分以上処理を行うことが望ま
しい。
From the results shown in FIG. 1, when the condition 1, ie, the solution heat treatment temperature is 520 ° C., is 25 minutes or more, and when the condition 2 to the condition 4, ie, when the solution heat treatment temperature is 530 ° C. to 550 ° C., 15 minutes or more. It can be seen that when the treatment is performed, hardness equal to or higher than that obtained when the treatment is performed under the conventional condition (condition 13) is obtained. However, considering the temperature rise time inside the sample, an additional 10 minutes is allowed, and at 520 ° C., 35 minutes or more and 53 minutes or more.
At 0 ° C to 550 ° C, it is desirable to perform the treatment for 25 minutes or more.

【0016】以上の結果は、Al―Si―Mg系合金の
析出硬化相であるMgSiが、温度が高い方が早く固
溶するため、溶体化温度を高くすることで短時間で鋳物
の溶体化を完了させることができる事を示している。こ
れらの実験結果より、昇温速度の速い流動粒子加熱型の
炉を用い、処理温度を520℃以上にすることにより、
溶体化処理時間(昇温時間を含む)を、従来の5〜6時
間から最短で25分にまで短縮可能であることが分か
る。
The above results indicate that Mg 2 Si, which is a precipitation hardening phase of an Al—Si—Mg-based alloy, forms a solid solution faster at higher temperatures. This indicates that solution treatment can be completed. From these experimental results, by using a fluidized particle heating type furnace with a high temperature rising rate and setting the processing temperature to 520 ° C. or higher,
It can be seen that the solution treatment time (including the temperature rise time) can be reduced from the conventional 5 to 6 hours to a minimum of 25 minutes.

【0017】次に、図2は、図5において、試験条件5
〜12において処理時間を横軸に取った場合の試料の硬
度を測定した結果である。図5に示すように、試験条件
5〜12は、人工時効処理の温度の影響のみを把握する
ため、溶体化処理は、図1の結果良好であった一条件
(流動粒子加熱型の炉にて540℃×25分)に固定し
て行った。人工時効処理は、本発明に係る流動粒子加熱
型の炉を用いて行い、処理温度の影響を把握するため処
理温度を170℃〜240℃まで10℃きざみで変化さ
せている。
Next, FIG. 2 is a graph showing test conditions 5 in FIG.
12 shows the results of measuring the hardness of the sample when the processing time is plotted on the horizontal axis. As shown in FIG. 5, the test conditions 5 to 12 are only one condition (the fluidized particle heating type furnace) in which the solution treatment was favorable as a result of FIG. (540 ° C. × 25 minutes). The artificial aging treatment is performed using the fluidized particle heating type furnace according to the present invention, and the treatment temperature is changed in steps of 10 ° C. from 170 ° C. to 240 ° C. in order to grasp the influence of the treatment temperature.

【0018】図2の結果より、条件8〜条件9、すなわ
ち人工時効処理温度が200℃〜210℃のときは20
〜60分、条件10、すなわち人工時効処理温度が22
0℃のときは10〜40分、条件11、すなわち人工時
効処理温度が230℃のときは10〜15分の間処理を
行えば、従来条件(条件13)にて処理した場合と同等
の硬度が得られることが分かる。
From the results shown in FIG. 2, when the conditions 8 to 9 are satisfied, that is, when the artificial aging treatment temperature is 200 ° C. to 210 ° C., 20
~ 60 minutes, condition 10, ie, artificial aging temperature is 22
If the treatment is carried out for 10 to 40 minutes at 0 ° C. and under condition 11, that is, for 10 to 15 minutes when the artificial aging treatment temperature is 230 ° C., the hardness is the same as that under the conventional condition (condition 13). Is obtained.

【0019】以上の結果によると、低温側にて処理する
と硬度の最大値は高くなるが、最大値に到達するまでの
時間は長くなり、逆に、高温側にて処理すると硬度の最
大値に到達するまでの時間は短くなるが、硬度の最大値
が低くなってしまうという傾向がある。この傾向は、一
般的に知られている傾向を一致するものである。これら
の実験結果より、昇温速度の速い流動粒子加熱型等の炉
を用い、処理温度を220℃〜230℃にすることによ
り、人工時効処理時間(昇温時間を含む)を、従来の4
〜10時間から最短で10分にまで短縮可能であること
が分かる。
According to the above results, the maximum value of the hardness increases when the treatment is performed on the low temperature side, but the time required to reach the maximum value increases, and conversely, when the treatment is performed on the high temperature side, the maximum value of the hardness decreases. The time to reach is shorter, but the maximum value of the hardness tends to be lower. This tendency is consistent with a generally known tendency. According to these experimental results, the artificial aging treatment time (including the heating time) was reduced to 4 times by using a furnace such as a fluidized particle heating type having a high heating rate and setting the treatment temperature to 220 ° C. to 230 ° C.
It can be seen that the time can be reduced from 10 hours to 10 minutes in the shortest.

