New! View global litigation for patent families

JP2000012290A - Plasma treatment device - Google Patents

Plasma treatment device

Info

Publication number
JP2000012290A
JP2000012290A JP17254698A JP17254698A JP2000012290A JP 2000012290 A JP2000012290 A JP 2000012290A JP 17254698 A JP17254698 A JP 17254698A JP 17254698 A JP17254698 A JP 17254698A JP 2000012290 A JP2000012290 A JP 2000012290A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
wave
guide
tube
polarized
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17254698A
Other languages
Japanese (ja)
Other versions
JP3855468B2 (en )
Inventor
Masahiro Kadoya
Hitoshi Tamura
Seiichi Watanabe
成一 渡辺
仁 田村
誠浩 角屋
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To uniformize plasma generating in a treating chamber with an electromagnetic field rotating with a circularly polarized wave by supplying the circularly polarized wave in a wave guide for supplying a high frequency power to a treating chamber through the circularly polarized wave. SOLUTION: A microwave generated with a microwave power source 101 is transmitted to a mode converter 104 with a square wave guide tube 105 through an isolator 102 and a matching device 103. A microwave is introduced into a cylindrical cavity part 107 through a circular wave guide tube 106. A plasma treating chamber 109 separated with a microwave introducing window is installed in the lower part of the cylindrical cavity part 107. In the mode converting device 104, an input side wave guide tube is a square guide wave tube, and an output side wave guide tube is a circular wave guide tube. A circular, rectangular conversion corner and a circularly polarized wave generator are connected to between them. By using the circularly polarized wave generator, since a microwave electromagnetic field is rotated in poin of time, plasma generated is made uniform in the angle direction.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】半導体集積回路等の製造にあたり、膜の形成、加工等にプラズマ処理装置が用いられる。 In the production of semiconductor integrated circuit TECHNICAL FIELD OF THE INVENTION The formation of the membrane, the plasma processing apparatus is used for machining. 本発明はより安定なプラズマを均一に生成することにより高品位なプラズマ処理を可能とするプラズマ処理装置を提供する。 The present invention provides a plasma processing apparatus which enables high-quality plasma processing by generating uniformly more stable plasma.

【従来の技術】通常のプラズマ処理装置においては、処理室内に処理に適したガスを所定の流量供給し、このガスを排気する速度を調整することによって処理室内を処理に適した圧力に制御することが行われる。 BACKGROUND OF THE INVENTION conventional plasma processing apparatus, suitable for processing into the processing chamber gas was predetermined flow supply is controlled to a pressure suitable for the processing chamber to the processing by adjusting the speed of exhausting the gas it is carried out. さらに、処理室内に電磁波を供給してプラズマを発生させ、プラズマ処理を行う。 Further, by supplying electromagnetic waves into the processing chamber to generate plasma, a plasma treatment. このプラズマは、処理室内の電磁界分布に対応した分布で発生する。 This plasma is generated at a distribution corresponding to an electromagnetic field distribution for a processing chamber. プラズマ中の電磁界分布は、電磁波の供給方法、プラズマの密度、圧力などのプラズマ特性、及び処理室の形状等により決まる。 The electromagnetic field distribution in the plasma, the method of supplying an electromagnetic wave, plasma density, plasma properties such as pressure and determined by the shape of the processing chamber.

【発明が解決しようとする課題】上記した従来のプラズマ処理装置では、プラズマ中の電磁界分布に関して十分考慮されておらず、プラズマ分布の制御などが必ずしも適切に行われていないという問題があった。 In conventional plasma processing apparatus described above in which [INVENTION solve trying challenge to] is not well considered for the electromagnetic field distribution in the plasma, such as the control of plasma distribution is a problem that not necessarily performed appropriately . 本発明の目的とするところは、処理室に投入した電磁波の電力分布をより均一化できるプラズマ処理装置を提供することにある。 It is an object of the present invention is to provide a plasma processing apparatus can be more uniform power distribution of the electromagnetic wave was introduced into the processing chamber.

