JP2000012930A - Laser resonator - Google Patents

Laser resonator

Info

Publication number
JP2000012930A
JP2000012930A JP10174240A JP17424098A JP2000012930A JP 2000012930 A JP2000012930 A JP 2000012930A JP 10174240 A JP10174240 A JP 10174240A JP 17424098 A JP17424098 A JP 17424098A JP 2000012930 A JP2000012930 A JP 2000012930A
Authority
JP
Japan
Prior art keywords
laser
interval
resonator
etalon
transmitting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10174240A
Other languages
Japanese (ja)
Inventor
Osamu Kumazaki
脩 熊崎
Masayoshi Hirano
正義 平野
Atsushi Izawa
淳 伊澤
Masataka Obara
正孝 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
IHI Corp
Original Assignee
Chubu Electric Power Co Inc
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, IHI Corp filed Critical Chubu Electric Power Co Inc
Priority to JP10174240A priority Critical patent/JP2000012930A/en
Publication of JP2000012930A publication Critical patent/JP2000012930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser resonator which can oscillate in a single mode, can be reduced in size and number of item parts, can be simplified in structure, and can make wavelength selection over a wide range. SOLUTION: A laser oscillator consists of a rear mirror 11 and an output mirror 16 respectively having reflecting surfaces S1 and S6 faced to each other and first and second transmitting members 12 and 14, which are arranged between the mirrors 11 and 16 with a fixed interval D inbetween and transmit light. At least either one the members 12 and 14 is formed as a laser medium, and the end faces S3 and S4 of the members 12 and 14 facing the interval D are formed as partially reflecting surfaces between which an etalon is constituted. The laser resonator is provided with an interval adjusting device 18, which changes the interval D by moving at least either one of the members 12 and 14 in the direction of the optical axis, so as to have the oscillation wavelength of the resonator changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単一モードで発振
するレーザ共振器に関する。
The present invention relates to a laser resonator that oscillates in a single mode.

【0002】[0002]

【従来の技術】図2は従来のレーザ共振器の模式的構成
図であり、図3はその特性図である。図2に示すよう
に、基本的なレーザ共振器は、レーザ媒質1とミラー
2、3によって構成され、複数の波長で同時に発振す
る。この多重スペクトル放射は、高パワー出力を与える
が、より高度の単色性が必要とされる場合がある。その
ため、単一モード出力を増加させるために、従来のレー
ザ共振器では、通常、固定間隔ファブリ・ペロー共振器
4(エタロンと呼ばれる)がレーザ空洞(ミラー2、3
の間)中に挿入される。
2. Description of the Related Art FIG. 2 is a schematic configuration diagram of a conventional laser resonator, and FIG. 3 is a characteristic diagram thereof. As shown in FIG. 2, a basic laser resonator includes a laser medium 1 and mirrors 2 and 3 and oscillates at a plurality of wavelengths simultaneously. This multispectral radiation provides a high power output, but may require a higher degree of monochromaticity. Therefore, in order to increase the single mode output, in a conventional laser resonator, a fixed-space Fabry-Perot resonator 4 (referred to as an etalon) usually has a laser cavity (mirrors 2, 3).
During).

