JP2000009094A - Impeller - Google Patents

Impeller

Info

Publication number
JP2000009094A
JP2000009094A JP10181846A JP18184698A JP2000009094A JP 2000009094 A JP2000009094 A JP 2000009094A JP 10181846 A JP10181846 A JP 10181846A JP 18184698 A JP18184698 A JP 18184698A JP 2000009094 A JP2000009094 A JP 2000009094A
Authority
JP
Japan
Prior art keywords
blade
blades
impeller
thickness distribution
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10181846A
Other languages
Japanese (ja)
Inventor
Teruhiko Tomohiro
輝彦 友広
Tsuneo Akutsu
統雄 垰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10181846A priority Critical patent/JP2000009094A/en
Publication of JP2000009094A publication Critical patent/JP2000009094A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To hardly cause separation in the inside of a channel between blades and lower noises by lowering the maximum value of blade height to which camber height and the thickness of the blades are added. SOLUTION: This impeller is equipped with a plurality of blades 20 annually arranged on a main plate and an auxiliary plate connecting the other end of the blade 20, the blade 20 is such that its shape in a cross section cut by a surface perpendicular to a rotary shaft comprises a closed curve that vertically symmetrical thickness distribution is added to a camber line 21, and the camber line 21 is formed into a structure that its maximum camber position is positioned except for the center of a chord, for example, positioned within 70% from a front edge. Therefore, camber from the front edge to the maximum camber position is loosened, thus separation in this part is hardly produced, and also an effect can be obtained that a separation range in the vicinity of a rear edge is reduced and an effective cannel between blades can be widely retained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は家庭用の空調機器な
どに用いられる多翼送風機で、特に、樹脂成形された羽
根車に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-blade blower used for home air conditioners and the like, and more particularly to a resin-molded impeller.

【0002】[0002]

【従来の技術】従来のこの種の多翼送風機は,図6に示
すように、渦巻き状のケーシング1の中に羽根車2を収
納した構成になっている。羽根車2は、図7に示すよう
に、主板3に羽根4を環状に配設し、他端を副板5で保
持した構造である。副板5の形状は羽根車の一体成形の
ためにリング状になっていることが多い。主板3の中央
部にはボス部6が設けられており、モータ7の駆動軸8
と連結されている。羽根車2の副板5と対抗するケーシ
ング面には吸込口9が設けられ、空気が滑らかに流入す
るようにベルマウス10が形成されている。また、ケー
シング1の端には吐出口11が形成されている。
2. Description of the Related Art As shown in FIG. 6, a conventional multi-blade blower of this type has a structure in which an impeller 2 is housed in a spiral casing 1. As shown in FIG. 7, the impeller 2 has a structure in which the blades 4 are annularly arranged on the main plate 3, and the other end is held by the sub plate 5. The shape of the sub-plate 5 is often a ring shape for integrally forming the impeller. A boss 6 is provided at the center of the main plate 3, and a drive shaft 8 of a motor 7 is provided.
Is linked to A suction port 9 is provided on a casing surface of the impeller 2 opposite to the sub-plate 5, and a bell mouth 10 is formed so that air can flow in smoothly. A discharge port 11 is formed at an end of the casing 1.

【0003】このような構成において、モータを用いて
羽根車を矢印12の方向に回転させることによって、吸
込口9から吸引した空気を、羽根車2から遠心方向に吹
き出し、その流れをケーシング1内で一方向にまとめ
て、吐出口11から吹き出す動作を行なっている。
In such a configuration, by rotating the impeller in the direction of arrow 12 using a motor, the air sucked from the suction port 9 is blown out from the impeller 2 in the centrifugal direction, and the flow is transmitted through the casing 1. To perform the operation of blowing out from the discharge port 11 in one direction.

【0004】この羽根車2の羽根4は、図8に示すよう
に何らかの厚み分布を持った翼型が使われていることが
多い。13は流れが流入する側の端で前縁と呼ばれ、1
4は流れが流出する側の端で後縁と呼ばれる。前縁13
と後縁14を結ぶ直線の長さLは羽根の長さを表し、翼
弦と呼ばれる。翼型にはNACAの翼型など有名なもの
がいろいろあるが、多翼送風機にもっとも普通に使われ
る翼型は、図8および図9に示すように前縁13の円弧
と後縁14の円弧を凸面側15と凹面側16でそれぞれ
円弧でつないだ、いわゆる簡易翼型である。この翼型は
基準となる円弧17の両側に上下対称な厚み分布を設け
たものであり、この円弧17は反り線と呼ばれる。上下
対称な厚み分布の場合、図9に示すように反り線の上に
中心を持つ円を並べ、その包絡線により翼型が構成され
る。つまり、翼弦に沿った前縁13からの距離がLpで
ある点Pでは、点Pに中心を持つ円19の半径Rpが羽
根の厚みとなり、反り線17の両面に付加される。
As the blades 4 of the impeller 2, an airfoil having a certain thickness distribution is often used as shown in FIG. Reference numeral 13 denotes an end on the side where the flow enters, which is called a leading edge.
4 is an end on the side where the flow flows out, and is called a trailing edge. Leading edge 13
The length L of a straight line connecting the trailing edge 14 and the trailing edge 14 represents the length of the blade and is called a chord. There are various well-known airfoils such as the NACA airfoil. The airfoil most commonly used in a multi-blade blower has an arc of the leading edge 13 and an arc of the trailing edge 14 as shown in FIGS. Are connected on the convex side 15 and the concave side 16 by arcs, respectively, so-called simple airfoil. This airfoil is provided with a vertically symmetric thickness distribution on both sides of a reference circular arc 17, and this circular arc 17 is called a warp line. In the case of a vertically symmetric thickness distribution, circles each having a center on a warp line are arranged as shown in FIG. 9, and the envelope forms an airfoil. That is, at the point P whose distance from the leading edge 13 along the chord is Lp, the radius Rp of the circle 19 having the center at the point P becomes the thickness of the blade, and is added to both surfaces of the warp line 17.

【0005】このように、反り線17上に並べる円の大
きさやその並べ方と反り線そのものの形状によって、上
下対称な厚み分布を持った種々の翼型を定義、構成する
ことができる。ここで、前縁13、後縁14を形成する
円弧の半径は、特に、前縁半径および後縁半径と呼ばれ
る。
As described above, various airfoils having a vertically symmetrical thickness distribution can be defined and configured according to the size of the circles arranged on the warp line 17 and the arrangement thereof and the shape of the warp line itself. Here, the radii of the arcs forming the leading edge 13 and the trailing edge 14 are particularly called a leading edge radius and a trailing edge radius.

【0006】図8の簡易翼型の場合は翼の中央部でもっ
とも厚みがあり、両端で薄くなっているので、厚み分布
としても中央に極大点を持つ分布となる。また、翼弦と
反り線17の距離Hを反り高さと呼び、簡易翼型の場合
は翼弦の中央、つまり、前縁から50%の位置で反り高
さがもっとも大きくなる。さらに、翼弦から羽根凸面ま
での距離Hbを羽根高さと呼ぶ。簡易翼型の場合は羽根
高さも翼弦中央で最大となる。
[0008] In the case of the simplified airfoil shown in FIG. 8, the airfoil has the largest thickness at the center of the airfoil and becomes thinner at both ends, so that the thickness distribution has a local maximum point at the center. The distance H between the chord and the warp line 17 is referred to as a warp height. In the case of a simple airfoil, the warp height is greatest at the center of the chord, that is, at a position 50% from the leading edge. Further, a distance Hb from the chord to the convex surface of the blade is referred to as a blade height. In the case of the simple wing type, the blade height also becomes maximum at the center of the chord.

