JP2000009516A - Sloshing liquid level measuring instrument - Google Patents

Sloshing liquid level measuring instrument

Info

Publication number
JP2000009516A
JP2000009516A JP10174303A JP17430398A JP2000009516A JP 2000009516 A JP2000009516 A JP 2000009516A JP 10174303 A JP10174303 A JP 10174303A JP 17430398 A JP17430398 A JP 17430398A JP 2000009516 A JP2000009516 A JP 2000009516A
Authority
JP
Japan
Prior art keywords
liquid level
earthquake
sloshing
storage tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10174303A
Other languages
Japanese (ja)
Inventor
Tsutomu Naito
力 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10174303A priority Critical patent/JP2000009516A/en
Publication of JP2000009516A publication Critical patent/JP2000009516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sloshing wave height measuring instrument for precisely measuring a rise in the liquid level in a storage tank due to the sloshing phenomenon in an earthquake after the earthquake. SOLUTION: This is a sloshing wave height measuring instrument which measures variation in the liquid level in the liquid storage tank in case of an earthquake and equipped with a liquid level measuring instrument 2 which measures liquid levels at >=2 positions in the tank and outputs their liquid level values, an earthquake detector 3 which detects the occurrence of an earthquake and outputs an earthquake detection signal, a recorder 4 which records and stores the liquid level values in synchronism with the output timing of the earthquake detection signal, and an analyzer 5 which estimates the liquid level variation at the time of the earthquake from the recorded and stored liquid level values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化天然ガス、原
油、水等の液体を貯蔵するタンク内部において地震時に
生ずるスロッシング現象による液面変位を推定する装置
に係り、更に詳しくは、地震発生後に簡易な液面計測器
の記録データを基に液面変位を数学的に推定し、タンク
に生じたスロッシング現象による液面の上昇を推定する
スロッシング波高計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for estimating a liquid level displacement caused by a sloshing phenomenon that occurs during an earthquake in a tank for storing liquids such as liquefied natural gas, crude oil, and water. The present invention relates to a sloshing wave height measuring device that mathematically estimates a liquid level displacement based on data recorded by a simple liquid level measuring device and estimates a rise in the liquid level due to a sloshing phenomenon generated in a tank.

【0002】[0002]

【従来の技術】液化天然ガス、原油、水等の液体は通常
貯蔵タンクに貯蔵される。これらの貯蔵タンクは、地震
時の安全性に注意を払った耐震設計がなされている。地
震により貯蔵タンクが一定の周期で揺すられると、貯蔵
タンク内の液体が波立つ。この現象は、スロッシング現
象として良く知られいる。このスロッシング現象が発生
すると、貯蔵された液体の液面は、通常の貯蔵状態では
想定できない高さに達し、場合によっては貯蔵タンクの
側壁と屋根の接合部を越えることもありうる。液面が上
昇したタンク内壁には通常時より大きな動水圧がかか
る。従って、貯蔵タンクは、建設に当たって地震時の規
模を想定し、その規模の地震によってスロッシング現象
が生じてもタンクが破損しないように考慮されている。
2. Description of the Related Art Liquids such as liquefied natural gas, crude oil and water are usually stored in storage tanks. These storage tanks are designed to be seismic resistant with a focus on safety during an earthquake. When the storage tank is shaken at regular intervals due to an earthquake, the liquid in the storage tank undulates. This phenomenon is well known as a sloshing phenomenon. When this sloshing phenomenon occurs, the level of the stored liquid reaches a level that cannot be expected under normal storage conditions, and in some cases, may exceed the junction between the side wall and the roof of the storage tank. A higher dynamic water pressure is applied to the tank inner wall where the liquid level has risen than usual. Therefore, the size of the storage tank is assumed at the time of the earthquake at the time of construction, and consideration is made so that the tank will not be damaged even if a sloshing phenomenon occurs due to the earthquake of the scale.

