JP2000012290A - Plasma treatment device - Google Patents

Plasma treatment device

Info

Publication number
JP2000012290A
JP2000012290A JP10172546A JP17254698A JP2000012290A JP 2000012290 A JP2000012290 A JP 2000012290A JP 10172546 A JP10172546 A JP 10172546A JP 17254698 A JP17254698 A JP 17254698A JP 2000012290 A JP2000012290 A JP 2000012290A
Authority
JP
Japan
Prior art keywords
plasma
circularly polarized
chamber
waveguide
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10172546A
Other languages
Japanese (ja)
Other versions
JP3855468B2 (en
Inventor
Hitoshi Tamura
仁 田村
Seiichi Watanabe
成一 渡辺
Masahiro Kadoya
誠浩 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17254698A priority Critical patent/JP3855468B2/en
Publication of JP2000012290A publication Critical patent/JP2000012290A/en
Application granted granted Critical
Publication of JP3855468B2 publication Critical patent/JP3855468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformize plasma generating in a treating chamber with an electromagnetic field rotating with a circularly polarized wave by supplying the circularly polarized wave in a wave guide for supplying a high frequency power to a treating chamber through the circularly polarized wave. SOLUTION: A microwave generated with a microwave power source 101 is transmitted to a mode converter 104 with a square wave guide tube 105 through an isolator 102 and a matching device 103. A microwave is introduced into a cylindrical cavity part 107 through a circular wave guide tube 106. A plasma treating chamber 109 separated with a microwave introducing window is installed in the lower part of the cylindrical cavity part 107. In the mode converting device 104, an input side wave guide tube is a square guide wave tube, and an output side wave guide tube is a circular wave guide tube. A circular, rectangular conversion corner and a circularly polarized wave generator are connected to between them. By using the circularly polarized wave generator, since a microwave electromagnetic field is rotated in poin of time, plasma generated is made uniform in the angle direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】半導体集積回路等の製造にあ
たり、膜の形成、加工等にプラズマ処理装置が用いられ
る。本発明はより安定なプラズマを均一に生成すること
により高品位なプラズマ処理を可能とするプラズマ処理
装置を提供する。
BACKGROUND OF THE INVENTION In the manufacture of semiconductor integrated circuits and the like, a plasma processing apparatus is used for forming and processing a film. The present invention provides a plasma processing apparatus that enables high-quality plasma processing by uniformly generating more stable plasma.

【従来の技術】通常のプラズマ処理装置においては、処
理室内に処理に適したガスを所定の流量供給し、このガ
スを排気する速度を調整することによって処理室内を処
理に適した圧力に制御することが行われる。さらに、処
理室内に電磁波を供給してプラズマを発生させ、プラズ
マ処理を行う。このプラズマは、処理室内の電磁界分布
に対応した分布で発生する。プラズマ中の電磁界分布
は、電磁波の供給方法、プラズマの密度、圧力などのプ
ラズマ特性、及び処理室の形状等により決まる。
2. Description of the Related Art In an ordinary plasma processing apparatus, a gas suitable for processing is supplied into a processing chamber at a predetermined flow rate, and the pressure in the processing chamber is controlled to a pressure suitable for processing by adjusting the exhaust speed of the gas. Is done. Further, an electromagnetic wave is supplied into the processing chamber to generate plasma, and plasma processing is performed. This plasma is generated in a distribution corresponding to the electromagnetic field distribution in the processing chamber. The distribution of the electromagnetic field in the plasma is determined by the method of supplying the electromagnetic waves, plasma characteristics such as the density and pressure of the plasma, and the shape of the processing chamber.

【発明が解決しようとする課題】上記した従来のプラズ
マ処理装置では、プラズマ中の電磁界分布に関して十分
考慮されておらず、プラズマ分布の制御などが必ずしも
適切に行われていないという問題があった。本発明の目
的とするところは、処理室に投入した電磁波の電力分布
をより均一化できるプラズマ処理装置を提供することに
ある。
In the above-mentioned conventional plasma processing apparatus, there is a problem that the electromagnetic field distribution in the plasma is not sufficiently considered, and the control of the plasma distribution is not always properly performed. . An object of the present invention is to provide a plasma processing apparatus that can make the power distribution of an electromagnetic wave supplied to a processing chamber more uniform.