【0007】また、図8に示したように、前縁13にお
いて反り線17と周方向がなす角度β1を入口角、後縁
14において反り線17と周方向がなす角度β2を出口
角と呼ぶ。通常のこの種の多翼送風機では、入口角β1
は80〜90度、出口角β2は160〜170度に設定
されている。
As shown in FIG. 8, an angle β1 between the warp line 17 and the circumferential direction at the leading edge 13 is called an entrance angle, and an angle β2 between the warp line 17 and the circumferential direction at the trailing edge 14 is called an exit angle. . In a typical multi-blade blower of this type, the inlet angle β1
Is set to 80 to 90 degrees, and the exit angle β2 is set to 160 to 170 degrees.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の多翼送風機では,流れが十分に羽根に沿わず、大きな
剥離を生じることによって送風効率の低下や騒音が増大
するという課題があった。すなわち、図8に示すように
羽根4の凸面側15は大きく湾曲しているが、流れは羽
根4に沿いきれずに、反り高さHがもっとも大きくなる
翼弦の中央付近で剥離してしまい、大きな剥離域18を
形成している。羽根車の翼間の流れは、理想的にはすべ
て羽根表面に沿って流れることを期待しているが、実際
には、このような剥離を生じている。どこに、どのよう
な剥離域が生じるかは、羽根の形状や送風機の動作点に
よって異なり一概には決められないが、前縁13におけ
る流入流れと入口角β1とのずれが大きいことや羽根の
湾曲がきついことが剥離の大きな要因になる。すなわ
ち、入口角β1は80〜90度に設定されているので、
流入流れの相対速度がほぼ半径方向に向いていれば、羽
根に沿って滑らかに流入することになる。しかしながら
この種の多翼送風機の場合、流入流れの角度は入口角β
1よりも小さくなることが多いので、流れは羽根4の凹
面側16に押し付けられるようになり、図8に示したよ
うに羽根凸面側15に剥離が生じる。これは、翼弦Lが
短く、羽根4の湾曲がきついほど顕著である。
However, in the conventional multi-blade blower described above, there is a problem that the flow does not sufficiently follow the blade and large separation occurs, thereby lowering the blowing efficiency and increasing noise. That is, as shown in FIG. 8, the convex side 15 of the blade 4 is greatly curved, but the flow cannot flow along the blade 4 and separates in the vicinity of the center of the chord where the warp height H is the largest. , A large peeling area 18 is formed. The flow between the blades of the impeller is expected to ideally all flow along the blade surface, but in practice, such separation occurs. Where and what separation area occurs depends on the shape of the blade and the operating point of the blower and cannot be determined unconditionally. However, the deviation between the inflow at the leading edge 13 and the inlet angle β1 is large, and the curvature of the blade is large. Hardness is a major factor in peeling. That is, since the entrance angle β1 is set at 80 to 90 degrees,
If the relative velocity of the inflow is substantially in the radial direction, the inflow will flow smoothly along the blade. However, in the case of this type of multi-blade fan, the angle of the incoming flow is the inlet angle β
Since the flow is often smaller than 1, the flow is pressed against the concave side 16 of the blade 4, causing separation on the convex side 15 as shown in FIG. 8. This is more remarkable as the chord L is shorter and the blades 4 are more curved.

【0009】剥離域18は乱れが強く、渦が集中した領
域であり、騒音の原因となるとともに、翼間の有効流路
を狭め、通路抵抗を増加させるので送風機の風量特性を
低下させる要因となっている。
The separation region 18 is a region in which turbulence is strong and vortices are concentrated, which causes noise, narrows an effective flow path between blades, and increases passage resistance. Has become.

【0010】[0010]

【課題を解決するための手段】本発明の多翼送風機は上
記課題を解決するため、主板上に複数の羽根を円環状に
配設し、前記羽根の他端を連結する副板を備え、前記羽
根は回転軸に垂直な面で切った断面における羽根形状
が、反り線に上下対称な厚さ分布を付加した閉曲線で構
成されており、前記反り線は最大反り位置が翼弦の中央
以外の位置、たとえば、前縁から70%の位置にある構
成となっている。
In order to solve the above-mentioned problems, a multi-blade blower according to the present invention comprises a sub-plate in which a plurality of blades are annularly arranged on a main plate and the other end of the blades is connected. The blade has a blade shape in a cross section cut along a plane perpendicular to the rotation axis, and is configured by a closed curve obtained by adding a thickness distribution symmetrically to a warp line, and the warp line has a maximum warp position other than the center of the chord. , For example, 70% from the leading edge.

【0011】上記発明によれば最大反り位置を70%と
いう後縁側に寄せたことにより、前縁から最大反り位置
までの湾曲が緩やかになるので、この部分での剥離を生
じ難くすることができる。さらに、最大反り位置から後
縁までの距離が短いために、この部分で剥離が生じても
大きな剥離域として成長する前に羽根外部へ流出してし
まうので、翼間の有効流路を狭める影響も小さくなる。
According to the above invention, since the maximum warpage position is shifted to the trailing edge side of 70%, the curve from the front edge to the maximum warpage position becomes gentle, so that peeling at this portion can be made hard to occur. . Furthermore, since the distance from the maximum warpage position to the trailing edge is short, even if separation occurs in this part, it flows out of the blade before growing as a large separation area, so the effect of narrowing the effective flow path between the blades Is also smaller.

【0012】このように、翼面からの流れの剥離を小さ
くすることによって、広い動作点に渡って、高い性能を
維持することができる。
As described above, by reducing the flow separation from the wing surface, high performance can be maintained over a wide operating point.

【0013】[0013]

【発明の実施の形態】本発明の請求項1にかかる羽根車
は、主板上に複数の羽根を円環状に配設し、前記羽根の
他端を連結する副板を備え、前記羽根は回転軸に垂直な
面で切った断面における羽根形状が、反り線に上下対称
な厚み分布を付加した閉曲線で構成されており、前記反
り線は最大反り位置が翼弦の中央以外の位置にある構成
をとっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An impeller according to a first aspect of the present invention includes a sub-plate in which a plurality of blades are annularly arranged on a main plate and the other end of the blade is connected to the sub-plate. The blade shape in a cross section cut along a plane perpendicular to the axis is configured by a closed curve in which a vertical symmetric thickness distribution is added to the warp line, and the warp line has a maximum warp position other than the center of the chord. Has taken.

