JP2000008135A - High tensile strength steel and its production - Google Patents

High tensile strength steel and its production

Info

Publication number
JP2000008135A
JP2000008135A JP17289198A JP17289198A JP2000008135A JP 2000008135 A JP2000008135 A JP 2000008135A JP 17289198 A JP17289198 A JP 17289198A JP 17289198 A JP17289198 A JP 17289198A JP 2000008135 A JP2000008135 A JP 2000008135A
Authority
JP
Japan
Prior art keywords
steel
tensile strength
toughness
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17289198A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斎藤
Yukio Tomita
幸男 冨田
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17289198A priority Critical patent/JP2000008135A/en
Publication of JP2000008135A publication Critical patent/JP2000008135A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high tensile strength steel having >=70 kgf/mm2 tensile strength and high in productivity. SOLUTION: This steel has a compsn. contg., by weight, 0.20 to 0.30% C, 0.01 to 0.50% Si, 1.00 to 3.00% Mn, <=0.030% P, 0.001 to 0.020% S, 0.03 to 0.20% V, 0.005 to 0.017% Ti, 0.005 to 0.070% Al, 0.007 to 0.030% N, and the balance Fe with inevitable impurities and has <=70 kgf/mm2 tensile strength. If required, the steel furthermore contains one or more kinds among <=1.5% Cu, <=3.0% Ni, <=1.0% Cr and <=1.0% Mo in the range satisfying Cu+Ni+3×Cr+3 Mo<=3.0%. The steel moreover contains <=0.10% Nb and 0.0005 to 0.010% Mg if necessary as well. The steel is subjected to hot rolling preferably at 1150 to 1300 deg.C heating temp. and also at >=900 deg.C finishing temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張強さ70kgf/
mm2 (≒700MPa)以上を有し、生産性の高い高張
力鋼およびその製造方法に関する。
The present invention relates to a tensile strength of 70 kgf /
The present invention relates to a high-tensile steel having a high productivity of not less than mm 2 (≒ 700 MPa) and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、構造用鋼、特に橋梁、建築、タ
ンクなどの分野の各種用途の引張強さ70kgf/mm2 以上
の鋼(鋼板、型鋼等)においては、溶接性を損なわない
ために、C量を低減し各種合金元素を添加することで、
焼入れ性の向上を図り、同時に、焼入れ、焼戻し処理あ
るいは加工熱処理[直接焼入れ、焼戻し]により製造さ
れている。これらの製造法で製造された鋼は強度靱性、
溶接性に優れるが、通常の加熱圧延工程に熱処理を加え
る必要があるばかりでなく、場合によっては圧延条件の
厳格な制御を必要とするために、生産性が低い。
2. Description of the Related Art In general, structural steel, especially steel (steel plate, mold steel, etc.) having a tensile strength of 70 kgf / mm 2 or more for various applications in the fields of bridges, construction, tanks, etc., is required to maintain weldability. , By reducing the amount of C and adding various alloying elements,
The hardening property is improved, and at the same time, it is manufactured by quenching, tempering treatment or working heat treatment [direct quenching, tempering]. Steel produced by these production methods has strength toughness,
Although excellent in weldability, not only is it necessary to add heat treatment to a normal hot rolling process, but also, in some cases, strict control of rolling conditions is required, resulting in low productivity.

【0003】このような観点から、熱処理を伴わない非
調質での製造も研究されており、薄肉材ではあるが、例
えば、川鉄技報21(1989)1,19−25に記載
されているように、圧延仕上温度の極端に低い高圧下率
の圧延(強CR)により80kgf/mm2 鋼の製造がなされ
ている。ただし、この方法は、熱処理は不要であるが、
圧延効率が悪く生産性が低い欠点がある。
[0003] From such a viewpoint, production without heat treatment without heat treatment has been studied. Although it is a thin material, it is described in, for example, Kawatetsu Technical Report 21 (1989) 1, 19-25. As described above, 80 kgf / mm 2 steel is manufactured by rolling at a high reduction rate (strong CR) with an extremely low rolling finish temperature. However, this method does not require heat treatment,
There is a disadvantage that the rolling efficiency is poor and the productivity is low.