【0003】[0003]

【発明が解決しようとする課題】しかし、固定屋根式の
貯蔵タンクでは、屋根ノズル等から貯蔵液が吐出しない
かぎり、スロッシング現象による液面の上昇程度は推定
できないという問題点がある。また、吐出があった場合
も液面の上昇程度の推定は不正確なものになりがちであ
るという問題点がある。また一方、既存の液面計ではス
ロッシング現象の様な早い周期(例えば、2〜10秒)
の液面の上昇を計ることができないという問題がある。
また最も重要である側板での液面高さを知ることができ
ないという問題点がある。本発明の発明者は、高圧ガス
保安協会編「コンビナート保安・防災技術指針−化学工
場における地震対策−」の記載等にあるように、貯蔵タ
ンク内の液体の地震によるスロッシング現象による液面
変位は、固有の数式で表すことが可能である点に着目
し、数箇所の液面変位のデータからスロッシング現象に
よる液面変位を推定する装置を発明した。
However, the fixed roof type storage tank has a problem that the degree of rise in the liquid level due to the sloshing phenomenon cannot be estimated unless the storage liquid is discharged from a roof nozzle or the like. In addition, there is a problem that the estimation of the degree of rise of the liquid level tends to be inaccurate even when the liquid is ejected. On the other hand, in the existing liquid level gauge, a fast cycle such as a sloshing phenomenon (for example, 2 to 10 seconds)
There is a problem that the rise of the liquid level cannot be measured.
In addition, there is a problem that the liquid level height on the side plate, which is the most important, cannot be known. The inventor of the present invention, as described in, for example, "Technical Guidelines for Industrial Safety and Disaster Prevention-Earthquake Countermeasures in Chemical Factories" edited by the High Pressure Gas Safety Association, the liquid level displacement due to the sloshing phenomenon of the liquid in the storage tank due to the earthquake. By paying attention to the fact that it can be expressed by a unique mathematical formula, a device for estimating the liquid level displacement due to the sloshing phenomenon from the data of the liquid level displacement at several places was invented.

【0004】本発明は以上に述べた問題点に鑑み案出さ
れたもので、地震時のスロッシング現象による貯蔵タン
ク内の液面の上昇を地震後に精度良く推定するためのス
ロッシング波高計測装置を提供しようとする。さらに、
既存の液面計の設備の大幅な改造なしに、また複雑な液
面計測設備の追加なしに、地震時のスロッシング現象に
よる貯蔵タンク内の液面の上昇を精度良くかつ素早く推
定するためのスロッシング波高計測装置を提供しようと
する。またさらに、タンクの安全上重要な側板での液面
の上昇を推定するためのスロッシング波高計測装置を提
供しようとする。これらの特徴を有するスロッシング波
高計測装置を提供し、地震発生後の貯蔵タンクの保守、
点検を正確、的確に行えるようにする。
[0004] The present invention has been devised in view of the above-mentioned problems, and provides a sloshing wave height measuring device for accurately estimating a rise in the liquid level in a storage tank due to a sloshing phenomenon during an earthquake after an earthquake. try to. further,
Sloshing to accurately and quickly estimate the rise in the liquid level in the storage tank due to the sloshing phenomenon during an earthquake without major modification of existing level gauge equipment and without adding complicated level gauge equipment Attempts to provide a wave height measurement device. Still another object of the present invention is to provide a sloshing wave height measuring device for estimating a rise in liquid level at a side plate important for safety of a tank. Providing a sloshing wave height measuring device with these features, maintenance of storage tanks after an earthquake,
Make inspections accurate and accurate.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明に係るスロッシング波高計測装置は、タンク内の
2つ以上の位置の液面高さを計測しその液面レベル値を
出力する液面計測器(2)と、地震が発生したことを検
知し地震検知信号を出力する地震検知器(3)と、地震
検知信号の出力タイミングに同期してその液面レベル値
を記録保存する記録器(4)と、記録保存された液面レ
ベル値から地震時の液面変位を推定する解析器(5)と
を備える。
In order to achieve the above object, a sloshing wave height measuring apparatus according to the present invention measures a liquid level at two or more positions in a tank and outputs the liquid level value. A surface measuring device (2), an earthquake detector (3) that detects the occurrence of an earthquake and outputs an earthquake detection signal, and a record that records and saves the liquid level value in synchronization with the output timing of the earthquake detection signal. And an analyzer (5) for estimating the liquid level displacement at the time of the earthquake from the liquid level value stored and stored.