【0014】上記構成によると、反り線の最大反り位置
を翼弦の中央からずらしたことにより、一般に、羽根の
厚みがもっとも厚くなる翼弦中央付近の反り高さが低く
なるので、反り高さと羽根の厚みを加えた羽根高さの最
大値も低くなる。つまり、入口角や出口角、反り線の高
さなどを変えずに、羽根高さを低く抑えることができる
ので、羽根全体の湾曲が小さくなり、翼間流路の湾曲も
少なくすることができる。したがって、翼間流路内での
剥離を起こしにくくなり、低騒音化の効果が得られる。
According to the above configuration, since the maximum warpage of the warp line is shifted from the center of the chord, the height of the warp near the center of the chord where the thickness of the blade is the largest is generally reduced. The maximum value of the blade height including the blade thickness is also reduced. That is, the blade height can be kept low without changing the inlet angle, the outlet angle, the height of the warp line, etc., so that the curvature of the entire blade is reduced and the curvature of the inter-blade flow path can be reduced. . Therefore, the separation in the flow path between the blades is less likely to occur, and the effect of reducing noise is obtained.

【0015】本発明の請求項2にかかる羽根車は、羽根
の反り線の最大反り位置が前縁から60〜70%の位置
にある請求項1に記載のものである。
The impeller according to a second aspect of the present invention is the impeller according to the first aspect, wherein the maximum warping position of the warp line of the blade is 60 to 70% from the leading edge.

【0016】本発明の請求項3にかかる羽根車は、羽根
の反り線の最大反り位置が前縁から30〜40%の位置
にある請求項1に記載のものである。
The impeller according to a third aspect of the present invention is the impeller according to the first aspect, wherein the maximum warping position of the warpage line of the blade is 30 to 40% from the leading edge.

【0017】本発明の請求項4にかかる羽根車は、主板
上に複数の羽根を円環状に配設し、前記羽根の他端を連
結する副板を備え、前記羽根は主板側の内径が副板側よ
りも小さく、回転軸に垂直な面で切った断面における羽
根形状が、反り線に上下対称な厚み分布を付加した閉曲
線で構成されており、前記反り線は主板側ほど最大反り
位置が後縁寄りにある構成をとっている。
According to a fourth aspect of the present invention, there is provided an impeller comprising: a plurality of blades arranged in a ring on a main plate; and a sub-plate connecting the other ends of the blades. The blade shape in a cross section cut along a plane perpendicular to the rotation axis, smaller than the sub-plate side, is configured by a closed curve in which a thickness distribution symmetrical to the warp line is added to the vertical line, and the warp line is the maximum warp position toward the main plate side. Has a configuration near the trailing edge.

【0018】上記構成によると、主板側ほど羽根の翼弦
が長い、いわゆるテーパー型の羽根になる。テーパー型
の羽根は、吸い込み口となる副板側は短い翼弦で開口部
を広く取り、流れの主流となる主板側は翼弦の長い羽根
で効率よく送風を行なう効果がある。この主板側と副板
側で最大反り位置を変えることによって、樹脂の一体成
形が容易な羽根形状が可能になる。したがって、最大反
り位置を後縁側に寄せた低騒音化の効果とテーパー型の
羽根の効果の両方を活かすことができる。
According to the above-mentioned structure, the blade becomes a so-called tapered blade in which the blade chord is longer toward the main plate. The tapered blade has a short chord on the sub-plate side serving as a suction port and a wide opening, and the main plate side serving as a main flow has a long chord blade to efficiently blow air. By changing the maximum warp position between the main plate side and the sub plate side, a blade shape that allows easy integral molding of resin becomes possible. Therefore, it is possible to make use of both the effect of lowering the noise by shifting the maximum warping position to the trailing edge side and the effect of the tapered blade.

【0019】本発明の請求項5にかかる羽根車は、羽根
の反り線が2つの三次曲線により構成される請求項1か
ら請求項4のいずれかに記載のものである。
The impeller according to a fifth aspect of the present invention is the impeller according to any one of the first to fourth aspects, wherein a warp line of the blade is constituted by two cubic curves.

【0020】本発明の請求項6にかかる羽根車は、主板
上に複数の羽根を円環状に配設し、前記羽根の他端を連
結する副板を備え、前記羽根は回転軸に垂直な面で切っ
た断面における羽根形状が、円弧状の反り線に上下対称
な厚み分布を付加した閉曲線で構成されており、前記厚
さ分布は前縁から30%付近と70%付近の2ヵ所に極
大点を持つ構成をとっている。
According to a sixth aspect of the present invention, there is provided an impeller comprising: a plurality of blades arranged in a ring on a main plate; and a sub-plate connecting the other ends of the blades, wherein the blades are perpendicular to a rotation axis. The blade shape in the cross section cut by the plane is constituted by a closed curve obtained by adding a vertically symmetrical thickness distribution to an arc-shaped warp line, and the thickness distribution is provided at two places near 30% and 70% from the leading edge. It has a configuration with a maximum point.

【0021】上記構成によると、前縁から30%付近と
70%付近に極大点を持つ上下対称な厚み分布と円弧状
の反り線の組み合わせにより、翼弦の中央付近の凸面側
が平坦な形状となる。そのため、翼間の流路が広がるの
で、風量性能を向上させることができるだけでなく、羽
根凸面側の後縁側で剥離が生じ難くなる。また、生じた
場合にもその領域が小さくなるので、性能低下を少なく
することができる。
According to the above configuration, the combination of the vertically symmetrical thickness distribution having the maximum point at about 30% and about 70% from the leading edge and the arc-shaped warping line makes the convex side near the center of the chord flat. Become. Therefore, the flow path between the blades is widened, so that not only the air volume performance can be improved, but also the peeling is less likely to occur on the trailing edge side of the blade convex side. In addition, since the area becomes smaller even when it occurs, the performance degradation can be reduced.

【0022】本発明の請求項7にかかる羽根車は、主板
上に複数の羽根を円環状に配設し、前記羽根の他端を連
結する副板を備え、前記羽根は回転軸に垂直な面で切っ
た断面における羽根形状が、円弧状の反り線の上下に非
対称な厚み分布を付加した閉曲線で構成されており、凸
面側の厚み分布は翼弦の後縁よりに極大点を持ち、凹面
側の厚み分布は翼弦の中央付近に極大点を持つ構成をと
っている。
According to a seventh aspect of the present invention, there is provided an impeller comprising a plurality of blades arranged in a ring on a main plate, and a sub-plate connecting the other ends of the blades, wherein the blades are perpendicular to a rotation axis. The blade shape in the cross section cut by the plane is composed of a closed curve with an asymmetric thickness distribution added above and below the arc-shaped warp line, the thickness distribution on the convex side has a local maximum point from the trailing edge of the chord, The thickness distribution on the concave side has a maximum point near the center of the chord.

【0023】上記構成によると、羽根の凸面側は、後縁
側に極大点を持つ厚み分布と円弧状の反り線の組み合わ
せにより、前縁から厚みが極大となる位置までの反りが
緩やかになるので、この部分での剥離を生じ難くするこ
とができる。さらに、厚みが極大の位置から後縁までの
距離が短いために、この部分で剥離が生じても大きな剥
離域として成長する前に羽根外部へ流出してしまうの
で、翼間の有効流路を狭める影響も小さくなる。
According to the above configuration, the convex side of the blade has a moderate warp from the leading edge to a position where the thickness becomes maximum due to the combination of the thickness distribution having the maximum point on the trailing edge side and the arc-shaped warping line. In this case, peeling at this portion can be made difficult to occur. Furthermore, since the distance from the position where the thickness is the maximum to the trailing edge is short, even if separation occurs in this part, it flows out of the blade before growing as a large separation area, so the effective flow path between the blades is reduced. The effect of narrowing is also reduced.