【0004】これに対し、高N−V添加によりVN(窒
化バナジウム)の析出硬化を活用し、圧延ままで高張力
鋼を製造する方法が検討され、たとえば、特開昭58−
84959号公報では、VNによる高張力鋼の製造方法
が開示されており、引張強さとしては60kgf/mm2 級の
鋼板が発明されている。さらに、特開平3−22981
7号公報ではVNによる80kgf/mm2 鋼の製造が記載さ
れているが、強度80kgf/mm2 を満足するために、直接
焼入、炊戻し法による製造が実施されている。しかしな
がら、この方法でも、大幅な生産性の向上は期待できな
い。
[0004] On the other hand, a method of producing high-strength steel as-rolled by utilizing precipitation hardening of VN (vanadium nitride) by adding high NV has been studied.
No. 84959 discloses a method for producing high-strength steel using VN, and a steel sheet having a tensile strength of 60 kgf / mm 2 class has been invented. Further, JP-A-3-22981
No. 7 describes the production of 80 kgf / mm 2 steel by VN, but in order to satisfy the strength of 80 kgf / mm 2 , production by direct quenching and reheating methods is carried out. However, even with this method, a significant improvement in productivity cannot be expected.

【0005】[0005]

【発明が解決しようとする課題】Vと同時にNを添加す
ることで鋼の強度靭性を改善する技術を従来から知られ
ている。例えば、特公昭39−2368号公報には、
「バナジウム少なくとも0.02%、窒素0.08%乃
至0.24%、炭素0.15%乃至0.50%、マンガ
ン0.40%乃至2.00%を含み、キルド鋼を生じる
には不十分な量の脱酸剤で処理して作ったことを特徴と
する高力セミキルド鋼」、また、特公昭48−1380
3号公報には、「C:0.08〜0.20%、Si:
0.2 0〜0.40%、Mn:1.0〜1.6%、C
r:0.05〜0.35、Mo:0.10〜0.60
%、V:0.005〜0.1%、N2:0.004〜
0.02%を含有し、最終熱処理として890℃〜10
00℃の加熱温度より1000℃〜4500℃/hの冷
却速度で焼ならしを行なうことを特徴とする高温用低合
金鋼」、さらには、特開昭61−130420号公報に
は、「C:0.05〜0.20%、Si:0.01〜
0.6%、Mn:1.10〜1.6%、V:0.03〜
0.2%、N:0.009〜0.02%を含有した鋼を
フランジ形状に鍛造した後、炊入れし、焼戻すことを特
徴とする強靭性フランジ材の製造法」等、が開示されて
いる。このいずれの発明においても、その特徴は、Vお
よびNの添加であり、これによりVNを多量に析出さ
せ、結晶粒の細粒化と強化を図っている。VNは溶解温
度が低いために通常の規準処理および焼入れ処理による
加熱時に溶解し、その後、空冷での冷却過程で析出、あ
るいは焼入れ後の焼戻し過程で析出し、鋼の母材を強化
させる。
A technique for improving the strength toughness of steel by adding N at the same time as V has been known. For example, in Japanese Patent Publication No. 39-2368,
"Contains at least 0.02% vanadium, 0.08% to 0.24% nitrogen, 0.15% to 0.50% carbon, 0.40% to 2.00% manganese and is not suitable for producing killed steel. A high-strength semi-killed steel characterized by being treated with a sufficient amount of a deoxidizing agent ”, and JP-B-48-1380.
No. 3 discloses "C: 0.08 to 0.20%, Si:
0.20 to 0.40%, Mn: 1.0 to 1.6%, C
r: 0.05 to 0.35, Mo: 0.10 to 0.60
%, V: 0.005 to 0.1%, N2: 0.004 to
0.02%, and 890 ° C.-10
A low-alloy steel for high temperature characterized by normalizing at a cooling rate of 1000 ° C. to 4500 ° C./h from a heating temperature of 00 ° C. ” : 0.05 to 0.20%, Si: 0.01 to
0.6%, Mn: 1.10 to 1.6%, V: 0.03 to
Forging a steel containing 0.2% and N: 0.009 to 0.02% into a flange shape, then cooking and tempering the steel, and the like ". Have been. In any of these inventions, the feature is the addition of V and N, thereby precipitating a large amount of VN, and achieving the refinement and strengthening of crystal grains. Since VN has a low melting temperature, it melts during heating by ordinary standard processing and quenching, and then precipitates in a cooling process by air cooling or precipitates in a tempering process after quenching to strengthen the steel base material.