【課題を解決するための手段】上記の目的は、プラズマ中で電磁波の電力分布を調整することで解決できる。 Means for Solving the Problems The above object can be solved by adjusting the power distribution of the electromagnetic wave in a plasma. すなわち、本発明の特徴とするところは、処理室に導波管を介して高周波電力を供給し、前記処理室に当該高周波電力によりプラズマを発生して前記処理装置内の試料をプラズマ処理するプラズマ処理装置において、前記処理室に高周波電力を供給する前記導波管に円偏波発生器を介在し、前記処理室内に円偏波を供給することにある。 That is, it is an aspect of the present invention, the processing chamber through a waveguide to supply high frequency power, plasma processing a sample in the processing unit generates a plasma by the high frequency power to the processing chamber plasma in the processing apparatus, interposing a circular polarizer in the waveguide for supplying high frequency power to the processing chamber is to supply the circular polarization into the processing chamber.
上記のように構成すれば、処理室に供給する高周波電力を円偏波とすることができる。 By configuring as described above, it can be a high-frequency power supplied to the processing chamber and a circularly polarized wave. したがって、処理室内に発生するプラズマを円偏波により回転する電磁界を用いてより均一化することができる。 Therefore, it is possible to further homogenized using an electromagnetic field for rotating the plasma generated in the processing chamber by circular polarization.