【0024】このように、翼面からの流れの剥離を小さ
くすることによって、広い動作点に渡って、高い性能を
維持することができる。
As described above, by reducing the flow separation from the wing surface, high performance can be maintained over a wide operating point.

【0025】本発明の請求項8にかかる羽根車は、主板
上に複数の羽根を円環状に配設し、前記羽根の他端を連
結する副板を備え、前記羽根は回転軸に垂直な面で切っ
た断面における羽根形状が、円弧状の反り線の上下に非
対称な厚み分布を付加した閉曲線で構成されており、凸
面側の厚み分布は前縁から30%付近と70%付近の2
ヵ所に極大点を持ち、凹面側の厚み分布は中央付近に極
大点を1つ持つ構成をとっている。
An impeller according to an eighth aspect of the present invention includes a sub-plate in which a plurality of blades are annularly arranged on a main plate, and a sub-plate connecting the other ends of the blades, wherein the blades are perpendicular to a rotation axis. The blade shape in the cross section cut by the plane is constituted by a closed curve in which an asymmetric thickness distribution is added above and below the arc-shaped warp line, and the thickness distribution on the convex side is approximately 30% and 70% from the leading edge.
It has a local maximum point at one place, and the thickness distribution on the concave side has a configuration with one local maximum point near the center.

【0026】上記構成によると、羽根の凸面側は、前縁
から30%付近と70%付近に極大点を持つ厚み分布と
円弧状の反り線の組み合わせにより、翼弦の中央付近が
比較的平坦な形状となる。そのため、翼間の流路が広が
るので、風量性能を向上させることができるだけでな
く、羽根凸面側の後縁側で剥離が生じ難くなる。また、
生じた場合にもその領域が小さくなるので、性能低下を
少なくすることができる。
According to the above configuration, the convex side of the blade is relatively flat near the center of the chord due to the combination of the thickness distribution having the maximum points at around 30% and 70% from the leading edge and the arc-shaped warpage. Shape. Therefore, the flow path between the blades is widened, so that not only the air volume performance can be improved, but also the peeling is less likely to occur on the trailing edge side of the blade convex side. Also,
Even in the case of occurrence, the area is reduced, so that a decrease in performance can be reduced.

【0027】[0027]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】(実施例1)図1は本発明の実施例1の羽
根車の羽根の拡大図である。従来例と同じく、渦巻き状
のケーシングに収められた羽根車の羽根20は主板上に
円環状に配設されており、他端を副板で支持した構造に
なっている。ここで羽根20は、反り線21の最大反り
位置が翼弦の中央よりも後縁寄りにある。具体的には、
翼弦の長さLに対して、前縁からの距離がLhのところ
に最大反り位置があり、Lh/Lの値としては0.6〜
0.7程度、つまり前縁から60〜70%の位置が適当
である。この反り線21に対して、上下に対称な厚み分
布を付加することによって翼型を形成している。
(Embodiment 1) FIG. 1 is an enlarged view of a blade of an impeller according to Embodiment 1 of the present invention. As in the conventional example, the blades 20 of the impeller housed in the spiral casing are arranged in an annular shape on the main plate, and have a structure in which the other end is supported by the sub plate. Here, the blade 20 has a maximum warp position of the warp line 21 closer to the trailing edge than the center of the chord. In particular,
For the chord length L, the maximum warping position is at a distance Lh from the leading edge, and the value of Lh / L is 0.6 to
A position of about 0.7, that is, 60 to 70% from the leading edge is appropriate. An airfoil is formed by adding a vertically symmetric thickness distribution to the warp line 21.

【0029】一般的な翼型の厚み分布は、前縁と後縁で
は厚みが薄く、翼弦の中央付近で最大の厚みとなるもの
が多い。したがって、最大反り位置を後縁側にずらした
この翼型は、翼弦中央付近の羽根高さは反りが低くなっ
た分だけ低くなるとともに、最大反り位置では厚みが減
った分だけ高さが低くなっている。つまり、羽根の入口
角や出口角、反り高さを変えることなく、羽根高さを低
くした翼型になっている。
In general, the thickness distribution of the airfoil has a small thickness at the leading edge and the trailing edge, and has a maximum thickness near the center of the chord. Therefore, this airfoil, whose maximum warp position is shifted to the trailing edge side, has a lower blade height near the center of the chord due to the lower warpage and a lower height at the maximum warp position due to the reduced thickness. Has become. In other words, the airfoil has a reduced blade height without changing the inlet angle, outlet angle, and warp height of the blade.

【0030】この羽根20の周りの気流の流れを説明す
る。図1に示すように、前縁22から流入する流れは、
羽根20の凸面側24と凹面側25に分かれて流れ、後
縁23から流出する。このとき、羽根20に流入する角
度は流れの絶対速度と羽根車の回転速度から決まるが、
一般的には、羽根20の凹面側25から凸面側24に向
かう角度になることが多い。普通、羽根20の入口角は
この流入角度を考慮して、大きく外れることのないよう
な値に設定する。羽根20の凹面側25の流れは羽根車
の回転により羽根20に押し付けられることになるの
で、剥離が生じることは少ない。一方、凸面側24の流
れは、羽根4の湾曲に沿って流れるので湾曲がきついと
沿いきれずに剥離してしまう。本発明の構成では、最大
反り位置が後縁側にずれたことと、羽根高さが低くなっ
たことによって、前縁22から最大反り位置までの湾曲
は緩やかになっている。そのため、この間での流れの剥
離は非常に少なくなる。
The flow of the airflow around the blade 20 will be described. As shown in FIG. 1, the flow flowing from the leading edge 22 is
The blade 20 flows into the convex side 24 and the concave side 25 of the blade 20 separately, and flows out from the trailing edge 23. At this time, the angle flowing into the blade 20 is determined by the absolute speed of the flow and the rotation speed of the impeller,
In general, the angle often goes from the concave side 25 to the convex side 24 of the blade 20. Normally, the entrance angle of the blade 20 is set to a value that does not largely deviate in consideration of the inflow angle. Since the flow on the concave side 25 of the blade 20 is pressed against the blade 20 by the rotation of the impeller, peeling is less likely to occur. On the other hand, the flow on the convex side 24 flows along the curvature of the blade 4, so that if the curvature is too tight, it will not be able to follow the flow and will be separated. In the configuration of the present invention, the curvature from the leading edge 22 to the maximum warpage position is moderated because the maximum warpage position is shifted to the trailing edge side and the blade height is reduced. Therefore, the separation of the flow during this period is very small.