【0006】上記本発明の構成により、液面計測器
(2)は、タンク内の少なくとも2つ以上の位置の液面
高さを計測し、その液面レベル値を出力する。地震検知
器(3)は、地震が発生したことを検知し、地震信号を
出力する。記録計(4)は、地震信号の出力タイミング
に同期して、その液面レベル値を記録保存し、地震によ
るスロッシング現象による液面の変動を記録保存する。
解析器(5)は、記録保存された2つ以上の位置の液面
レベル値から地震時の液面変位を推定する。
According to the configuration of the present invention, the liquid level measuring device (2) measures the liquid level at at least two or more positions in the tank and outputs the liquid level value. The earthquake detector (3) detects that an earthquake has occurred, and outputs an earthquake signal. The recorder (4) records and saves the liquid level value in synchronization with the output timing of the earthquake signal, and records and saves the fluctuation of the liquid level due to the sloshing phenomenon due to the earthquake.
The analyzer (5) estimates the liquid level displacement at the time of the earthquake from the liquid level values at two or more positions recorded and stored.

【0007】また好ましくは、上記目的を達成するため
本発明に係るスロッシング波高計測装置において、液面
計測器(2)は、タンク内の液面を計測する第一液面計
(2a)とタンク中心から見て第一計測器からほぼ90
度ずれた位置の液面を計測する第二液面計(2b)を有
するものとした。上記本発明の構成により、液面計測器
の第一液面計(2a)と第二液面計(2b)は、タンク
内の相互に離れた2箇所の位置の液面高さを計測し、タ
ンク内の相互に離れた2箇所の位置の液面高さを表す液
面レベル値を得る。解析器(5)は、その2箇所の位置
の液面高さを表す液面レベル値から地震時の液面変位を
推定する。
Preferably, in order to achieve the above object, in the sloshing wave height measuring apparatus according to the present invention, the liquid level measuring device (2) includes a first liquid level meter (2a) for measuring the liquid level in the tank and the tank. Approximately 90 from the first measuring instrument when viewed from the center
It had a second liquid level meter (2b) for measuring the liquid level at a position shifted by a degree. According to the configuration of the present invention, the first liquid level gauge (2a) and the second liquid level gauge (2b) of the liquid level measuring device measure the liquid level at two mutually separated positions in the tank. , A liquid level value indicating the liquid level at two positions separated from each other in the tank is obtained. The analyzer (5) estimates the liquid level displacement at the time of the earthquake from the liquid level values representing the liquid level at the two positions.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し、重複した説明を省略す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0009】図1は本発明の実施形態の一つのスロッシ
ング波高計測装置を備えた円筒形タンク設備のブロック
図である。本タンク設備のスロッシング波高計測装置
は、液面計測器2と、地震検知器3と、記録器4と、解
析器5と、地震時液面表示器6とを備える。さらに、本
実施形態の液面計測器は、通常状態での操業においてタ
ンク内の液面を検知する機能を有しており、通常液面表
示器7を備える。液面計測器2は、2つの液面計(以
下、第一液面計2aと第二液面計2bという)と液面計
測器制御部2cとを有する。第一液面計2aは、貯蔵タ
ンク1内の側板に近い位置に配置される。第二液面計2
bは、タンク中心から見て第一計測器2aからほぼ90
度ずれた位置に配置される。第一液面計2aと第二液面
計2bとは、貯蔵タンク1内の液面を検知し、液面高さ
に応じて液面レベル信号を出力する。液面計測制御部2
cは、第一液面計2aと第二液面計2bとからのそれぞ
れの液面レベル信号をそれぞれの液面レベル値に変換
し、出力する。地震が発生していない時(以下、通常時
という)、液面計測制御部2cは、ゆっくりした周期
(以下、通常時周期という)で液面信号を液面レベル値
に変換し、出力する。地震検知器3から地震検知信号を
受け取ると、より早い所定の周期(以下、地震時周期と
いう。)で液面信号を液面レベル値に変換し、出力す
る。地震検知器3は、地震計3aと地震検知制御部3b
とを有する。地震計3aは地面の振動に応じて振動信号
を出力する。地震検知制御部3bは、その振動信号を予
め設定された数値と比較し、その振動信号の方が大きい
時を地震時と判断する。地震検知制御部3bは、地震時
に地震検知信号を出力する。記録器4は液面計測器2か
ら出力されたそれぞれの液面レベル値を記録保存する。
解析器5は、予めスロッシング現象発生時の液面変位を
仮定した未定係数を含む数式を準備している。
FIG. 1 is a block diagram of a cylindrical tank facility provided with one sloshing wave height measuring device according to an embodiment of the present invention. The sloshing wave height measuring device of the present tank equipment includes a liquid level measuring device 2, an earthquake detector 3, a recorder 4, an analyzer 5, and an earthquake level display 6. Further, the liquid level measuring device of the present embodiment has a function of detecting the liquid level in the tank during operation in a normal state, and includes a normal liquid level indicator 7. The liquid level gauge 2 has two liquid level gauges (hereinafter, referred to as a first liquid level gauge 2a and a second liquid level gauge 2b) and a liquid level gauge control unit 2c. The first liquid level gauge 2 a is arranged at a position near the side plate in the storage tank 1. Second liquid level meter 2
b is approximately 90% from the first measuring instrument 2a when viewed from the center of the tank.
It is arranged at a position shifted by degrees. The first liquid level meter 2a and the second liquid level meter 2b detect the liquid level in the storage tank 1 and output a liquid level signal according to the liquid level. Liquid level measurement control unit 2
c converts the respective liquid level signals from the first liquid level meter 2a and the second liquid level meter 2b into respective liquid level values and outputs them. When an earthquake does not occur (hereinafter, referred to as normal time), the liquid level measurement control unit 2c converts the liquid level signal into a liquid level value at a slow cycle (hereinafter, referred to as normal time cycle) and outputs the value. When an earthquake detection signal is received from the earthquake detector 3, the liquid level signal is converted into a liquid level value at a predetermined earlier cycle (hereinafter referred to as an earthquake cycle) and output. The earthquake detector 3 includes a seismometer 3a and an earthquake detection control unit 3b.
And The seismometer 3a outputs a vibration signal according to the vibration of the ground. The earthquake detection control unit 3b compares the vibration signal with a preset numerical value, and determines that the time when the vibration signal is larger is the time of the earthquake. The earthquake detection control unit 3b outputs an earthquake detection signal during an earthquake. The recorder 4 records and stores each liquid level value output from the liquid level measuring device 2.
The analyzer 5 prepares a mathematical expression including an undetermined coefficient assuming a liquid level displacement when the sloshing phenomenon occurs in advance.