【発明の実施の形態】本発明の第1の実施例を図1から図5を用いて説明する。 The first embodiment of the embodiment of the present invention from FIG. 1 with reference to FIG. 5 will be described. 図1に本発明を用いたプラズマ処理装置を示す。 A plasma processing apparatus using the present invention in FIG. 例えばマグネトロンなどのマイクロ波源101により発生した例えば周波数2.45GHzのマイクロ波は方形導波管105によりアイソレータ10 For example microwaves generated eg frequency 2.45GHz microwave source 101, such as a magnetron isolator 10 by the rectangular waveguide 105
2、整合器103を介してモード変換器104に伝送される。 2, is transmitted through a matching unit 103 to the mode converter 104. マイクロ波は円形導波管106を介してさらに円柱空洞部107に導入される。 Microwaves are introduced into further cylindrical cavity 107 through the circular waveguide 106. 円柱空洞部の下部にはマイクロ波導入窓108で隔てられたプラズマ処理室10 Plasma processing chamber 10 in a lower portion separated by a microwave introduction window 108 of the cylindrical cavity
9がある。 There is a 9. プラズマ処理室109には図示しないガス導入系、真空排気系が接続され、処理室109内部はプラズマ処理に適したガス雰囲気、圧力に保持される。 Gas introduction system (not shown) to the plasma processing chamber 109, a vacuum evacuation system is connected, the processing chamber 109 is a gas atmosphere suitable for plasma processing, it is held in pressure. プラズマ処理室109内には被処理基板111を設置するための基板電極110が設けられている。 The plasma processing chamber 109 is provided with a substrate electrode 110 for mounting a substrate to be processed 111. モード変換器1 Mode converter 1
04の詳細を図2に示す。 04 of the details shown in Figure 2. 入力側導波管201は方形導波管、出力側導波管202は円形導波管となっている。 Input waveguide 201 is a rectangular waveguide, the output side waveguide 202 has a circular waveguide.
両者の間に円矩形変換コーナ204、円偏波発生器20 Circular rectangular conversion corners 204 between them, the circularly polarized wave generator 20
3が接続されている。 3 are connected. 図2に示すモード変換器では円矩形変換コーナを用いているが、単なる円矩形変換器を用いてもよい。 Although using a circular rectangular conversion corners in mode converter shown in FIG. 2, it may be used simply circular rectangular transducer. ここで、円偏波について簡単に説明する。 Here is a brief description of circular polarization.
マイクロ波などの電磁波において電界ベクトルと電磁波の進行方向のベクトルとからなる面を偏波面と呼ぶ。 A surface consisting of the traveling direction of the vector of the electric field vector and the electromagnetic wave in the electromagnetic wave such as a microwave is referred to as a polarization plane. 円偏波とは偏波面が波の周波数で回転する電磁波をいう。 The circularly polarized wave refers to an electromagnetic wave polarization is rotated at a frequency of the wave.
図3に円形導波管の基本モードであるTE11モード電界分布を示す。 It shows the TE11 mode field distribution is a fundamental mode of the circular waveguide in Fig. 円形導波管301の内壁に電界ベクトル302が垂直になる。 Electric field vector 302 is perpendicular to the inner wall of the circular waveguide 301. 図3に示すように円形導波管の中心に原点を持つ座標系をとるものとする。 It shall take coordinate system with the origin at the center of the circular waveguide, as shown in FIG. TE11モードの電磁界が円偏波になると概略この電磁界が時間的に回転することになる。 When the electromagnetic field of the TE11 mode is circularly polarized schematic would this electromagnetic field is rotated temporally. 円偏波を発生させる構成は、たとえば「電子情報通信ハンドブック(電子情報通信学会編オーム社、1990年)」に記載されるように種々提案されており、円偏波発生器203としてこれらの構造を用いることが出来る。 Configured to generate a circularly polarized wave, for example, "Electronic Information Communication Handbook (Electronic Information Communication Society of Japan Ohm Co., 1990)," have been proposed as described in these structures as a circularly polarized wave generator 203 it can be used. 図4に図1に示す円形導波管106と円柱空洞107の接続部の電界分布を示す。 Figure 4 shows the electric field distribution in the connection portion of the circular waveguide 106 and the cylindrical cavity 107 shown in FIG. 円偏波発生器203を使用せず、モード変換器マイクロ波電磁界は第3図に示す円形TE11モードが入射しているものとし、図3のyz面に相当する断面について最初に説明する。 Without using the circularly polarized wave generator 203, a mode converter microwave electromagnetic field is assumed to be incident circular TE11 mode shown in FIG. 3, it will be described first cross section corresponding to the yz plane of Fig. 円形導波管106と円柱空洞107の接続部で円柱の直径がステップ状に拡大するため入射したTE11モード以外に複数のモードが発生する。 Circular diameter of the cylindrical connection portion of the waveguide 106 and the cylindrical cavity 107 a plurality of modes generated in addition TE11 mode which is incident to expand stepwise. 円柱空洞107、 A cylindrical cavity 107,
円形導波管106等のサイズに依存するが、接続部のエッジに電界が集中し、図4に示すような電界ベクトル4 Depends on the size of such circular waveguide 106, electric field is concentrated on the edge of the connecting portion, the electric field vector 4 shown in FIG. 4
01のように分布する傾向がある。 There is a tendency to be distributed as of 01. 円柱空洞部107内が図4に示す電界分布になった場合に発生するプラズマのxy面内分布の一例を図5に模式的に示す。 The cylindrical cavity 107 schematically shown in Fig. 5 an example of a xy-plane distribution of the plasma generated when it becomes the electric field distribution shown in FIG. x軸方向に凸分布、y軸方向に凹分布となるいわゆる「鞍型」の分布となりやすい。 x-axis direction in a convex distribution, likely to be the distribution of the concave distribution in the y-axis direction so-called "saddle". したがって被処理基板に施されるプラズマ処理の均一性も「鞍型」分布になる傾向がある。 Therefore the uniformity of the plasma process to be performed on the target substrate also tend to "saddle" distribution.
しかしながら、円偏波発生器203を用いることにより、マイクロ波電磁界が時間的に回転するため、発生するプラズマも角度方向により均一化する。 However, by using the circular polarizer 203, since the microwave electromagnetic field is rotated temporally, to equalize the generated plasma is also angular direction. したがって、 Therefore,
プラズマ処理の均一性を大幅に改善することが出来る。 The uniformity of the plasma treatment can be greatly improved.
プラズマ処理室109に静磁界を加えても同様にしてプラズマの均一性を大幅に改善することができる。 It can significantly improve the uniformity of the plasma in the same manner by adding a static magnetic field in the plasma processing chamber 109. この場合、静磁界を加えられたプラズマ中の電磁波の伝搬特性が静磁界の方向と円偏波の回転方向の関係により異なるため、円偏波の回転方向により、その効果が異なる場合がある。 In this case, since the electromagnetic wave propagation characteristics of the plasma applied static magnetic field varies depending on the rotational direction of the relationship between the direction and the circularly polarized wave of the static magnetic field, the rotation direction of the circularly polarized wave, in some cases the effect is different. プラズマ処理室109に電子サイクロトロン共鳴現象を起こす程度の静磁界を加えた場合には、静磁界の方向に向かって右まわりに回転する円偏波はプラズマに電子サイクロトロン共鳴により強く吸収されるのに対し、左回りに回転する円偏波はプラズマ中で強く吸収されない。 If the addition of static magnetic field enough to cause an electron cyclotron resonance phenomenon in the plasma processing chamber 109, to circular polarization to rotate about the right in the direction of the static magnetic field is strongly absorbed by the electron cyclotron resonance in the plasma contrast, the circular polarization to rotate counterclockwise is not strongly absorbed in the plasma. いずれの場合にも円偏波によるプラズマ均一化の効果はあるが、両者でプラズマの分布が異なるため、 Although the effect of plasma uniform by circular polarization in each case, for the plasma distribution is different in both,
均一なプラズマ処理を行うには、プラズマ発生位置と被処理基板の位置関係をそれぞれ最適化する必要がある。 To perform uniform plasma processing, it is necessary to optimize each the positional relationship between the plasma generation position and the target substrate.
プラズマ処理室に静磁界を加えない場合には円偏波の回転方向を考慮する必要はない。 There is no need to consider the rotation direction of the circularly polarized wave in the case of the plasma processing chamber without adding a static magnetic field.