【0020】図3及び図4は、以上の結果を踏まえて、
結果が良好であった一条件(溶体化処理が540℃×2
5分、人工時効処理が220℃×25分に固定)にて、
流動粒子加熱型の炉を用いて熱処理を行った鋳物におい
て、引っ張り強度と0.2%耐力を測定し、従来条件
(条件13)にて処理した場合のものとの比較を行った
結果(n=5づつ)を示す。
FIGS. 3 and 4 are based on the above results.
One condition where the result was good (solution treatment was 540 ° C. × 2
5 minutes, artificial aging treatment fixed at 220 ° C x 25 minutes)
Tensile strength and 0.2% proof stress were measured for a casting that had been heat-treated using a fluidized particle heating furnace, and the results were compared with those that were treated under conventional conditions (condition 13) (n = 5).

【0021】この結果より、本発明に係る流動粒子加熱
型等の炉にて所定条件下にて処理した鋳物は、従来条件
にて処理した鋳物に比して、引っ張り強度、0.2耐力
及びこれらのばらつき共に、同等であると判断すること
ができる。尚、試料の化学組成は、図7に示す通りであ
った。
From these results, the casting treated under the predetermined conditions in the furnace such as the fluidized particle heating type according to the present invention has a tensile strength, 0.2 proof stress and 0.2 proof stress which are higher than the castings processed under the conventional conditions. Both of these variations can be determined to be equivalent. The chemical composition of the sample was as shown in FIG.

【0022】以上をまとめると、本発明の高速熱処理条
件における最適範囲は、図8に示す通りである。
Summarizing the above, the optimum range under the high-speed heat treatment conditions of the present invention is as shown in FIG.

【0023】まず、溶体化処理の処理条件について説明
する。処理温度を520℃以上としたのは、以下の理由
による。すなわち、本発明は生産性向上等が目的であ
り、処理時間をあまり長時間とすると本発明の優位性を
喪失してしまうので、本発明においては、溶体化処理時
間及び人工時効処理時間共に、60分以内を想定してい
るところ、溶体化処理は、520℃未満では時効硬化反
応(Al―Si―Mg系合金においてはMgSiの析
出反応)を起こすために必要な過飽和固溶体が60分以
内では得られず、従来条件にて処理したものに比して機
械的性質が劣ってしまうからである。また、処理温度を
550℃以下としたのは、前述したように、550℃以
上では、鋳物のバーニングが発生する可能性があるから
である。処理時間については、520℃では35分以
上、530℃〜550℃では25分以上としたのは、そ
れ未満の処理時間では、十分な過飽和固溶体が得られな
い場合があり、試料ごと、あるいは試料の部位ごとで機
械的性質のばらつきが大きくなってしまうからである。
処理時間を60分以内としたのは、上述した生産性の観
点からである。
First, the conditions for the solution treatment will be described. The reason why the processing temperature is set to 520 ° C. or higher is as follows. That is, the present invention is aimed at improving productivity and the like, and if the treatment time is too long, the advantage of the present invention is lost.In the present invention, both the solution treatment time and the artificial aging treatment time are: Assuming that the time is within 60 minutes, the super-saturated solid solution required to cause the age hardening reaction (precipitation reaction of Mg 2 Si in Al—Si—Mg based alloy) at less than 520 ° C. is 60 minutes. Within this range, the mechanical properties are inferior to those processed under conventional conditions. Further, the reason why the processing temperature is set to 550 ° C. or lower is that, as described above, at 550 ° C. or higher, burning of the casting may occur. The processing time is set to 35 minutes or more at 520 ° C. and 25 minutes or more at 530 ° C. to 550 ° C. If the processing time is shorter than that, a sufficient supersaturated solid solution may not be obtained. This is because the dispersion of the mechanical properties becomes large for each part.
The reason why the processing time is set within 60 minutes is from the viewpoint of productivity described above.