【0010】図2は、数式で使用される変数を説明する
図である。本実施形態では、中心を通る任意の直線上に
おいて、側板内面での液面変位をζと、貯蔵タンク中心
から側板までの距離をaと、地震によるスロッシングの
振動数をωと、時刻をtとすると、貯蔵タンク中心から
の距離がxである任意の位置での液面変位hは数1で表
されると仮定する。
FIG. 2 is a diagram for explaining variables used in mathematical expressions. In the present embodiment, on an arbitrary straight line passing through the center, 面 represents the liquid level displacement on the inner surface of the side plate, a represents the distance from the center of the storage tank to the side plate, ω represents the frequency of sloshing caused by the earthquake, and t represents the time. Then, it is assumed that the liquid level displacement h at an arbitrary position whose distance from the center of the storage tank is x is expressed by the following equation (1).

【0011】[0011]

【数1】 (Equation 1)

【0012】さらに、側板内面の円周上での液面変位が
最大になる位置をP点とし、P点での液面変位をζ0と
すると、P点から時計回りにθ回転した側板内面での液
面変位ζは数2で表されると仮定する。
Further, assuming that the position where the liquid level displacement on the circumference of the inner surface of the side plate becomes maximum is point P, and the liquid surface displacement at point P is ζ0, the inner surface of the side plate rotated clockwise θ from point P is Is assumed to be expressed by Equation 2.

【0013】[0013]

【数2】 (Equation 2)

【0014】解析器5は、記録器4に記録保存された一
群の液面レベル値からその未定係数ζ0の係数値を算定
する。解析器5は、その係数値を数式の未定係数に導入
して、その数式をタンク内の液面変位であるとする。解
析器5は、その数式から所定の位置の液面レベル値を算
定し、地震時液面表示器6にその液面レベル値を出力す
る。通常次液面表示器7は、通常時に液面計測器2から
出力される液面レベル値を表示する。地震時液面表示器
6は、地震時に解析器5から出力されるた液面レベル値
を表示する。
The analyzer 5 calculates a coefficient value of the undetermined coefficient ζ0 from a group of liquid level values recorded and stored in the recorder 4. The analyzer 5 introduces the coefficient value into the undetermined coefficient of the equation, and assumes that the equation is the liquid level displacement in the tank. The analyzer 5 calculates a liquid level value at a predetermined position from the mathematical expression, and outputs the liquid level value to the liquid level indicator 6 at the time of the earthquake. The normal next liquid level display 7 displays the liquid level value output from the liquid level measuring device 2 at the normal time. The earthquake liquid level indicator 6 displays the liquid level value output from the analyzer 5 during an earthquake.