【0003】エタロン4は、特別な一対のガラス板から
なり、2つの面4a,4bは高度に平行に磨かれてい
る。エタロン空間(2つの面の間)は2つの点でレーザ
空洞と異なっている。第1にエタロン表面の反射率は非
常に低く、そのためエタロンの空洞共鳴は図3(C)に
示すようにレーザの空洞共鳴(B)より広くなる。第2
に、エタロン空洞はレーザ空洞よりはるかに短いので、
エタロンの共鳴周波数の間の間隔(c/2D)はレーザ
の共鳴周波数の間隔(c/2L)よりはるかに大きい。
そのため、ある空洞共鳴は他より一層高い損失をもつこ
とになり、図3(E)に模式的に示すように、レーザは
最小損失の単一モードで動作する。なお、図中Q値と
は、共振器内の損失がいかに小さいか、すなわち共振器
の発振のしやすさを表す指標であり、以下の(数1)の
式で示される。Q値が大きいほど共振器の損失が小さ
く、発振しやすいといえる。
The etalon 4 is made of a special pair of glass plates, and the two surfaces 4a and 4b are polished highly parallel. The etalon space (between the two planes) differs from the laser cavity in two ways. First, the reflectivity of the etalon surface is very low, so that the cavity resonance of the etalon is wider than that of the laser (B) as shown in FIG. Second
In addition, the etalon cavity is much shorter than the laser cavity,
The spacing between resonance frequencies of the etalon (c / 2D) is much greater than the spacing between the resonance frequencies of the laser (c / 2L).
Thus, some cavity resonances will have higher losses than others, and the laser will operate in a single mode with minimal loss, as shown schematically in FIG. 3 (E). Note that the Q value in the figure is an index indicating how small the loss in the resonator is, that is, how easily the resonator oscillates, and is represented by the following equation (Equation 1). It can be said that the larger the Q value, the smaller the loss of the resonator and the easier the oscillation.

【数1】 (Equation 1)

【0004】更に、エタロンを光軸に関して傾けると、
エタロンの共鳴周波数がレーザ遷移スペクトル幅内で移
動し、異なったレーザ空洞モードが高Q値となり、レー
ザ動作がそれに対応した新しい周波数で起こる。このよ
うに単にエタロンを傾けることにより、レーザ周波数を
狭い周波数域内で同調させることができる。
Further, when the etalon is tilted with respect to the optical axis,
The resonance frequency of the etalon moves within the laser transition spectral width, the different laser cavity modes have high Q values, and laser operation occurs at the corresponding new frequency. By simply tilting the etalon in this manner, the laser frequency can be tuned within a narrow frequency range.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の単一モードで発振するレーザ共振器では、レーザ媒質
とミラーによってレーザ共振器を構成すると、レーザ媒
質の利得波長域の中で共振器の共振条件を満たす波長で
発振が起こるが、何も波長制御をしないと通常の場合、
複数の波長で発振してしまうため、特定の波長のみを選
択する波長選択素子(例えばエタロン4)を挿入して、
単一波長発振を行っていた。しかし、かかる従来の技術
では、波長選択素子が単体で構成されているため、小型
化を行う際に制約を受け、かつ部品点数が多くなってし
まう問題点があった。すなわち、エタロン4は通常数1
00μmの間隔を隔てたガラスブロックで構成されてい
るため、小型化が困難であった。また、エタロン空間を
構成する2つの面4a,4bの間隔が固定されているた
め、波長選択が狭い範囲でしかできない問題点があっ
た。
As described above, in a conventional laser resonator that oscillates in a single mode, if the laser resonator is composed of a laser medium and a mirror, the resonator is located within the gain wavelength range of the laser medium. Oscillation occurs at a wavelength that satisfies the resonance condition of
Since oscillation occurs at a plurality of wavelengths, a wavelength selection element (for example, etalon 4) for selecting only a specific wavelength is inserted,
Single wavelength oscillation was performed. However, in such a conventional technique, since the wavelength selection element is configured as a single unit, there is a problem in that a reduction in size is restricted, and the number of parts increases. That is, etalon 4 is usually number 1
Since it is composed of glass blocks spaced at intervals of 00 μm, miniaturization has been difficult. Further, since the distance between the two surfaces 4a and 4b constituting the etalon space is fixed, there is a problem that the wavelength can be selected only in a narrow range.

【0006】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、単一
モードで発振することができ、かつ小型化、構造の単純
化、部品点数の低減が可能であり、かつ広い範囲で波長
選択ができるレーザ共振器を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a laser resonator which can oscillate in a single mode, can be downsized, simplify the structure, reduce the number of parts, and can select a wavelength in a wide range. It is in.