【0024】次に、人工時効処理の処理条件について説
明する。人工時効処理中の時効析出過程は、過飽和固溶
体→中間相→安定相となっており、このうち、合金の強
度向上に最も寄与する硬化析出相は中間相であり、中間
相の析出形態は微細で均一な方が強度は高くなるもので
ある。図8において、人工時効処理温度を200℃〜2
30℃としたのは、200℃未満では、60分以内では
時効硬化反応(MgSiの析出反応)が十分に進行し
ない、すなわち中間相の析出が十分ではないので、従来
条件にて処理した場合と同等の機械的性質が得られない
からであり、また、230℃を超えると、中間相が粗大
化したり、安定相が析出して(いわゆる過時効状態)強
度が低下するためである。また、処理時間について図8
に示す範囲に設定したのは、各処理温度において図8に
示す最短時間未満では、中間相の析出が不十分になった
り、不均一になる場合があるからであり、また、各処理
温度において図8に示す最長時間を超えると、高温側
(220℃及び230℃)では前述の過時効状態となる
からであり、低温側(200℃及び210℃)では前述
のように生産性(処理時間60分以下を想定)を考慮し
たからである。
Next, the processing conditions of the artificial aging process will be described. The aging precipitation process during artificial aging treatment is a supersaturated solid solution → intermediate phase → stable phase, of which the hardened precipitation phase that most contributes to the improvement of the alloy strength is the intermediate phase, and the precipitation form of the intermediate phase is fine. The more uniform, the higher the strength. In FIG. 8, the artificial aging treatment temperature was set to 200 ° C. to 2 ° C.
The reason for setting the temperature at 30 ° C. is that if the temperature is lower than 200 ° C., the age hardening reaction (precipitation reaction of Mg 2 Si) does not sufficiently proceed within 60 minutes, that is, the precipitation of the intermediate phase is not sufficient. This is because mechanical properties equivalent to those in the above case cannot be obtained, and when the temperature exceeds 230 ° C., the intermediate phase becomes coarse or a stable phase is precipitated (so-called overaged state) to lower the strength. FIG. 8 shows the processing time.
The reason for setting the range is that if the processing time is less than the shortest time shown in FIG. 8, the precipitation of the intermediate phase may be insufficient or non-uniform, and at each processing temperature, This is because if the maximum time shown in FIG. 8 is exceeded, the above-mentioned overaging state occurs on the high temperature side (220 ° C. and 230 ° C.), and the productivity (processing time) on the low temperature side (200 ° C. and 210 ° C.) as described above. (Assuming 60 minutes or less).

【0025】このように、本発明によれば、溶体化処理
については昇温も含めて最短で25分、人工時効処理は
昇温も含めて最短で10分という短時間にて、従来の熱
処理条件を行った場合と同等の機械的性質を有するアル
ミニウム合金鋳物を製造することができる。すなわち、
鋳物の熱処理に要する時間が、従来の10時間程度から
最短で約40分にまで短縮することができる。また、鋳
造後直接焼入れるのではなく溶体化処理を行うので、鋳
物の取り出し温度がばらついても、熱処理後の機械的性
質は安定したものになるのである。
As described above, according to the present invention, the conventional heat treatment is performed in a minimum time of 25 minutes including the temperature increase for the solution treatment, and 10 minutes for the artificial aging treatment including the temperature increase. An aluminum alloy casting having the same mechanical properties as when the conditions are performed can be manufactured. That is,
The time required for heat treatment of the casting can be reduced from the conventional 10 hours to a minimum of about 40 minutes. In addition, since the solution treatment is performed instead of direct quenching after casting, the mechanical properties after heat treatment become stable even if the temperature at which the casting is taken out varies.

【0026】以上、本発明を上記実施の態様に即して説
明したが、本発明は上記態様に限定されるものではな
く、本発明の原理に準ずる各種態様を含むものである。
Although the present invention has been described with reference to the above embodiments, the present invention is not limited to the above embodiments, but includes various embodiments according to the principle of the present invention.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
アルミニウム合金製の鋳造品の機械的性質を向上させる
ための熱処理において、機械的性質の安定性を確保しつ
つ熱処理時間を大幅に短縮し、生産性の向上、エネルギ
ー消費量削減を図り、製品のコストダウンを可能にする
熱処理方法を提供することができる。
As described above, according to the present invention,
In the heat treatment to improve the mechanical properties of aluminum alloy castings, the heat treatment time is greatly reduced while maintaining the stability of the mechanical properties, and the productivity and energy consumption are reduced. A heat treatment method capable of reducing costs can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における溶体化処理条件と
鋳物の硬度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between solution treatment conditions and hardness of a casting in one embodiment of the present invention.

【図2】本発明の一実施形態における人工時効処理条件
と鋳物の硬度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between artificial aging treatment conditions and hardness of a casting in one embodiment of the present invention.