【0031】いっぽう、最大反り位置から、後縁までの
間は前半部分よりも湾曲がきつくなるが、羽根高さが低
くなっていることと、後縁23に近いことにより、剥離
が生じても翼間で大きな剥離域を形成することはなく、
すぐに、羽根車の外へ流出してしまう。したがって、翼
間の有効流路を狭めることもなく、高性能が実現でき
る。
On the other hand, from the maximum warp position to the trailing edge, the curve is steeper than in the first half. However, since the blade height is low and the blade is close to the trailing edge 23, even if peeling occurs, It does not form a large separation area between the wings,
Immediately, it flows out of the impeller. Therefore, high performance can be realized without narrowing the effective flow path between the blades.

【0032】また、反り線21の最大反り位置を前縁か
ら30〜40%のところにもってきた場合には、凸面側
24の前縁22から最大反り位置までの湾曲はややきつ
くなるが、最大反り位置から後縁23までの圧力回復領
域は緩やかな湾曲になるので剥離はほとんど生じない。
したがって、入口角を適切に設定すれば前半部分での剥
離もなし、あるいは、小さく抑えることが可能であるの
で、全体として剥離の少ない良好な流れを実現すること
ができる。
When the maximum warping position of the warp line 21 is brought to a position 30 to 40% from the front edge, the curve from the front edge 22 of the convex side 24 to the maximum warp position becomes slightly sharp. Since the pressure recovery region from the warped position to the trailing edge 23 has a gentle curve, peeling hardly occurs.
Therefore, if the entrance angle is appropriately set, there is no peeling in the first half part or it is possible to keep the peeling small, so that a good flow with little peeling as a whole can be realized.

【0033】なお、反り線21の形状は任意の曲線を用
いてあらわすことも可能であるが、入口角、出口角、最
大反り位置の3つをパラメータとする場合、前縁から最
大反り位置までと最大反り位置から後縁までをそれぞれ
三次曲線で表現すると一意的に反り線を決定することが
できる。
The shape of the warp line 21 can be expressed using an arbitrary curve. However, when three parameters of the entrance angle, the exit angle, and the maximum warpage position are used as parameters, the curve from the leading edge to the maximum warpage position is used. By expressing each of the distance from the maximum warpage position to the trailing edge by a cubic curve, a warp line can be uniquely determined.

【0034】(実施例2)図2は本発明の実施例2の羽
根車の羽根の拡大図である。羽根車の構造は実施例1と
同じく、羽根26が主板上に円環状に配設されており、
他端を副板で支持した構造になっている。本羽根車は、
羽根26の主板側の内径が副板側よりも小さい、いわゆ
る、テーパー型の羽根である。つまり、羽根26の内径
を主板側でRh、副板側でRsとすると、Rs>Rhと
なっている。したがって、主板側の前縁を27とする
と、副板側の前縁は28となり、その中間の前縁は29
であらわされる。ここで、主板側から副板側まで反り線
21は一定であり、主板側では実施例1で示したものと
同じく、最大反り位置が翼弦中央よりも後縁よりに設定
されている。このような主板側と副板側で羽根内径が異
なるテーパー型の羽根は、流入口となる副板側を広げる
ことによって流入抵抗を減らすとともに、流れの主流と
なる主板側で長い翼弦を活かして有効に送風作用を行な
う。
(Embodiment 2) FIG. 2 is an enlarged view of a blade of an impeller according to Embodiment 2 of the present invention. The structure of the impeller is the same as that of the first embodiment, and the blades 26 are arranged in an annular shape on the main plate.
The other end is supported by a sub-plate. This impeller is
It is a so-called tapered blade in which the inner diameter of the blade 26 on the main plate side is smaller than that on the sub-plate side. That is, if the inner diameter of the blade 26 is Rh on the main plate side and Rs on the sub plate side, Rs> Rh. Therefore, if the front edge on the main plate side is 27, the front edge on the sub-plate side is 28, and the intermediate front edge is 29.
It is represented by Here, the warp line 21 is constant from the main plate side to the sub plate side, and the maximum warp position is set on the main plate side closer to the trailing edge than the chord center as in the first embodiment. Such tapered blades having different blade inner diameters on the main plate side and the sub plate side reduce inflow resistance by expanding the sub plate side serving as an inflow port, and utilize the long chord on the main plate side serving as a main flow of the flow. To provide effective blowing.

【0035】反り線21を共通として、主板側では最大
反り位置を後縁寄りに設定し、副板側では翼弦のほぼ中
央付近に持ってくるように連続的に最大反り位置を変化
させることによって、主板側から副板側までのスパン方
向にねじれのない羽根形状となり、樹脂の一体成形が容
易になる。
With the common warp line 21, the maximum warp position is set near the trailing edge on the main plate side, and the maximum warp position is continuously changed on the sub-plate side so as to be near the center of the chord. Thereby, a blade shape having no twist in the span direction from the main plate side to the sub plate side is obtained, and the integral molding of the resin is facilitated.

【0036】したがって、テーパー型の羽根の効率の良
さと最大反り位置を後縁側に寄せた剥離抑制の効果を併
せ持ち、かつ、樹脂の一体成形が容易に行なえる羽根が
実現できるというメリットがある。
Therefore, there is a merit that the efficiency of the tapered type blade and the effect of suppressing the peeling by shifting the maximum warp position to the trailing edge side can be realized, and the blade can be easily formed integrally with the resin.

【0037】なお、反り線21を表す曲線は実施例1と
同じく三次曲線をはじめとする、任意の曲線が利用可能
である。
Incidentally, any curve such as a cubic curve can be used as the curve representing the warp line 21 as in the first embodiment.

【0038】(実施例3)図3は本発明の実施例3の羽
根車の羽根の拡大図である。羽根車の構造は実施例1と
同じく、羽根31が主板上に円環状に配設されており、
他端を副板で支持した構造になっている。羽根31は、
円弧状の反り線32に上下対称な厚み分布を付加した形
状である。この厚み分布は前縁22から30%付近と7
0%付近の2ヵ所で極大値をとるような分布形状であ
る。図3に示した前縁からの距離L1とL2の点におけ
る羽根31の厚みD1とD2が厚み分布の極大値であ
る。
(Embodiment 3) FIG. 3 is an enlarged view of a blade of an impeller according to Embodiment 3 of the present invention. The structure of the impeller is the same as that of the first embodiment, and the blades 31 are arranged in an annular shape on the main plate.
The other end is supported by a sub-plate. The wings 31
This is a shape obtained by adding a vertically symmetric thickness distribution to the arc-shaped warp line 32. This thickness distribution is about 30% from the leading edge 22 and 7
The distribution shape has a local maximum value at two locations near 0%. The thicknesses D1 and D2 of the blade 31 at points L1 and L2 from the leading edge shown in FIG. 3 are the maximum values of the thickness distribution.

【0039】上記の構成において、二つの極大点の間の
厚みは、当然、極大点よりは小さいわけであるから、円
弧状の反り線32と組み合わさることにより、凸面側2
4の形状は中央付近がほぼ平坦な形になり、凹面側25
は中央部分の湾曲がきつくなる。羽根31の凸面側24
の膨らみが小さくなり、翼間の流路が広がるので、風量
性能を向上させることができるだけでなく、羽根凸面側
24の後縁23側で剥離が生じ難くなる。また、生じた
場合にもその剥離領域が小さくなるので、騒音の増加な
どを抑えることができる。
In the above configuration, the thickness between the two local maximum points is naturally smaller than the local maximum point.
The shape of No. 4 is almost flat near the center, and the concave side 25
Has a sharp center curve. Convex side 24 of blade 31
As the bulge of the blade becomes small and the flow path between the blades is widened, not only the air volume performance can be improved, but also the peeling is less likely to occur on the trailing edge 23 side of the blade convex surface side 24. Further, even when it occurs, the peeled area becomes smaller, so that an increase in noise and the like can be suppressed.