【0015】本発明のタンク設備のスロッシング波高計
測装置の作用を信号の処理に従って説明する。通常時、
貯蔵タンク内の液面は水平になっている。地震検知器3
は、地震検知信号を出力していない。液面信号が、液面
高さを測定した第一液面計2aと第二液面計2bにより
出力される。液面信号は、液面計測制御部2cにより液
面レベル値に通常時周期で変換される。液面レベル値
は、通常時液面表示器7に供給され、表示される。地震
が発生した時、貯蔵タンク内の液はスロッシング現象を
起こし、液面が波立つ。地震検知信号が、地震を検知し
た地震検知器3により液面計測器2に供給される。液面
レベル信号が、液面計測制御部2cにより地震時周期で
液面レベル値に変換される。液面レベル値が記録器4に
供給されれ、記録保持される。地震がおさまると、地震
検知信号が途切れ、適当に設定された時間後に液面検知
器2の計測周期は通常時周期に戻る。記録部4に記録さ
れた液面レベル値が解析器に送られる。液面変位が、以
下のように解析器5により解析される。第一液面計2a
の液面レベル値の経時的な一群の液面レベル値と通常時
の液面レベル値Lとの差から、スロッシングの振幅h1
が算定される。次に、この第一液面計2aの液面振幅を
h1、貯蔵タンク中心から第一液面計2aまでの距離を
x1とすると、液面形2aの一群の液面レベルの個々の
レベル値に対し、側板内壁部での液面振幅ζ1が数3で
算出される。
The operation of the sloshing wave height measuring apparatus for tank equipment according to the present invention will be described in accordance with signal processing. Normal time,
The liquid level in the storage tank is horizontal. Earthquake detector 3
Does not output an earthquake detection signal. The liquid level signal is output by the first liquid level meter 2a and the second liquid level meter 2b which measured the liquid level. The liquid level signal is converted into a liquid level value by the liquid level measurement control unit 2c in a normal time cycle. The liquid level value is supplied to the normal liquid level indicator 7 and displayed. When an earthquake occurs, the liquid in the storage tank undergoes sloshing, causing the liquid level to wave. An earthquake detection signal is supplied to the liquid level measurement device 2 by the earthquake detector 3 that has detected the earthquake. The liquid level signal is converted into a liquid level value by the liquid level measurement control unit 2c at the time of the earthquake. The liquid level value is supplied to the recorder 4 and recorded and held. When the earthquake subsides, the earthquake detection signal is interrupted, and the measurement cycle of the liquid level detector 2 returns to the normal time cycle after an appropriately set time. The liquid level value recorded in the recording unit 4 is sent to the analyzer. The liquid level displacement is analyzed by the analyzer 5 as follows. First level gauge 2a
From the difference between the liquid level value of a group of the liquid level values with time and the liquid level value L at normal time, the amplitude h1 of the sloshing is obtained.
Is calculated. Next, assuming that the liquid level amplitude of the first liquid level meter 2a is h1 and the distance from the center of the storage tank to the first liquid level meter 2a is x1, the individual level values of a group of liquid level levels of the liquid level type 2a are given. On the other hand, the liquid level amplitude ζ1 at the inner wall of the side plate is calculated by Expression 3.

【0016】[0016]

【数3】 (Equation 3)

【0017】さらに、第二液面計2bの液面レベル値の
経時的な一群の液面レベル値と通常時の液面レベル値L
との差から、スロッシングの振幅h2が算定される。こ
の第二液面計2bの液面振幅h2と、貯蔵タンク中心か
ら第二液面計2bまでの距離をx2とすると、側板内壁
部での液面変位ζ2は数4で算出される。
Further, a time-series group of liquid level values of the second liquid level meter 2b and a normal liquid level value L
From this difference, the sloshing amplitude h2 is calculated. Assuming that the liquid level amplitude h2 of the second liquid level meter 2b and the distance from the center of the storage tank to the second liquid level meter 2b are x2, the liquid level displacement ζ2 at the inner wall of the side plate is calculated by Expression 4.