【発明の効果】以上の説明から明らかなように、本発明によれば、処理室に供給する高周波電力を円偏波とすることができ、処理室内に発生するプラズマを円偏波により回転する電磁界を用いてより均一化することができる。 As is apparent from the foregoing description, according to the present invention, the high-frequency electric power supplied to the processing chamber may be a circularly polarized wave to be rotated by the circular polarization of the plasma generated in the processing chamber it can be made more uniform by using an electromagnetic field. .

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例を示すプラズマ処理装置の断面図である。 1 is a cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention.

【図2】モード変換器の一例を示す断面図である。 It is a cross-sectional view illustrating an example of FIG. 2 mode converter.

【図3】円形導波管中のTE11モード電界分布を示す図である。 3 is a diagram showing an TE11 mode electric field distribution in the circular waveguide.

【図4】円形導波管と円柱空洞部の接続部付近の電界の分布を示す図である。 4 is a diagram showing the distribution of electric field in the vicinity of the connection portion of the circular waveguide and the cylindrical cavity.

【図5】円偏波を用いない場合のプラズマ分布の一例を示す図である。 Is a diagram illustrating an example of a plasma distribution when [5] yen without using polarization.

【符号の説明】 DESCRIPTION OF SYMBOLS

101…マイクロ波源、102…アイソレータ、103 101 ... microwave source 102 ... isolator, 103
…整合器、104…モード変換器、105…方形導波管、106…円形導波管、107…円柱空洞部、108 ... matching unit, 104 ... mode converter, 105 ... rectangular waveguide 106 ... circular waveguide, 107 ... cylindrical cavity, 108
…マイクロ波導入窓、109…プラズマ処理室、110 ... microwave introducing window, 109 ... plasma treatment chamber, 110
…基板電極、111…被処理基板、201…入力側導波管、202…出力側導波管、203…円偏波発生器、2 ... substrate electrode, 111 ... substrate to be processed, 201 ... input side waveguide, 202 ... output side waveguide 203 ... circular polarizer, 2
04…円矩形変換コーナ、301…円形導波管、302 04 ... circular rectangular conversion corner, 301 ... circular waveguide, 302
…電界ベクトル、401…電界ベクトル。 ... electric field vector, 401 ... electric field vector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角屋 誠浩 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 Fターム(参考) 5F004 BA13 BA16 BB07 5F045 AA10 DP02 EH17 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Kadoya MakotoHiroshi Yamaguchi Prefecture Kudamatsu Oaza Higashitoyoi 794 address stock company Hitachi Ryuto factory in the F-term (reference) 5F004 BA13 BA16 BB07 5F045 AA10 DP02 EH17

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】処理室に導波管を介して高周波電力を供給し、前記処理室に当該高周波電力によりプラズマを発生して前記処理装置内の試料をプラズマ処理するプラズマ処理装置において、 前記処理室に高周波電力を供給する前記導波管に円偏波発生器を介在し、前記処理室内に円偏波を供給することを特徴とするプラズマ処理装置。 1. A by supplying high-frequency power through a waveguide into the processing chamber, the sample plasma processing apparatus for plasma processing in the processing apparatus generates a plasma by the high frequency power to the processing chamber, the processing chamber interposed the circular polarizer in the waveguide for supplying high frequency power to a plasma processing apparatus and supplying the circularly polarized wave into the processing chamber.
  2. 【請求項2】請求項1記載のプラズマ処理装置において、導波管は高周波電力を伝搬する軸対称構造を有する導波路で構成され、処理室は前記導波路に接続された略円柱状の構造を有する空洞と該空洞に接続され内部に被処理基板を保持するための構造を備えたプラズマ発生室とを備え、前記処理室は前記プラズマ発生室に処理ガスを供給するためのガス供給装置と前記プラズマ発生室を処理に適した所定の圧力に保持するための排気装置を備えたことを特徴とするプラズマ処理装置。 2. A plasma processing apparatus according to claim 1, the waveguide is constituted by a waveguide having an axisymmetric structure that propagates a high frequency power, the processing chamber is substantially cylindrical structure connected to the waveguide and a plasma generation chamber having a structure for holding a substrate to be processed therein is connected to the cavity and said cavity having said processing chamber and a gas supply device for supplying a processing gas into the plasma generation chamber plasma processing apparatus characterized by comprising an exhaust system for maintaining a predetermined pressure suitable for processing the plasma generation chamber.
  3. 【請求項3】請求項2記載のプラズマ処理装置において、プラズマ発生室に静磁界を加える磁界発生装置を備えたことを特徴とするプラズマ処理装置。 3. A plasma processing apparatus according to claim 2, the plasma processing apparatus characterized by comprising a magnetic field generator for applying a static magnetic field in the plasma generating chamber.
  4. 【請求項4】請求請2記載のプラズマ処理装置において、被処理基板近傍で実効的に無磁場であることを特徴とするプラズマ処理装置。 4. The plasma processing apparatus according 請 2, wherein the plasma processing apparatus, characterized in that the effectively field-free in a substrate to be processed vicinity.
JP17254698A 1998-06-19 1998-06-19 The plasma processing apparatus Active JP3855468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17254698A JP3855468B2 (en) 1998-06-19 1998-06-19 The plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17254698A JP3855468B2 (en) 1998-06-19 1998-06-19 The plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2000012290A true true JP2000012290A (en) 2000-01-14
JP3855468B2 JP3855468B2 (en) 2006-12-13