【0007】[0007]

【課題を解決するための手段】本発明によれば、互いに
対向した反射面S1,S6を形成するリアミラー(1
1)及び出力ミラー(16)と、その間に互いに一定の
間隔Dを隔てて配置され光を透過する第1透過部材(1
2)及び第2透過部材(14)とからなり、第1透過部
材と第2透過部材の少なくとも一方がレーザ媒体であ
り、第1透過部材と第2透過部材の間隔Dに面するそれ
ぞれの端面S3,S4は部分反射面であり、その間でエ
タロンが構成される、ことを特徴とするレーザ共振器が
提供される。
According to the present invention, a rear mirror (1) forming reflection surfaces S1 and S6 opposed to each other is provided.
1) and an output mirror (16), and a first transmitting member (1) disposed between the output mirror and the output mirror at a predetermined interval D to transmit light.
2) and a second transmission member (14), at least one of the first transmission member and the second transmission member is a laser medium, and each end face facing the distance D between the first transmission member and the second transmission member. S3 and S4 are partial reflection surfaces, and an etalon is formed between the reflection surfaces. A laser resonator is provided.

【0008】この構成により、第1透過部材(12)の
端面S3の部分反射光と第2透過部材(14)の端面S
4における部分反射光が相互作用(干渉)を起こし、そ
の結果、端面S3、S4及びその間の空間が、特定の波
長のみを透過するエタロンとして振る舞う。このエタロ
ンの波長透過特性はS3、S4の反射率、両面の間隔
D、及び光軸に対する角度で決定されるので、これらを
最適化することにより、レーザ結晶の利得波長域の中の
単一波長での発振が可能となる。更に、S3、S4面の
間隔Dを微調整することにより、利得波長域中の任意の
波長での単一波長発振が可能となる。従って、この構成
により、レーザ結晶と波長選択素子を別々にして共振器
を構成した場合(従来例)と比較して、小型化、構造の
単純化、部品点数の減少が可能となり、かつ間隔Dを微
調整できることから広い範囲で波長選択して単一モード
で発振させることができる。
With this configuration, the partially reflected light of the end face S3 of the first transmitting member (12) and the end face S of the second transmitting member (14) are formed.
The partially reflected light at 4 causes an interaction (interference), and as a result, the end faces S3, S4 and the space therebetween act as an etalon that transmits only a specific wavelength. Since the wavelength transmission characteristics of this etalon are determined by the reflectance of S3 and S4, the distance D between both surfaces, and the angle with respect to the optical axis, by optimizing these, a single wavelength within the gain wavelength range of the laser crystal is obtained. Oscillation is possible. Further, by finely adjusting the distance D between the surfaces S3 and S4, single-wavelength oscillation at an arbitrary wavelength in the gain wavelength region becomes possible. Therefore, with this configuration, it is possible to reduce the size, simplify the structure, reduce the number of parts, and to reduce the distance D as compared with the case where the resonator is configured by separately using the laser crystal and the wavelength selection element (conventional example). Can be fine-tuned, so that the wavelength can be selected in a wide range and oscillation can be performed in a single mode.