【0018】[0018]

【数4】 (Equation 4)

【0019】第一液面計2aの位置と第二液面計2bの
位置の角度差をαとすると、側板内側で円周上最大の液
面変位ζ0は数5で算出される。
Assuming that the angle difference between the position of the first liquid level gauge 2a and the position of the second liquid level gauge 2b is α, the maximum liquid level displacement ζ0 on the circumference inside the side plate is calculated by Equation 5.

【0020】[0020]

【数5】 (Equation 5)

【0021】求められた最大液面変位ζ0が、地震時の
スロッシング現象により貯蔵タンク側板内面で生じた液
面の最大変位である。最大液面変位ζ0が、地震時液面
表示器に出力される。この最大液面変位ζ0が、設計時
に想定されたスロッシング現象の規模と比較される。最
大液面変位ζ0と、設計時に想定されたスロッシング現
象による液面変位との比較により、貯蔵タンクの地震後
の点検の必要性、点検内容、程度を判断することができ
る。
The obtained maximum liquid level displacement ζ0 is the maximum liquid level displacement generated on the inner surface of the storage tank side plate due to the sloshing phenomenon during an earthquake. The maximum liquid level displacement ζ0 is output to the liquid level indicator during an earthquake. This maximum liquid level displacement ζ0 is compared with the magnitude of the sloshing phenomenon assumed at the time of design. By comparing the maximum liquid level displacement ζ0 and the liquid level displacement due to the sloshing phenomenon assumed at the time of design, it is possible to judge the necessity, contents and degree of inspection of the storage tank after the earthquake.

【0022】本実施形態によれば、貯蔵タンクでの液面
高さを経時的に記録保存したデータからスロッシング現
象による液面レベルの変化を推定することができ、地震
があった後その貯蔵タンクに被害の可能性があったか否
かを正確に判断することができる。従って、地震後の点
検をおこなうか否かの判断を行うことができる。また、
2箇所の位置での液面高さを計測するだけでスロッシン
グ現象による液面レベルの変化を推定することができる
ので、既存の液面計を流用することができ、貯蔵タンク
の設計を変更する必要がなく、また既存の貯蔵タンクへ
容易に適用できる。また、スロッシング現象をおこした
円筒形の貯蔵タンク内の液面の変位を数式で表し、記録
保存したデータから解析的に液面変位を推定できるの
で、自動化が容易であり、地震があった後その貯蔵タン
クに被害の可能性があったか否かを容易に正確に判断す
ることができる。従って、地震後の点検をおこなうか否
かの判断を速やかに行うことができる。またさらに、数
1は固定容器内の液体の自由振動を表す近似式であるの
で、スロッシング現象による液面変位を正確に精度良く
推定できる。従って、地震後の点検をおこなうか否かの
判断が的確にできる。
According to this embodiment, it is possible to estimate a change in the liquid level due to the sloshing phenomenon from data in which the liquid level in the storage tank is recorded and stored with time, and after the earthquake, the storage tank can be estimated. It is possible to accurately determine whether or not there is any possibility of damage. Therefore, it is possible to determine whether or not to perform a post-earthquake check. Also,
The change in the liquid level due to the sloshing phenomenon can be estimated only by measuring the liquid level at two positions, so that the existing liquid level gauge can be used and the design of the storage tank is changed. It is not necessary and can be easily applied to existing storage tanks. In addition, the displacement of the liquid level in the cylindrical storage tank that caused the sloshing phenomenon is expressed by a mathematical formula, and the liquid level displacement can be estimated analytically from the recorded and stored data, so automation is easy and after an earthquake, It is possible to easily and accurately determine whether or not the storage tank has been damaged. Therefore, it is possible to quickly determine whether or not to perform an inspection after an earthquake. Further, since Equation 1 is an approximate expression representing the free vibration of the liquid in the fixed container, the liquid level displacement due to the sloshing phenomenon can be accurately and accurately estimated. Therefore, it is possible to accurately determine whether or not to perform a post-earthquake inspection.