【図3】本発明条件と従来条件にて熱処理した場合の鋳
物の引っ張り強度を示す図である。
FIG. 3 is a graph showing the tensile strength of a casting when heat treatment is performed under the conditions of the present invention and conventional conditions.

【図4】本発明条件と従来条件にて熱処理した場合の鋳
物の0.2%耐力を示す図である。
FIG. 4 is a graph showing 0.2% proof stress of a casting when heat treatment is performed under the conditions of the present invention and conventional conditions.

【図5】試験を行った熱処理条件の一覧表である。FIG. 5 is a list of heat treatment conditions under which tests were performed.

【図6】図1及び図2に示す試験を行った際の試料の化
学組成を示す表である。
FIG. 6 is a table showing a chemical composition of a sample when the tests shown in FIGS. 1 and 2 are performed.

【図7】図3及び図4に示す試験を行った際の試料の化
学組成を示す表である。
FIG. 7 is a table showing a chemical composition of a sample when the tests shown in FIGS. 3 and 4 are performed.

【図8】本発明の高速熱処理条件における最適範囲を示
す表である。
FIG. 8 is a table showing an optimum range under the rapid heat treatment conditions of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流動粒子加熱型等の高速熱処理炉を用い
て、鋳造した鋳物の溶体化処理及び、人工時効処理を行
うアルミニウム合金の熱処理方法。
1. A heat treatment method for an aluminum alloy in which a cast casting is subjected to a solution treatment and an artificial aging treatment using a high-speed heat treatment furnace such as a fluidized particle heating type.
【請求項2】 前記溶体化処理は、溶体化処理温度を5
20℃〜550℃に設定し、溶体化処理時間は、前記溶
体化処理温度が520℃近傍では35分以上、前記溶体
化処理温度が530℃〜550℃では25分以上に設定
し、前記人工時効処理は、人工時効処理温度を200℃
〜230℃に設定し、人工時効処理時間は、前記人工時
効処理温度が200℃〜210℃では20分以上、前記
人工時効処理温度が220℃近傍では10分〜40分、
前記人工時効処理温度が230℃近傍では10分〜15
分に設定することを特徴とする請求項1に記載のアルミ
ニウム合金の熱処理方法。
2. The solution treatment according to claim 1, wherein the solution treatment temperature is 5 ° C.
The solution treatment time was set to 20 ° C. to 550 ° C., and the solution treatment time was set to 35 minutes or more when the solution treatment temperature was around 520 ° C., and was set to 25 minutes or more when the solution treatment temperature was 530 ° C. to 550 ° C. In the aging treatment, the artificial aging treatment temperature is set to 200 ° C.
~ 230 ℃, artificial aging time, the artificial aging temperature is at least 20 minutes when the artificial aging temperature is 200 ℃ ~ 210 ℃, 10 minutes ~ 40 minutes when the artificial aging temperature is around 220 ℃,
10 minutes to 15 when the artificial aging temperature is around 230 ° C.
The heat treatment method for an aluminum alloy according to claim 1, wherein the heat treatment time is set to minutes.
JP18283198A 1998-06-29 1998-06-29 Heat treatment method of aluminum alloy Expired - Lifetime JP4110620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18283198A JP4110620B2 (en) 1998-06-29 1998-06-29 Heat treatment method of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18283198A JP4110620B2 (en) 1998-06-29 1998-06-29 Heat treatment method of aluminum alloy

Publications (2)

Publication Number Publication Date
JP2000017413A true JP2000017413A (en) 2000-01-18
JP4110620B2 JP4110620B2 (en) 2008-07-02

Family

ID=16125239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18283198A Expired - Lifetime JP4110620B2 (en) 1998-06-29 1998-06-29 Heat treatment method of aluminum alloy

Country Status (1)