【課題を解決するための手段】上記の目的は、プラズマ
中で電磁波の電力分布を調整することで解決できる。す
なわち、本発明の特徴とするところは、処理室に導波管
を介して高周波電力を供給し、前記処理室に当該高周波
電力によりプラズマを発生して前記処理装置内の試料を
プラズマ処理するプラズマ処理装置において、前記処理
室に高周波電力を供給する前記導波管に円偏波発生器を
介在し、前記処理室内に円偏波を供給することにある。
上記のように構成すれば、処理室に供給する高周波電力
を円偏波とすることができる。したがって、処理室内に
発生するプラズマを円偏波により回転する電磁界を用い
てより均一化することができる。
The above objects can be attained by adjusting the power distribution of electromagnetic waves in plasma. That is, a feature of the present invention is that a high-frequency power is supplied to a processing chamber via a waveguide, a plasma is generated in the processing chamber by the high-frequency power, and a sample in the processing apparatus is plasma-processed. In a processing apparatus, a circularly polarized wave generator is interposed in the waveguide that supplies high-frequency power to the processing chamber, and a circularly polarized wave is supplied into the processing chamber.
With the above configuration, the high-frequency power supplied to the processing chamber can be circularly polarized. Therefore, the plasma generated in the processing chamber can be made more uniform by using an electromagnetic field rotated by circularly polarized waves.