【0023】本発明は以上に述べた実施形態に限られる
ものではなく、発明の要旨を逸脱しない範囲で各種の変
更が可能である。たとえば、貯蔵タンクの形状は固定容
器であればよく、特にタンク形状に限定されない。ま
た、液面計の設置位置は2箇所に限定されず、仮定した
数式の未定係数の数よりも多ければいくらでもよい。
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the invention. For example, the shape of the storage tank may be a fixed container, and is not particularly limited to a tank shape. Further, the installation position of the liquid level gauge is not limited to two places, and may be any number as long as it is larger than the number of undetermined coefficients of the assumed mathematical expression.

【0024】[0024]

【発明の効果】以上説明したように本発明のスロッシン
グ波高計測装置の構成により、貯蔵タンクでの液面高さ
を記録保存したデータからスロッシング現象による液面
レベルの変化を推定することができるので、地震があっ
た後その貯蔵タンクに被害の可能性があったか否かを容
易に正確に判断することができる。従って、地震後の点
検をおこなうか否かの判断が容易になる。また、2箇所
の位置での液面高さを計測するだけで良く、既存の液面
計を流用することができるので、貯蔵タンクの設計を変
更する必要がなく、また既存の貯蔵タンクへ容易に適用
できる。また、スロッシング現象をおこした貯蔵タンク
内の液面の変位を数式で表し、記録保存したデータから
解析的に液面変位を推定できるので、自動化が容易であ
り、地震後に速やかにその貯蔵タンクに被害の可能性が
あったか否かを容易に正確に判断することができる。従
って、地震後の点検をおこなうか否かの判断が速やかに
できる。またさらに、固定容器内の液体の自由振動を表
す近似式を使用してスロッシング現象による液面変位を
表すので、スロッシング現象による液面変位を正確に精
度良く推定できる。従って、地震後の点検をおこなうか
否かの判断が的確にできる。
As described above, with the configuration of the sloshing wave height measuring apparatus of the present invention, it is possible to estimate the change in the liquid level due to the sloshing phenomenon from the data in which the liquid level in the storage tank is recorded and stored. After the earthquake, it is possible to easily and accurately determine whether or not the storage tank may have been damaged. Therefore, it is easy to determine whether or not to perform an inspection after an earthquake. Also, it is only necessary to measure the liquid level at two positions, and the existing liquid level gauge can be diverted, so that there is no need to change the design of the storage tank, and it is easy to use the existing storage tank. Applicable to In addition, the displacement of the liquid level in the storage tank that caused the sloshing phenomenon is expressed by a mathematical formula, and the liquid level displacement can be estimated analytically from the recorded and stored data, so automation is easy and the storage tank can be quickly stored after the earthquake. It is possible to easily and accurately determine whether there is a possibility of damage. Therefore, it is possible to quickly determine whether or not to perform an inspection after an earthquake. Furthermore, since the liquid level displacement due to the sloshing phenomenon is represented by using an approximate expression representing the free vibration of the liquid in the fixed container, the liquid level displacement due to the sloshing phenomenon can be accurately and accurately estimated. Therefore, it is possible to accurately determine whether or not to perform a post-earthquake inspection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態のスロッシング波高計測装置
を備えた貯蔵タンクのブロック図である。
FIG. 1 is a block diagram of a storage tank provided with a sloshing wave height measuring device according to an embodiment of the present invention.