Country Link
JP (1) JP4110620B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016387A1 (en) * 1999-08-31 2001-03-08 Asahi Tec Corporation Cu-FREE CAST ALUMINUM ALLOY AND METHOD OF HEAT TREATMENT FOR PRODUCING THE SAME
WO2002012813A1 (en) * 2000-08-09 2002-02-14 Asahi Tec Corporation Hot air blow type fluidized bed furnace, rotary type heat treatment furnace, heat treatment device, and heat treatment method
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
JP2002054880A (en) * 2000-08-09 2002-02-20 Asahi Tec Corp Rotary heat treatment furnace, heat treatment device, and heat treatment method
JP2002107064A (en) * 2000-09-27 2002-04-10 Asahi Tec Corp Hot air blow-through type fluidized bed furnace, and heat treating device using the furnace
JP2002195759A (en) * 2000-12-27 2002-07-10 Asahi Tec Corp Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
CN104561855A (en) * 2014-07-23 2015-04-29 霍山汇能汽车零部件制造有限公司 Heat treatment process for 4032 aluminum alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773665B1 (en) 1999-08-31 2004-08-10 Asahi Tec Corporation Non-Cu-based cast Al alloy and method for heat treatment thereof
WO2001016387A1 (en) * 1999-08-31 2001-03-08 Asahi Tec Corporation Cu-FREE CAST ALUMINUM ALLOY AND METHOD OF HEAT TREATMENT FOR PRODUCING THE SAME
KR100533242B1 (en) * 2000-08-08 2005-12-05 아사히 테크 가부시키가이샤 Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof
JP2002054880A (en) * 2000-08-09 2002-02-20 Asahi Tec Corp Rotary heat treatment furnace, heat treatment device, and heat treatment method
WO2002012813A1 (en) * 2000-08-09 2002-02-14 Asahi Tec Corporation Hot air blow type fluidized bed furnace, rotary type heat treatment furnace, heat treatment device, and heat treatment method
US7025927B2 (en) 2000-08-09 2006-04-11 Asahi Tec Corporation Hot air blowing type fluidized-bed furnace, rotary heat-treatment furnace, heat-treatment apparatus, and method of heat treatment
KR100706697B1 (en) * 2000-08-09 2007-04-11 아사히 테크 가부시키가이샤 Hot air blow type fluidized bed furnace, rotary type heat treatment furnace, heat treatment device, and heat treatment method
JP4723060B2 (en) * 2000-08-09 2011-07-13 旭テック株式会社 Rotary heat treatment furnace, heat treatment apparatus, and heat treatment method
JP2002107064A (en) * 2000-09-27 2002-04-10 Asahi Tec Corp Hot air blow-through type fluidized bed furnace, and heat treating device using the furnace
JP4709362B2 (en) * 2000-09-27 2011-06-22 旭テック株式会社 Hot air blowing type fluidized bed furnace and heat treatment apparatus using the same
JP2002195759A (en) * 2000-12-27 2002-07-10 Asahi Tec Corp Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
JP4699605B2 (en) * 2000-12-27 2011-06-15 旭テック株式会社 Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method
CN104561855A (en) * 2014-07-23 2015-04-29 霍山汇能汽车零部件制造有限公司 Heat treatment process for 4032 aluminum alloy

Also Published As

Publication number Publication date
JP4110620B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US20050191204A1 (en) Aluminum alloy for producing high performance shaped castings
JP4035664B2 (en) Simple manufacturing method and apparatus for heat-treatable aluminum alloy castings
KR20020065600A (en) Heat treatment of age-hardenable aluminium alloys
US6074501A (en) Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures
JP4110620B2 (en) Heat treatment method of aluminum alloy
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
KR20030076724A (en) Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation
CN112501482B (en) Si microalloyed AlZnMgCu alloy and preparation method thereof
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
CN108474091B (en) Rapid aging method for heat-treatable alloy for stamping
JPH0967659A (en) Method for heat treating aluminum-magnesium-silicon base aluminum alloy
Dedov et al. Application of combined casting-forging process for production of durable lightweight aluminum parts
KR20150057269A (en) Aluminum alloy composition for die casting and method for heat treatment of manufacturing aluminum alloy using thereof
KR20050043748A (en) Aluminum-silicon alloys having improved mechanical properties
JP2002275567A (en) PRECIPITATION-HARDENING Al ALLOY, AND METHOD OF HEAT TREATMENT FOR PRECIPITATION-HARDENING ALLOY
KR20200053190A (en) Casting Process Including Double Dip Process
GB2361710A (en) Precipitation hardening of aluminium castings
US2263823A (en) Method of producing and treating aluminum alloy castings
US20240158894A1 (en) Aluminum alloy for casting, aluminum alloy member, and method for manufacturing aluminum alloy member
SU899706A1 (en) Process for heat treatment of ductile aluminium alloys
CN112324892B (en) Secondary peak value aging method for high-vacuum die-casting high-speed reduction gearbox shell containing rare earth aluminum silicon alloy
CN118028663A (en) Aluminum alloy for casting, aluminum alloy member, and method for producing aluminum alloy member
JPH055148A (en) Aluminum alloy casting having high strength and high toughness and its production
CN116145055A (en) Casting and heat treatment integrated manufacturing method and assembly line equipment for aluminum alloy wheel
CN100424218C (en) Magnesium alloy casting semi solid-state heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term