【発明の実施の形態】本発明の第1の実施例を図1から
図5を用いて説明する。図1に本発明を用いたプラズマ
処理装置を示す。例えばマグネトロンなどのマイクロ波
源101により発生した例えば周波数2.45GHzの
マイクロ波は方形導波管105によりアイソレータ10
2、整合器103を介してモード変換器104に伝送さ
れる。マイクロ波は円形導波管106を介してさらに円
柱空洞部107に導入される。円柱空洞部の下部にはマ
イクロ波導入窓108で隔てられたプラズマ処理室10
9がある。プラズマ処理室109には図示しないガス導
入系、真空排気系が接続され、処理室109内部はプラ
ズマ処理に適したガス雰囲気、圧力に保持される。プラ
ズマ処理室109内には被処理基板111を設置するた
めの基板電極110が設けられている。モード変換器1
04の詳細を図2に示す。入力側導波管201は方形導
波管、出力側導波管202は円形導波管となっている。
両者の間に円矩形変換コーナ204、円偏波発生器20
3が接続されている。図2に示すモード変換器では円矩
形変換コーナを用いているが、単なる円矩形変換器を用
いてもよい。ここで、円偏波について簡単に説明する。
マイクロ波などの電磁波において電界ベクトルと電磁波
の進行方向のベクトルとからなる面を偏波面と呼ぶ。円
偏波とは偏波面が波の周波数で回転する電磁波をいう。
図3に円形導波管の基本モードであるTE11モード電
界分布を示す。円形導波管301の内壁に電界ベクトル
302が垂直になる。図3に示すように円形導波管の中
心に原点を持つ座標系をとるものとする。TE11モー
ドの電磁界が円偏波になると概略この電磁界が時間的に
回転することになる。円偏波を発生させる構成は、たと
えば「電子情報通信ハンドブック(電子情報通信学会編
オーム社、1990年)」に記載されるように種々提案され
ており、円偏波発生器203としてこれらの構造を用い
ることが出来る。図4に図1に示す円形導波管106と
円柱空洞107の接続部の電界分布を示す。円偏波発生
器203を使用せず、モード変換器マイクロ波電磁界は
第3図に示す円形TE11モードが入射しているものと
し、図3のyz面に相当する断面について最初に説明す
る。円形導波管106と円柱空洞107の接続部で円柱
の直径がステップ状に拡大するため入射したTE11モ
ード以外に複数のモードが発生する。円柱空洞107、
円形導波管106等のサイズに依存するが、接続部のエ
ッジに電界が集中し、図4に示すような電界ベクトル4
01のように分布する傾向がある。円柱空洞部107内
が図4に示す電界分布になった場合に発生するプラズマ
のxy面内分布の一例を図5に模式的に示す。x軸方向
に凸分布、y軸方向に凹分布となるいわゆる「鞍型」の
分布となりやすい。したがって被処理基板に施されるプ
ラズマ処理の均一性も「鞍型」分布になる傾向がある。
しかしながら、円偏波発生器203を用いることによ
り、マイクロ波電磁界が時間的に回転するため、発生す
るプラズマも角度方向により均一化する。したがって、
プラズマ処理の均一性を大幅に改善することが出来る。
プラズマ処理室109に静磁界を加えても同様にしてプ
ラズマの均一性を大幅に改善することができる。この場
合、静磁界を加えられたプラズマ中の電磁波の伝搬特性
が静磁界の方向と円偏波の回転方向の関係により異なる
ため、円偏波の回転方向により、その効果が異なる場合
がある。プラズマ処理室109に電子サイクロトロン共
鳴現象を起こす程度の静磁界を加えた場合には、静磁界
の方向に向かって右まわりに回転する円偏波はプラズマ
に電子サイクロトロン共鳴により強く吸収されるのに対
し、左回りに回転する円偏波はプラズマ中で強く吸収さ
れない。いずれの場合にも円偏波によるプラズマ均一化
の効果はあるが、両者でプラズマの分布が異なるため、
均一なプラズマ処理を行うには、プラズマ発生位置と被
処理基板の位置関係をそれぞれ最適化する必要がある。
プラズマ処理室に静磁界を加えない場合には円偏波の回
転方向を考慮する必要はない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a plasma processing apparatus using the present invention. For example, a microwave having a frequency of, for example, 2.45 GHz generated by a microwave source 101 such as a magnetron or the like is supplied to the isolator 10 by a rectangular waveguide 105.
2. The signal is transmitted to the mode converter 104 via the matching unit 103. The microwave is further introduced into the cylindrical cavity 107 via the circular waveguide 106. A plasma processing chamber 10 separated by a microwave introduction window 108 is provided below the cylindrical cavity.
There are nine. A gas introduction system and a vacuum exhaust system (not shown) are connected to the plasma processing chamber 109, and the inside of the processing chamber 109 is maintained at a gas atmosphere and pressure suitable for plasma processing. In the plasma processing chamber 109, a substrate electrode 110 for setting the substrate 111 to be processed is provided. Mode converter 1
2 is shown in FIG. The input waveguide 201 is a rectangular waveguide, and the output waveguide 202 is a circular waveguide.
Between them, the circular / rectangular conversion corner 204 and the circular polarization generator 20
3 are connected. Although the mode converter shown in FIG. 2 uses a circular-rectangle conversion corner, a simple circular-rectangle converter may be used. Here, circular polarization will be briefly described.
In electromagnetic waves such as microwaves, a plane formed by an electric field vector and a vector in the traveling direction of the electromagnetic wave is called a plane of polarization. Circularly polarized waves refer to electromagnetic waves whose polarization plane rotates at the frequency of the waves.
FIG. 3 shows a TE11 mode electric field distribution which is a fundamental mode of the circular waveguide. The electric field vector 302 is perpendicular to the inner wall of the circular waveguide 301. Assume that a coordinate system having an origin at the center of the circular waveguide as shown in FIG. When the electromagnetic field of the TE11 mode is circularly polarized, the electromagnetic field is rotated with time. Various configurations for generating circularly polarized waves have been proposed, for example, as described in “Electronic Information and Communication Handbook (Ohm, edited by the Institute of Electronics, Information and Communication Engineers, 1990)”. Can be used. FIG. 4 shows the electric field distribution at the connection between the circular waveguide 106 and the cylindrical cavity 107 shown in FIG. It is assumed that the circular TE11 mode shown in FIG. 3 is incident on the mode converter microwave electromagnetic field without using the circular polarization generator 203, and a cross section corresponding to the yz plane in FIG. 3 will be described first. At the connection between the circular waveguide 106 and the cylindrical cavity 107, the diameter of the cylinder expands stepwise, so that a plurality of modes other than the incident TE11 mode are generated. Cylindrical cavity 107,
Although depending on the size of the circular waveguide 106 and the like, the electric field concentrates on the edge of the connection portion, and the electric field vector 4 shown in FIG.
01 tends to be distributed. FIG. 5 schematically shows an example of the distribution in the xy plane of the plasma generated when the electric field distribution shown in FIG. A so-called "saddle-shaped" distribution tends to have a convex distribution in the x-axis direction and a concave distribution in the y-axis direction. Therefore, the uniformity of the plasma processing performed on the substrate to be processed also tends to have a “saddle” distribution.
However, the use of the circularly polarized wave generator 203 causes the microwave electromagnetic field to rotate with time, so that the generated plasma is more uniform in the angular direction. Therefore,
The uniformity of the plasma processing can be greatly improved.
Even if a static magnetic field is applied to the plasma processing chamber 109, the uniformity of the plasma can be significantly improved in the same manner. In this case, since the propagation characteristics of the electromagnetic wave in the plasma to which the static magnetic field is applied are different depending on the relationship between the direction of the static magnetic field and the rotational direction of the circularly polarized wave, the effect may be different depending on the rotational direction of the circularly polarized wave. When a static magnetic field that causes an electron cyclotron resonance phenomenon is applied to the plasma processing chamber 109, circularly polarized waves that rotate clockwise in the direction of the static magnetic field are strongly absorbed by plasma by electron cyclotron resonance. On the other hand, circularly polarized waves rotating counterclockwise are not strongly absorbed in the plasma. In either case, there is an effect of plasma uniformization by circular polarization, but since the plasma distribution is different between the two,
In order to perform uniform plasma processing, it is necessary to optimize the positional relationship between the plasma generation position and the substrate to be processed.
When a static magnetic field is not applied to the plasma processing chamber, it is not necessary to consider the direction of rotation of the circularly polarized wave.