【0040】いっぽう、凹面側25は、多少、湾曲がき
つくなっても、流れが羽根31に押し付けられる方向に
作用するので、大きな剥離は生じない。
On the other hand, even if the concave surface 25 is slightly curved, the flow acts in the direction in which the flow is pressed against the blades 31, so that large separation does not occur.

【0041】(実施例4)図4は本発明の実施例4の羽
根車の羽根の拡大図である。羽根車の構造は実施例1と
同じく、羽根33が主板上に円環状に配設されており、
他端を副板で支持した構造になっている。羽根33は、
円弧状の反り線32の上下に非対称な厚み分布を付加し
た閉曲線で構成されており、凸面側24の厚み分布は翼
弦の後縁よりに極大点を持ち、凹面側25の厚み分布は
翼弦の中央付近に極大点を持つ構成となっている。図4
に示した前縁からの距離L3の点が最大厚み位置であ
り、この点における羽根33の凸面側24の厚みT3が
極大値である。
(Embodiment 4) FIG. 4 is an enlarged view of a blade of an impeller according to Embodiment 4 of the present invention. The structure of the impeller is the same as that of the first embodiment, and the blades 33 are annularly arranged on the main plate.
The other end is supported by a sub-plate. The wings 33
It is composed of a closed curve in which an asymmetric thickness distribution is added above and below the arc-shaped warp line 32, the thickness distribution on the convex side 24 has a maximum point from the trailing edge of the chord, and the thickness distribution on the concave side 25 is It has a maximum point near the center of the string. FIG.
Is the maximum thickness position at a distance L3 from the leading edge, and the thickness T3 of the convex side 24 of the blade 33 at this point is the maximum value.

【0042】上記の構成において、凸面側24の最大厚
み位置が後縁側にずれたこととによって、前縁22から
最大厚み位置までの湾曲は緩やかになっている。そのた
め、この間での流れの剥離は非常に少なくなる。
In the above configuration, the curvature from the leading edge 22 to the maximum thickness position is moderated because the maximum thickness position of the convex surface 24 is shifted to the rear edge side. Therefore, the separation of the flow during this period is very small.

【0043】いっぽう、最大厚み位置から、後縁23ま
での間は前半部分よりも湾曲がきつくなるが、後縁23
に近いことにより、剥離が生じても翼間で大きな剥離域
を形成することはなく、すぐに、羽根車の外へ流出して
しまう。したがって、翼間の有効流路を狭めることもな
く、大風量が実現できるという効果がある。
On the other hand, the curve from the maximum thickness position to the trailing edge 23 becomes steeper than the front half, but the trailing edge 23
Due to the closeness, the separation does not form a large separation area between the blades even if separation occurs, and immediately flows out of the impeller. Therefore, there is an effect that a large air volume can be realized without narrowing the effective flow path between the blades.

【0044】また、凹面側25の形状は円弧状の反り線
に従来からの簡易翼型と同じ厚み分布が利用できるの
で、凸面側24の厚み分布を変えるだけで翼間の剥離の
少ない羽根を簡単に作ることができる。
Further, since the same thickness distribution as that of the conventional simple airfoil can be used for the arcuate warp line for the shape of the concave side 25, the blade having little separation between the blades can be formed by merely changing the thickness distribution of the convex side 24. It can be easily made.

【0045】(実施例5)図5は本発明の実施例5の羽
根車の羽根の拡大図である。羽根車の構造は実施例1と
同じく、羽根34が主板上に円環状に配設されており、
他端を副板で支持した構造になっている。羽根34は、
円弧状の反り線32の上下に非対称な厚み分布を付加し
た形状である。この非対称な厚み分布の凸面側24は前
縁から30%付近と70%付近の2ヵ所に極大点を持っ
ている。また、凹面側25の厚み分布は中央付近に極大
点を1つ持っている。図5に示した前縁からの距離L4
とL5の点における羽根34の凸面側24の厚みT4と
T5が極大値である。
(Embodiment 5) FIG. 5 is an enlarged view of a blade of an impeller according to Embodiment 5 of the present invention. The structure of the impeller is the same as that of the first embodiment, and the blades 34 are arranged in an annular shape on the main plate.
The other end is supported by a sub-plate. The wings 34
This is a shape in which an asymmetric thickness distribution is added above and below the arc-shaped warp line 32. The convex side 24 of this asymmetrical thickness distribution has local maximum points at two positions, around 30% and 70% from the leading edge. The thickness distribution on the concave side 25 has one local maximum near the center. Distance L4 from the leading edge shown in FIG.
The thicknesses T4 and T5 of the convex side 24 of the blade 34 at points L5 and L5 are the maximum values.

【0046】上記の構成において、凸面側24の二つの
極大点の間の厚みは、当然、極大点よりは小さいわけで
あるから、円弧状の反り線32と組み合わさることによ
り、凸面側24の形状は中央付近がほぼ平坦な形にな
る。つまり、羽根34の凸面側24の膨らみが小さくな
り、翼間の流路が広がるので、風量性能を向上させるこ
とができるだけでなく、羽根凸面側24の後縁23側で
剥離が生じ難くなる。また、生じた場合にもその剥離領
域が小さくなるので、騒音の増加などを抑えることがで
きるという効果が得られる。
In the above configuration, since the thickness between the two maximum points on the convex side 24 is naturally smaller than the maximum point, the thickness of the convex side 24 is combined with the arc-shaped warpage line 32. The shape is almost flat near the center. In other words, the bulge on the convex side 24 of the blade 34 is reduced and the flow path between the blades is widened, so that not only the air volume performance can be improved, but also the peeling is less likely to occur on the trailing edge 23 side of the blade convex side 24. In addition, even when it occurs, the peeled area becomes small, so that an effect of suppressing an increase in noise and the like can be obtained.

【0047】また、凹面側25の形状は円弧状の反り線
に従来からの簡易翼型と同じ厚み分布が利用できるの
で、凸面側24の厚み分布を変えるだけで風量性能の高
い羽根を簡単に作ることができる。
Further, since the same thickness distribution as that of the conventional simple airfoil can be used for the arcuate curved line of the concave side 25, the blade having high air volume performance can be easily obtained only by changing the thickness distribution of the convex side 24. Can be made.

【0048】[0048]

【発明の効果】以上のように本発明の羽根車の羽根によ
れば、反り線の最大反り位置を翼弦の中央からずらした
ことにより、一般に、羽根の厚みがもっとも厚くなる翼
弦中央付近の反り高さが低くなるので、反り高さと羽根
の厚みを加えた羽根高さの最大値も低くなる。したがっ
て、翼間流路内での剥離を起こしにくくなり、低騒音化
の効果が得られる。
As described above, according to the blade of the impeller of the present invention, the maximum warpage of the warp line is shifted from the center of the chord, so that the blade is generally thickest near the center of the chord. The height of the blade, which is the sum of the height of the blade and the height of the blade, also decreases. Therefore, the separation in the flow path between the blades is less likely to occur, and the effect of reducing noise is obtained.