【0009】本発明の好ましい実施形態によれば、第1
透過部材と第2透過部材の少なくとも一方を光軸方向に
移動させて間隔Dを変化させる間隔調整装置(18)を
備える。この間隔調整装置は、例えばピエゾ素子で構成
することができ、数μm以下で微調整することにより、
波長選択を可変に行うことができる。また、前記端面S
3,S4は部分反射コーティングされた光軸に対しては
非垂直な平面であるのがよい。この構成により、部分反
射光がレーザ空洞に戻るのを回避しその悪影響をなくす
ことができる。
According to a preferred embodiment of the present invention, the first
An interval adjusting device (18) that changes the interval D by moving at least one of the transmission member and the second transmission member in the optical axis direction. This interval adjusting device can be composed of, for example, a piezo element, and is finely adjusted to several μm or less.
Wavelength selection can be variably performed. Further, the end face S
3, S4 is preferably a plane that is not perpendicular to the partially reflective coated optical axis. With this configuration, it is possible to prevent the partially reflected light from returning to the laser cavity and eliminate its adverse effect.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し重複した説明を省略する。
図1は、本発明によるレーザ共振器の全体構成図であ
る。この図において、本発明のレーザ共振器は、互いに
対向した反射面S1,S6をそれぞれ有するリアミラー
11及び出力ミラー16と、その間に互いに一定の間隔
Dを隔てて配置され光を透過する第1透過部材12及び
第2透過部材14とからなる。図1では、第1透過部材
12がレーザ媒体で構成され、第2透過部材14は蛍石
や石英ガラスなどの透明部材で構成されている。なお、
両方の透過部材12,14をレーザ媒体で構成すること
により、レーザ出力を高出力化することもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is an overall configuration diagram of a laser resonator according to the present invention. In this figure, a laser resonator according to the present invention includes a rear mirror 11 and an output mirror 16 each having reflecting surfaces S1 and S6 facing each other, and a first transmission through which light is transmitted and disposed at a certain interval D therebetween. It comprises a member 12 and a second transmission member 14. In FIG. 1, the first transmission member 12 is formed of a laser medium, and the second transmission member 14 is formed of a transparent member such as fluorite or quartz glass. In addition,
By constructing both transmission members 12 and 14 from a laser medium, the laser output can be increased.

【0011】更に、第1透過部材12と第2透過部材1
4の間隔Dに面するそれぞれの端面S3,S4は、部分
反射コーティングされた部分反射面である。また、この
図に示すように、端面S3,S4は光軸に対しては非垂
直な平面であるのがよい。この構成により、端面S3,
S4による反射光が反射面S1,S6の間のレーザ空洞
に再入するのを防ぎ、効率的に単一波長の発振が可能と
なる。
Further, the first transmitting member 12 and the second transmitting member 1
Each of the end faces S3 and S4 facing the interval D of 4 is a partially reflecting surface with a partially reflecting coating. Further, as shown in this figure, the end faces S3 and S4 are preferably planes that are not perpendicular to the optical axis. With this configuration, the end face S3,
The light reflected by S4 is prevented from re-entering the laser cavity between the reflection surfaces S1 and S6, and oscillation of a single wavelength can be efficiently performed.

【0012】本発明によれば、第1透過部材12と第2
透過部材14の間隔Dの間でエタロン(すなわちファブ
リ・ペロー共振器)が構成されている。更に、第1透過
部材12と第2透過部材14の少なくとも一方(図1で
は第2透過部材14)を光軸方向に移動させて間隔Dを
変化させる間隔調整装置18を備えている。この間隔調
整装置18は、例えば、第2透過部材14を保持する結
晶ホルダ18a(例えば締付リング)、装置本体(図示
せず)に固定されたマウント18b、及びそれらの間に
挟持されたリング状のピエゾ素子18cからなり、ピエ
ゾ素子18cへの印加電圧により、その軸長を変化させ
て第2透過部材14を光軸方向に移動させるようになっ
ている。
According to the present invention, the first transmission member 12 and the second transmission member
An etalon (that is, a Fabry-Perot resonator) is formed between the intervals D between the transmission members 14. Further, there is provided an interval adjusting device 18 that changes the interval D by moving at least one of the first transmission member 12 and the second transmission member 14 (the second transmission member 14 in FIG. 1) in the optical axis direction. The spacing adjusting device 18 includes, for example, a crystal holder 18a (for example, a tightening ring) that holds the second transmission member 14, a mount 18b fixed to an apparatus body (not shown), and a ring sandwiched therebetween. The piezo element 18c has a shape, and the axial length is changed by the voltage applied to the piezo element 18c to move the second transmission member 14 in the optical axis direction.