【発明の効果】以上の説明から明らかなように、本発明
によれば、処理室に供給する高周波電力を円偏波とする
ことができ、処理室内に発生するプラズマを円偏波によ
り回転する電磁界を用いてより均一化することができ
る。。
As is apparent from the above description, according to the present invention, the high-frequency power supplied to the processing chamber can be circularly polarized, and the plasma generated in the processing chamber is rotated by the circularly polarized wave. More uniformity can be achieved by using an electromagnetic field. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すプラズマ処理装置の断
面図である。
FIG. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention.

【図2】モード変換器の一例を示す断面図である。FIG. 2 is a sectional view showing an example of a mode converter.

【図3】円形導波管中のTE11モード電界分布を示す
図である。
FIG. 3 is a diagram showing a TE11 mode electric field distribution in a circular waveguide.

【図4】円形導波管と円柱空洞部の接続部付近の電界の
分布を示す図である。
FIG. 4 is a diagram showing a distribution of an electric field near a connection between a circular waveguide and a cylindrical cavity.

【図5】円偏波を用いない場合のプラズマ分布の一例を
示す図である。
FIG. 5 is a diagram illustrating an example of a plasma distribution when circular polarization is not used.

【符号の説明】[Explanation of symbols]

101…マイクロ波源、102…アイソレータ、103
…整合器、104…モード変換器、105…方形導波
管、106…円形導波管、107…円柱空洞部、108
…マイクロ波導入窓、109…プラズマ処理室、110
…基板電極、111…被処理基板、201…入力側導波
管、202…出力側導波管、203…円偏波発生器、2
04…円矩形変換コーナ、301…円形導波管、302
…電界ベクトル、401…電界ベクトル。
101: microwave source, 102: isolator, 103
... matching device, 104 ... mode converter, 105 ... rectangular waveguide, 106 ... circular waveguide, 107 ... cylindrical cavity, 108
... microwave introduction window, 109 ... plasma processing chamber, 110
... substrate electrode, 111 ... substrate to be processed, 201 ... input side waveguide, 202 ... output side waveguide, 203 ... circular polarization generator, 2
04: circular rectangular conversion corner, 301: circular waveguide, 302
... electric field vector, 401 ... electric field vector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角屋 誠浩 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 Fターム(参考) 5F004 BA13 BA16 BB07 5F045 AA10 DP02 EH17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Masahiro Tsunoya 794, Higashi-Toyoi, Kazamatsu-shi, Yamaguchi Prefecture F-term in the Kasado Plant of Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】処理室に導波管を介して高周波電力を供給
し、前記処理室に当該高周波電力によりプラズマを発生
して前記処理装置内の試料をプラズマ処理するプラズマ
処理装置において、 前記処理室に高周波電力を供給する前記導波管に円偏波
発生器を介在し、前記処理室内に円偏波を供給すること
を特徴とするプラズマ処理装置。
1. A plasma processing apparatus for supplying high-frequency power to a processing chamber via a waveguide, generating plasma in the processing chamber with the high-frequency power, and performing plasma processing on a sample in the processing apparatus. A plasma processing apparatus, wherein a circularly polarized wave generator is interposed in the waveguide that supplies high-frequency power to a chamber, and circularly polarized waves are supplied into the processing chamber.
【請求項2】請求項1記載のプラズマ処理装置におい
て、導波管は高周波電力を伝搬する軸対称構造を有する
導波路で構成され、処理室は前記導波路に接続された略
円柱状の構造を有する空洞と該空洞に接続され内部に被
処理基板を保持するための構造を備えたプラズマ発生室
とを備え、前記処理室は前記プラズマ発生室に処理ガス
を供給するためのガス供給装置と前記プラズマ発生室を
処理に適した所定の圧力に保持するための排気装置を備
えたことを特徴とするプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the waveguide is formed of a waveguide having an axially symmetric structure for transmitting high-frequency power, and the processing chamber has a substantially columnar structure connected to the waveguide. A plasma generating chamber connected to the cavity and having a structure for holding a substrate to be processed therein, wherein the processing chamber includes a gas supply device for supplying a processing gas to the plasma generating chamber. A plasma processing apparatus comprising an exhaust device for maintaining the plasma generation chamber at a predetermined pressure suitable for processing.
【請求項3】請求項2記載のプラズマ処理装置におい
て、プラズマ発生室に静磁界を加える磁界発生装置を備
えたことを特徴とするプラズマ処理装置。
3. The plasma processing apparatus according to claim 2, further comprising a magnetic field generator for applying a static magnetic field to the plasma generation chamber.
【請求項4】請求請2記載のプラズマ処理装置におい
て、被処理基板近傍で実効的に無磁場であることを特徴
とするプラズマ処理装置。
4. The plasma processing apparatus according to claim 2, wherein a magnetic field is effectively absent near the substrate to be processed.
JP17254698A 1998-06-19 1998-06-19 Plasma processing equipment Expired - Lifetime JP3855468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17254698A JP3855468B2 (en) 1998-06-19 1998-06-19 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17254698A JP3855468B2 (en) 1998-06-19 1998-06-19 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2000012290A true JP2000012290A (en) 2000-01-14
JP3855468B2 JP3855468B2 (en) 2006-12-13