【図2】本発明の実施形態の波面変位を表す数式中の変
数の説明図である。
FIG. 2 is an explanatory diagram of variables in a mathematical expression representing a wavefront displacement according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 貯蔵タンク 2 液面計測器 2a 第一液面計 2b 第二液面計 2c 液面計測制御部 3 地震検知器 3a 地震計 3b 地震検知制御部 4 記録器 5 解析器 6 地震時液面表示器 7 通常時液面表示器 DESCRIPTION OF SYMBOLS 1 Storage tank 2 Level gauge 2a First level gauge 2b Second level gauge 2c Level measurement controller 3 Earthquake detector 3a Seismometer 3b Earthquake detection controller 4 Recorder 5 Analyzer 6 Level display at the time of earthquake 7 Normal liquid level indicator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地震発生時の液体貯蔵タンク内の液面変
位を計測するスロッシング波高計測装置であって、タン
ク内の2つ以上の位置の液面高さを計測しその液面レベ
ル値を出力する液面計測器(2)と、地震が発生したこ
とを検知し地震検知信号を出力する地震検知器(3)
と、地震検知信号の出力タイミングに同期してその液面
レベル値を記録保存する記録器(4)と、記録保存され
た液面レベル値から地震時の液面変位を推定する解析器
(5)とを備えた、ことを特徴とするスロッシング波高
計測装置。
1. A sloshing wave height measuring device for measuring a liquid level displacement in a liquid storage tank at the time of an earthquake, wherein the liquid level is measured at two or more positions in the tank and the liquid level value is measured. Liquid level measuring device (2) to output, and earthquake detector (3) to detect occurrence of earthquake and output earthquake detection signal
And a recorder (4) for recording and storing the liquid level value in synchronization with the output timing of the earthquake detection signal, and an analyzer (5) for estimating the liquid level displacement during an earthquake from the recorded and stored liquid level value. ), A sloshing wave height measuring device comprising:
【請求項2】 液面計測器(2)は、タンク内の液面を
計測する第一液面計(2a)とタンク中心から見て第一
計測器からほぼ90度ずれた位置の液面を計測する第二
液面計(2b)を有するものである請求項1に記載のス
ロッシング波高計測装置。
2. A liquid level measuring device (2) comprising: a first liquid level meter (2a) for measuring a liquid level in a tank and a liquid surface at a position substantially 90 ° shifted from the first measuring device when viewed from the center of the tank. The sloshing wave height measuring device according to claim 1, further comprising a second level gauge (2 b) for measuring the wave height.
JP10174303A 1998-06-22 1998-06-22 Sloshing liquid level measuring instrument Pending JP2000009516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174303A JP2000009516A (en) 1998-06-22 1998-06-22 Sloshing liquid level measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174303A JP2000009516A (en) 1998-06-22 1998-06-22 Sloshing liquid level measuring instrument

Publications (1)

Publication Number Publication Date
JP2000009516A true JP2000009516A (en) 2000-01-14

Family

ID=15976313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174303A Pending JP2000009516A (en) 1998-06-22 1998-06-22 Sloshing liquid level measuring instrument

Country Status (1)

Country Link
JP (1) JP2000009516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029925A (en) * 2004-07-14 2006-02-02 Kajima Corp Sloshing evaluation system, sloshing evaluation program and record medium
CN103308114B (en) * 2013-06-06 2015-12-02 山东默锐科技有限公司 The positive pole of liquid level emasuring device and sodium metal liquid level emasuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029925A (en) * 2004-07-14 2006-02-02 Kajima Corp Sloshing evaluation system, sloshing evaluation program and record medium
CN103308114B (en) * 2013-06-06 2015-12-02 山东默锐科技有限公司 The positive pole of liquid level emasuring device and sodium metal liquid level emasuring device

Similar Documents

Publication Publication Date Title
US4796466A (en) System for monitoring pipelines
US7729876B2 (en) Diagnostic device for use in process control system
US5361622A (en) Device and method for detection of leaks in pressurized fluid vessels
EP2935047B1 (en) Identifying undesired conditions in the function of a floating roof of a tank
EP3035028B1 (en) Verification of a meter sensor for a vibratory meter
US11835670B2 (en) Seismic observation device, seismic observation method, and recording medium in which seismic observation program is recorded
EP3594653B1 (en) Diagnosis cost output device, diagnosis cost output method, and diagnosis cost output
JP2012018045A (en) Sensor failure diagnosis device and sensor system
CN105466521A (en) Method for measuring liquid level of liquid in container
CN111060267A (en) Oil level early warning method based on multi-parameter liquid level meter
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
US20110232381A1 (en) System for monitoring liquid level in underground storage tank
JPWO2020075296A1 (en) Condition monitoring device
JP2000009516A (en) Sloshing liquid level measuring instrument
KR101108306B1 (en) vibrometer of suddenpressure relay in power transformer and controlling method thereof
CN111562037A (en) Thermometer fault detection method and device
JP6492387B1 (en) GM calculation system, method and program
JP4782734B2 (en) Plant measuring instrument calibration support apparatus and plant measuring instrument calibration support method
KR101549236B1 (en) Ship hull strength monitoring system
CN115406403A (en) Rail transit tunnel settlement monitoring method and system
KR100844893B1 (en) Structural health monitoring apparatus
JPH08271315A (en) Measuring method and measuring device of groundwater level
JP2001249045A (en) Level-gage monitoring device and level gage equipped with level monitoring function
JPH04236900A (en) Leakage inspection method for liquid goods
JP2013213717A (en) Ultrasonic liquid level measuring device