【0013】上述した構成により、第1透過部材12の
端面S3の部分反射光と第2透過部材14の端面S4に
おける部分反射光が相互作用(干渉)を起こし、その結
果、端面S3、S4及びその間の空間が、特定の波長の
みを透過するエタロンとして振る舞う。このエタロンの
波長透過特性はS3、S4の反射率、両面の間隔D、及
び光軸に対する角度で決定されるので、これらを最適化
することにより、レーザ結晶の利得波長域の中の単一波
長での発振が可能となる。更に、S3、S4面の間隔D
を微調整することにより、利得波長域中の任意の波長で
の単一波長発振が可能となる。また、間隔調整装置18
(例えばピエゾ素子)により、間隔Dを変化させること
により、数μm以下の微調整ができ、波長選択を可変に
行うことができる。従って、この構成により、レーザ結
晶と波長選択素子を別々にして共振器を構成した場合
(従来例)と比較して、小型化、構造の単純化、部品点
数の減少が可能となり、かつ間隔Dを微調整できること
から広い範囲で波長選択して単一モードで発振させるこ
とができる。
With the above-described configuration, the partially reflected light on the end face S3 of the first transmitting member 12 and the partially reflected light on the end face S4 of the second transmitting member 14 interact (interference), and as a result, the end faces S3, S4 and The space in between acts as an etalon that transmits only specific wavelengths. Since the wavelength transmission characteristics of this etalon are determined by the reflectance of S3 and S4, the distance D between both surfaces, and the angle with respect to the optical axis, by optimizing these, a single wavelength within the gain wavelength range of the laser crystal is obtained. Oscillation is possible. Further, the distance D between the surfaces S3 and S4
By fine-tuning, single-wavelength oscillation at an arbitrary wavelength in the gain wavelength range is possible. Also, the interval adjusting device 18
By changing the interval D using a piezo element, for example, fine adjustment of several μm or less can be performed, and wavelength selection can be variably performed. Therefore, with this configuration, it is possible to reduce the size, simplify the structure, reduce the number of parts, and to reduce the distance D as compared with the case where the resonator is configured by separately using the laser crystal and the wavelength selection element (conventional example). Can be fine-tuned, so that the wavelength can be selected in a wide range and oscillation can be performed in a single mode.

【0014】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0015】[0015]

【発明の効果】上述したように、本発明のレーザ共振器
は、単一モードで発振することができ、かつ小型化、構
造の単純化、部品点数の低減が可能であり、かつ広い範
囲で波長選択ができる、等の優れた効果を有する。
As described above, the laser resonator of the present invention can oscillate in a single mode, and can be downsized, simplified in structure, reduced in the number of parts, and can be used in a wide range. It has excellent effects such as wavelength selection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるレーザ共振器の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of a laser resonator according to the present invention.

【図2】従来のレーザ共振器の構成図である。FIG. 2 is a configuration diagram of a conventional laser resonator.

【図3】従来のレーザ共振器の特性図である。FIG. 3 is a characteristic diagram of a conventional laser resonator.

【符号の説明】[Explanation of symbols]