【0049】また、主板側ほど羽根の翼弦が長い、いわ
ゆるテーパー型の羽根を採用し、かつ、主板側と副板側
で最大反り位置を変えることによって、樹脂の一体成形
が容易な羽根形状が可能になる。したがって、最大反り
位置を後縁側に寄せた低騒音化の効果とテーパー型の羽
根の効果の両方を活かすことができる。
Further, by adopting a so-called tapered blade in which the chord of the blade is longer on the main plate side, and by changing the maximum warp position on the main plate side and the sub plate side, the blade shape is easy to integrally mold resin. Becomes possible. Therefore, it is possible to make use of both the effect of lowering the noise by shifting the maximum warping position to the trailing edge side and the effect of the tapered blade.

【0050】また、前縁から30%付近と70%付近に
極大点を持つ上下対称な厚み分布と円弧状の反り線の組
み合わせにより、翼弦の中央付近の凸面側が比較的平坦
な形状となり、翼間の流路が広がるので、風量性能を向
上させる効果が得られる。
Further, the combination of a vertically symmetrical thickness distribution having local maximum points at around 30% and 70% from the leading edge and an arc-shaped warpage makes the convex side near the center of the chord relatively flat. Since the flow path between the blades is widened, an effect of improving the air volume performance can be obtained.

【0051】また、円弧状の反り線の上下に非対称な厚
み分布を付加する羽根形状において、凸面側の後縁側に
極大点を持つ厚み分布と円弧状の反り線の組み合わせに
より、前縁から最大反り位置までの反りが緩やかになる
ので、この部分での剥離を生じ難くする効果が得られ
る。
Further, in a wing shape in which an asymmetric thickness distribution is added to the upper and lower sides of the arc-shaped warp line, a combination of the thickness distribution having a local maximum point on the trailing edge side of the convex surface and the arc-shaped warp line allows a maximum from the leading edge. Since the warpage to the warped position becomes gentle, an effect of making it difficult to cause peeling at this portion is obtained.

【0052】また、円弧状の反り線の上下に非対称な厚
み分布を付加する羽根形状において、凸面側の前縁から
30%付近と70%付近に極大点を持つ厚み分布と円弧
状の反り線の組み合わせにより、翼弦の中央付近が比較
的平坦な形状となので、翼間の流路が広がり、風量性能
を向上させる効果が得られる。
Further, in a wing shape in which an asymmetric thickness distribution is added above and below the arc-shaped warp line, the thickness distribution having local maximum points at around 30% and 70% from the leading edge on the convex side, and the arc-shaped warp line By the combination of the above, since the vicinity of the center of the chord has a relatively flat shape, the flow path between the blades is widened, and the effect of improving the air volume performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における羽根車の羽根の拡大
FIG. 1 is an enlarged view of a blade of an impeller according to a first embodiment of the present invention.

【図2】本発明の実施例2における羽根車の羽根の拡大
FIG. 2 is an enlarged view of an impeller blade according to a second embodiment of the present invention.

【図3】本発明の実施例3における羽根車の羽根の拡大
FIG. 3 is an enlarged view of an impeller blade according to a third embodiment of the present invention.

【図4】本発明の実施例4における羽根車の羽根の拡大
FIG. 4 is an enlarged view of an impeller blade according to a fourth embodiment of the present invention.

【図5】本発明の実施例5における羽根車の羽根の拡大
FIG. 5 is an enlarged view of an impeller blade according to a fifth embodiment of the present invention.

【図6】従来の多翼送風機の平面図FIG. 6 is a plan view of a conventional multi-blade blower.

【図7】従来の多翼送風機の縦断面図FIG. 7 is a longitudinal sectional view of a conventional multi-blade fan.

【図8】従来の多翼送風機における羽根車の羽根の拡大
FIG. 8 is an enlarged view of a blade of an impeller in a conventional multi-blade blower.

【図9】従来の多翼送風機における羽根車の羽根の厚み
分布の説明図
FIG. 9 is an explanatory diagram of a blade thickness distribution of an impeller in a conventional multi-blade fan.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 羽根車 3 主板 20 羽根 21 反り線 22 前縁 23 後縁 26 羽根 27 主板側の前縁 28 副板側の前縁 29 中間部の前縁 31 羽根 32 反り線 33 羽根 34 羽根 REFERENCE SIGNS LIST 1 casing 2 impeller 3 main plate 20 blade 21 warp line 22 leading edge 23 trailing edge 26 blade 27 leading edge on main plate side 28 leading edge on sub plate side 29 front edge at intermediate portion 31 blade 32 warp line 33 blade 34 blade