Family

ID=15943892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17254698A Active JP3855468B2 (en) 1998-06-19 1998-06-19 The plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP3855468B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076329A1 (en) * 2000-03-30 2001-10-11 Tokyo Electron Limited Apparatus for plasma processing
JP2003110312A (en) * 2001-09-28 2003-04-11 Nihon Koshuha Co Ltd Matching unit and plasma processing device
JP2006179477A (en) * 2000-03-30 2006-07-06 Ando Makoto Plasma processing apparatus
US7243610B2 (en) * 2001-01-18 2007-07-17 Tokyo Electron Limited Plasma device and plasma generating method
JP2010192750A (en) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp Plasma treatment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076329A1 (en) * 2000-03-30 2001-10-11 Tokyo Electron Limited Apparatus for plasma processing
EP1276356A1 (en) * 2000-03-30 2003-01-15 Ando, Makoto Apparatus for plasma processing
US6910440B2 (en) 2000-03-30 2005-06-28 Tokyo Electron Ltd. Apparatus for plasma processing
EP1276356A4 (en) * 2000-03-30 2006-01-04 Tokyo Electron Ltd Apparatus for plasma processing
JP2006179477A (en) * 2000-03-30 2006-07-06 Ando Makoto Plasma processing apparatus
JP4522356B2 (en) * 2000-03-30 2010-08-11 八坂 保能 The plasma processing apparatus
US7243610B2 (en) * 2001-01-18 2007-07-17 Tokyo Electron Limited Plasma device and plasma generating method
JP2003110312A (en) * 2001-09-28 2003-04-11 Nihon Koshuha Co Ltd Matching unit and plasma processing device
JP2010192750A (en) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp Plasma treatment device

Also Published As

Publication number Publication date Type
JP3855468B2 (en) 2006-12-13 grant

Similar Documents

Publication Publication Date Title
US5115167A (en) Plasma processor
US5198725A (en) Method of producing flat ecr layer in microwave plasma device and apparatus therefor
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
US5302803A (en) Apparatus and method for uniform microwave plasma processing using TE1101 modes
US4877509A (en) Semiconductor wafer treating apparatus utilizing a plasma
US5173641A (en) Plasma generating apparatus
US20030150562A1 (en) Apparatus and method to control the uniformity of plasma by reducing radial loss
JP2003059919A (en) Apparatus and method for microwave plasma treatment
US5203959A (en) Microwave plasma etching and deposition method employing first and second magnetic fields
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JP2000077335A (en) Plasma treating device
WO1995032315A1 (en) Magnetically enhanced multiple capacitive plasma generation apparatus and related method
JP2004200429A (en) Plasma treatment apparatus
US5266364A (en) Method and apparatus for controlling plasma processing
JPH11214196A (en) Plasma generator
JPH09289099A (en) Plasma processing method and device
EP0779644A2 (en) Plasma processing apparatus
JPH065386A (en) Electronic cyclotron resonance device
JPH08337887A (en) Plasma treatment device
US20030168012A1 (en) Plasma processing device and plasma processing method
JPH07263187A (en) Plasma treatment device
JPH08138888A (en) Plasma treatment apparatus
JP2002093784A (en) Plasma treatment apparatus and manufacturing method of semiconductor device
JPH09228056A (en) Plasma treatment device
JPH10255999A (en) Microwave excited plasma device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7