1 レーザ媒質 2,3 ミラー 4 固定間隔ファブリ・ペロー共振器(エタロン) 11 リアミラー 12 第1透過部材(レーザ媒体) 14 第2透過部材 16 出力ミラー 18 間隔調整装置 D 第1透過部材と第2透過部材の間隔 S1 全反射面 S2 無反射面 S3,S4 部分反射面 S5 無反射面 S6 部分反射面 REFERENCE SIGNS LIST 1 laser medium 2, 3 mirror 4 fixed-space Fabry-Perot resonator (etalon) 11 rear mirror 12 first transmission member (laser medium) 14 second transmission member 16 output mirror 18 interval adjusting device D first transmission member and second transmission Spacing of members S1 Total reflection surface S2 Non-reflection surface S3, S4 Partial reflection surface S5 Non-reflection surface S6 Partial reflection surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 正義 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電気利用技術研究 所内 (72)発明者 伊澤 淳 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 小原 正孝 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 Fターム(参考) 5F072 JJ01 JJ08 JJ12 KK06 KK08 KK26 KK30 SS01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Hirano 20-1, Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi, Japan. No. 1 Shin-Nakahara-cho, Isogo-ku Ishi Kawashima-Harima Heavy Industries Co., Ltd. (72) Inventor Masataka Ohara 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Ishikawajima-Harima Heavy Industries Co., Ltd. F-term (reference) 5F072 JJ01 JJ08 JJ12 KK06 KK08 KK26 KK30 SS01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに対向した反射面S1,S6を形成
するリアミラー(11)及び出力ミラー(16)と、そ
の間に互いに一定の間隔Dを隔てて配置され光を透過す
る第1透過部材(12)及び第2透過部材(14)とか
らなり、第1透過部材と第2透過部材の少なくとも一方
がレーザ媒体であり、第1透過部材と第2透過部材の間
隔Dに面するそれぞれの端面S3,S4は部分反射面で
あり、その間でエタロンが構成される、ことを特徴とす
るレーザ共振器。
A rear mirror (11) and an output mirror (16) forming reflection surfaces S1 and S6 opposed to each other, and a first transmission member (12) disposed therebetween at a predetermined interval D and transmitting light. ) And a second transmitting member (14), at least one of the first transmitting member and the second transmitting member is a laser medium, and each end face S3 facing the distance D between the first transmitting member and the second transmitting member. , S4 are partial reflection surfaces, between which an etalon is formed.
【請求項2】 第1透過部材と第2透過部材の少なくと
も一方を光軸方向に移動させて間隔Dを変化させる間隔
調整装置(18)を備える、ことを特徴とする請求項1
に記載のレーザ共振器。
2. An apparatus according to claim 1, further comprising an interval adjusting device for changing at least one of the first transmitting member and the second transmitting member in the optical axis direction to change the interval D.
3. The laser resonator according to claim 1.
【請求項3】 前記端面S3,S4は部分反射コーティ
ングされた光軸に対しては非垂直な平面である、ことを
特徴とする請求項1又は2に記載のレーザ共振器。
3. The laser resonator according to claim 1, wherein the end faces S3 and S4 are planes that are non-perpendicular to the optical axis of the partially reflective coating.
JP10174240A 1998-06-22 1998-06-22 Laser resonator Pending JP2000012930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174240A JP2000012930A (en) 1998-06-22 1998-06-22 Laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174240A JP2000012930A (en) 1998-06-22 1998-06-22 Laser resonator

Publications (1)

Publication Number Publication Date
JP2000012930A true JP2000012930A (en) 2000-01-14

Family

ID=15975173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174240A Pending JP2000012930A (en) 1998-06-22 1998-06-22 Laser resonator

Country Status (1)

Country Link
JP (1) JP2000012930A (en)

Similar Documents

Publication Publication Date Title
US4797893A (en) Microlaser system
US6205159B1 (en) Discrete wavelength liquid crystal tuned external cavity diode laser
US4016504A (en) Optical beam expander for dye laser
JPWO2009054526A1 (en) Mode-locked laser
JP2004193545A (en) Method of tuning laser by spectrally dependent spatial filtering and tunable laser therewith
US20100265973A1 (en) External cavity tunable laser with an air gap etalon comprising wedges
US3504299A (en) Optical maser mode selector
US5497387A (en) Solid-state laser using wedge-shaped optical member, and method for manufacturing the same
JP3683360B2 (en) Polarization control element and solid-state laser
CN112152060A (en) Photonic crystal micro laser resonant cavity based on Brewster angle
US20090161700A1 (en) Fiber laser
JP2000012930A (en) Laser resonator
JPH104233A (en) Wavelength conversion laser
JP3069643B2 (en) Tunable light source
JP2005055415A (en) Optical fiber type fabry-perot resonator
JPH06326382A (en) External resonance semiconductor laser
JP2001085774A (en) Variable wavelength laser and laser oscillation wavelength switching method
JP2000012929A (en) Laser resonator
JP2002353555A (en) External resonator type tunable semiconductor laser
JP3591360B2 (en) Laser oscillation device
JP7385158B2 (en) Tunable laser diode
JPH0621549A (en) Semiconductor laser capable of changing wavelength and external resonance unit
JP2823870B2 (en) Apparatus for narrowing spectral line width of semiconductor laser
JPH04157778A (en) Laser diode pumping solid state laser
JPH1075006A (en) Solid-state laser device