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】主板上に複数の羽根を円環状に配設し、前
記羽根の他端を連結する副板を備え、前記羽根は回転軸
に垂直な面で切った断面における羽根形状が、反り線に
上下対称な厚み分布を付加した閉曲線で構成されてお
り、前記反り線は最大反り位置が翼弦の中央以外の位置
にある多翼送風機の羽根車。
1. A plurality of blades are annularly arranged on a main plate, and a sub plate connecting the other ends of the blades is provided. The blades have a blade shape in a cross section cut along a plane perpendicular to a rotation axis. An impeller for a multi-blade blower, comprising a closed curve obtained by adding a vertically symmetric thickness distribution to a warp line, wherein the warp line has a maximum warp position other than the center of the chord.
【請求項2】羽根の反り線の最大反り位置が前縁から6
0〜70%の位置にある請求項1に記載の多翼送風機の
羽根車。
2. The maximum warp position of the warp line of the blade is 6 degrees from the leading edge.
The impeller of a multi-blade blower according to claim 1, which is located at a position of 0 to 70%.
【請求項3】羽根の反り線の最大反り位置が前縁から3
0〜40%の位置にある請求項1に記載の多翼送風機の
羽根車。
3. The maximum warp position of the warp line of the blade is 3 from the leading edge.
The impeller of a multi-blade blower according to claim 1, which is located at a position of 0 to 40%.
【請求項4】主板上に複数の羽根を円環状に配設し、前
記羽根の他端を連結する副板を備え、前記羽根は主板側
の内径が副板側よりも小さく、回転軸に垂直な面で切っ
た断面における羽根形状が、反り線に上下対称な厚み分
布を付加した閉曲線で構成されており、前記反り線は主
板側ほど最大反り位置が後縁寄りにある多翼送風機の羽
根車。
4. A plurality of blades are arranged in an annular shape on a main plate, and a sub-plate is provided for connecting the other end of the blade. The blade has an inner diameter smaller on the main plate side than on the sub-plate side. The blade shape in the cross section cut by the vertical plane is constituted by a closed curve obtained by adding a vertically symmetrical thickness distribution to the warp line, and the warp line has a maximum warp position on the main plate side closer to the trailing edge of the multi-blade blower. Impeller.
【請求項5】羽根の反り線は2つの三次曲線により構成
される請求項1から請求項4のいずれかに記載の多翼送
風機の羽根車。
5. An impeller for a multi-blade blower according to claim 1, wherein a warp line of the blade is constituted by two cubic curves.
【請求項6】主板上に複数の羽根を円環状に配設し、前
記羽根の他端を連結する副板を備え、前記羽根は回転軸
に垂直な面で切った断面における羽根形状が、円弧状の
反り線に上下対称な厚み分布を付加した閉曲線で構成さ
れており、前記厚み分布は前縁から30%付近と70%
付近の2ヵ所に極大点を持つ多翼送風機の羽根車。
6. A blade having a plurality of blades arranged in an annular shape on a main plate and a sub-plate connecting the other ends of the blades, wherein the blades have a blade shape in a cross section cut along a plane perpendicular to a rotation axis. It is composed of a closed curve in which a vertically symmetric thickness distribution is added to an arc-shaped warp line, and the thickness distribution is around 30% from the leading edge and 70%
An impeller of a multi-blade blower with local maximums in two places.
【請求項7】主板上に複数の羽根を円環状に配設し、前
記羽根の他端を連結する副板を備え、前記羽根は回転軸
に垂直な面で切った断面における羽根形状が、円弧状の
反り線の上下に非対称な厚み分布を付加した閉曲線で構
成されており、凸面側の厚み分布は翼弦の後縁よりに極
大点を持ち、凹面側の厚み分布は翼弦の中央付近に極大
点を持つ多翼送風機の羽根車。
7. A plurality of blades are arranged in an annular shape on a main plate, and a sub plate connecting the other ends of the blades is provided. The blades have a blade shape in a cross section cut along a plane perpendicular to a rotation axis. It is composed of a closed curve with an asymmetrical thickness distribution added above and below the arcuate warp line.The thickness distribution on the convex side has a maximum point from the trailing edge of the chord, and the thickness distribution on the concave side is the center of the chord. An impeller of a multi-blade blower with a local maximum point.
【請求項8】主板上に複数の羽根を円環状に配設し、前
記羽根の他端を連結する副板を備え、前記羽根は回転軸
に垂直な面で切った断面における羽根形状が、円弧状の
反り線の上下に非対称な厚み分布を付加した閉曲線で構
成されており、凸面側の厚み分布は前縁から30%付近
と70%付近の2ヵ所に極大点を持ち、凹面側の厚み分
布は中央付近に極大点を1つ持つ多翼送風機の羽根車。
8. A plurality of blades are annularly arranged on a main plate, and a sub plate connecting the other ends of the blades is provided, wherein the blades have a blade shape in a cross section cut along a plane perpendicular to a rotation axis. It is composed of a closed curve with an asymmetrical thickness distribution added above and below the arcuate warp line. The thickness distribution on the convex side has local maximum points at around 30% and 70% from the leading edge, and the concave side on the concave side. The thickness distribution is for an impeller of a multi-blade blower with one maximum point near the center.
JP10181846A 1998-06-29 1998-06-29 Impeller Pending JP2000009094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10181846A JP2000009094A (en) 1998-06-29 1998-06-29 Impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10181846A JP2000009094A (en) 1998-06-29 1998-06-29 Impeller

Publications (1)

Publication Number Publication Date
JP2000009094A true JP2000009094A (en) 2000-01-11

Family

ID=16107851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10181846A Pending JP2000009094A (en) 1998-06-29 1998-06-29 Impeller

Country Status (1)

Country Link
JP (1) JP2000009094A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282490A (en) * 2004-03-30 2005-10-13 Mitsubishi Fuso Truck & Bus Corp Program and method for preparing aerofoil profile
WO2006030542A1 (en) * 2004-09-13 2006-03-23 Matsushita Electric Industrial Co., Ltd. Multiblade fan
JP2007071117A (en) * 2005-09-07 2007-03-22 Torishima Pump Mfg Co Ltd Impeller of axial-flow pump
JP2009138587A (en) * 2007-12-05 2009-06-25 Fujitsu General Ltd Turbofan
WO2013080241A1 (en) * 2011-11-28 2013-06-06 日立アプライアンス株式会社 Multi-blade fan and air conditioner provided with same
CN104196756A (en) * 2014-07-07 2014-12-10 珠海格力电器股份有限公司 Cross-flow fan blade and air conditioner
CN109162959A (en) * 2018-09-30 2019-01-08 广东顺威精密塑料股份有限公司 A kind of efficient pressure face wind wheel
TWI755333B (en) * 2021-06-01 2022-02-11 昆山廣興電子有限公司 Impeller and fan with the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282490A (en) * 2004-03-30 2005-10-13 Mitsubishi Fuso Truck & Bus Corp Program and method for preparing aerofoil profile
WO2006030542A1 (en) * 2004-09-13 2006-03-23 Matsushita Electric Industrial Co., Ltd. Multiblade fan
US7744350B2 (en) 2004-09-13 2010-06-29 Panasonic Corporation Multiblade fan
JP2007071117A (en) * 2005-09-07 2007-03-22 Torishima Pump Mfg Co Ltd Impeller of axial-flow pump
JP2009138587A (en) * 2007-12-05 2009-06-25 Fujitsu General Ltd Turbofan
WO2013080241A1 (en) * 2011-11-28 2013-06-06 日立アプライアンス株式会社 Multi-blade fan and air conditioner provided with same
JPWO2013080241A1 (en) * 2011-11-28 2015-04-27 日立アプライアンス株式会社 Multi-blade fan and air conditioner equipped with the same
CN104196756A (en) * 2014-07-07 2014-12-10 珠海格力电器股份有限公司 Cross-flow fan blade and air conditioner
CN109162959A (en) * 2018-09-30 2019-01-08 广东顺威精密塑料股份有限公司 A kind of efficient pressure face wind wheel
TWI755333B (en) * 2021-06-01 2022-02-11 昆山廣興電子有限公司 Impeller and fan with the same

Similar Documents

Publication Publication Date Title
US8784060B2 (en) Centrifugal fan
JP3204208B2 (en) Mixed-flow blower impeller
WO2004099625A1 (en) Centrifugal blower
CN111577655B (en) Blade and axial flow impeller using same
WO2015087909A1 (en) Centrifugal fan
JP2003148395A (en) Impeller of air-conditioning fan
JPH10141286A (en) Axial fan
JP3127850B2 (en) Impeller for propeller fan
JP2000009094A (en) Impeller
JP5473497B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP4712714B2 (en) Centrifugal multi-blade fan
JP3629702B2 (en) Blower
JP4115180B2 (en) Impeller and centrifugal compressor
JPH09195988A (en) Multiblade blower
JP2002364591A (en) Centrifugal fan and air-conditioner equipped therewith
JPH05202893A (en) Air blower
JP2001159396A (en) Centrifugal fan and air conditioner equipped with the same
JP2000009083A (en) Impeller
JP2000110783A (en) Centrifugal fan
JP2004011423A (en) Air flow control structure of air blowing section
JP2006125229A (en) Sirocco fan
JPH05296195A (en) Axial fan
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JPH0270997A (en) Centrifugal blower
CN219220823U (en) Impeller of centrifugal fan, centrifugal fan and range hood