Family

ID=15943892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17254698A Expired - Lifetime JP3855468B2 (en) 1998-06-19 1998-06-19 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3855468B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076329A1 (en) * 2000-03-30 2001-10-11 Tokyo Electron Limited Apparatus for plasma processing
JP2003110312A (en) * 2001-09-28 2003-04-11 Tokyo Electron Ltd Matching unit and plasma processing device
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus
US7243610B2 (en) * 2001-01-18 2007-07-17 Tokyo Electron Limited Plasma device and plasma generating method
JP2010192750A (en) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp Plasma treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240001109A (en) 2022-06-21 2024-01-03 주식회사 히타치하이테크 Plasma processing devices and heating devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076329A1 (en) * 2000-03-30 2001-10-11 Tokyo Electron Limited Apparatus for plasma processing
EP1276356A1 (en) * 2000-03-30 2003-01-15 Tokyo Electron Limited Apparatus for plasma processing
US6910440B2 (en) 2000-03-30 2005-06-28 Tokyo Electron Ltd. Apparatus for plasma processing
EP1276356A4 (en) * 2000-03-30 2006-01-04 Tokyo Electron Ltd Apparatus for plasma processing
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus
JP4522356B2 (en) * 2000-03-30 2010-08-11 東京エレクトロン株式会社 Plasma processing equipment
US7243610B2 (en) * 2001-01-18 2007-07-17 Tokyo Electron Limited Plasma device and plasma generating method
JP2003110312A (en) * 2001-09-28 2003-04-11 Tokyo Electron Ltd Matching unit and plasma processing device
JP2010192750A (en) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp Plasma treatment device

Also Published As

Publication number Publication date
JP3855468B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JPH0216732A (en) Plasma reactor
JPH1074733A (en) Surface wave plasma treating device
JP3056772B2 (en) Plasma control method, plasma processing method and apparatus therefor
US6225592B1 (en) Method and apparatus for launching microwave energy into a plasma processing chamber
JP2000012290A (en) Plasma treatment device
JPH0319332A (en) Microwave plasma treatment device
JPH0362517A (en) Microwave plasma processor
JP4732057B2 (en) Plasma processing apparatus and processing method
JPH11260594A (en) Plasma processing device
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JP2595128B2 (en) Microwave plasma processing equipment
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JP2001160553A (en) Plasma apparatus
JP2000164578A (en) Plasma processing device and method
JP2000012294A (en) Plasma treatment device
JPH11340200A (en) Plasma treatment device
JP4384295B2 (en) Plasma processing equipment
JP2004363247A (en) Plasma processing apparatus
JPH1140394A (en) Plasma processing device
JPS62261125A (en) Dry processor for thin film
JP2779997B2 (en) Plasma processing equipment
JPH10294199A (en) Microwave plasma processing device
JP3157638B2 (en) Plasma processing equipment
JPH1074599A (en) Plasma treating method and device
JP2515885B2 (en) Plasma processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term