【0006】しかしながら、上記した従来技術はVNの
有効利用の観点から、窒化物を形成してしまうTi添加
をしないことが前提になっており、母材の機械的性質を
改善せしめるが、一層の結晶粒の細粒化を図るためには
Tiを添加していないために靱性の向上が問題となる。
例外として、特開昭56−127750号公報には、
「C:0.12〜0.25%、Mn:0.5〜2.9
%、V:0.05〜0.20%、Cu:0.05〜0.
4%、Ni:0.1〜0.5%、Cr:0.05〜0.
4%、Ti:0.005〜0.03%、N:0.01〜
0.03%に、Ca:0.0005〜0.0070%、
Mg:0.0005〜0.0070%の少なくとも1種
または2種を含有し、歪み時効脆化の少ない構造用高張
力鋼」として、V添加と同時にTiを添加する旨の記載
がある。しかしながら、この場合のTi添加は本文中に
記載されているように、TiCの析出強化による強度の
向上を目的として添加されるものであって、TiNによ
る細粒化に必要なTi量より多量に添加する必要があ
り、また、本発明と異なる用途である歪み時効脆化防止
のため、CaまたはMgを1種又は2種以上添加するこ
とを必須としている。
However, from the viewpoint of effective use of VN, the above-mentioned prior art is premised on not adding Ti, which forms a nitride, and improves the mechanical properties of the base material. Since Ti is not added to reduce the crystal grain size, improvement in toughness poses a problem.
As an exception, JP-A-56-127750 discloses that
"C: 0.12-0.25%, Mn: 0.5-2.9.
%, V: 0.05-0.20%, Cu: 0.05-0.
4%, Ni: 0.1-0.5%, Cr: 0.05-0.
4%, Ti: 0.005 to 0.03%, N: 0.01 to
0.03%, Ca: 0.0005 to 0.0070%,
"Structural high tensile strength steel containing at least one or two kinds of Mg: 0.0005 to 0.0070% and having little strain aging embrittlement" describes that Ti is added simultaneously with the addition of V. However, as described in the text, the addition of Ti in this case is added for the purpose of improving the strength due to the precipitation strengthening of TiC, and is added in a larger amount than the amount of Ti required for grain refinement by TiN. It is necessary to add one or more kinds of Ca or Mg in order to prevent strain aging embrittlement which is a use different from the present invention.

【0007】このように従来は、高レベルの引張強さを
有し、生産性の高い高張力鋼は得られていなかった。そ
こで本発明は、引張強さ70kgf/mm2 以上を有し、生産
性の高い高張力鋼およびその製造方法を提供することを
目的とする。
As described above, conventionally, a high-tensile steel having a high level of tensile strength and high productivity has not been obtained. Therefore, an object of the present invention is to provide a high-tensile steel having a tensile strength of 70 kgf / mm 2 or more and having high productivity and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、圧延まま
で70kgf/mm2 以上の引張強さを有しさらに靱性も低下
しない鋼を製造するために、各種実験を行い、最終的に
下記の知見を見いだすに至った。 Cが0.2%以下の場合、高強度を付与するため
に、各種合金元素を添加すると、粗粒フェライトとベイ
ナイトさらに一部マルテンサイト含む混合組織となり、
靱性が低下する。
Means for Solving the Problems The present inventors conducted various experiments to produce a steel having a tensile strength of 70 kgf / mm 2 or more as rolled and not reducing the toughness. The following findings have been found. When C is 0.2% or less, when various alloying elements are added to impart high strength, a mixed structure containing coarse ferrite and bainite and further partially martensite is obtained,
The toughness decreases.

【0009】 高強度と高靱性とを同時に確保するに
はフェライト分率を向上させることが有効であり、フェ
ライト分率の向上には、C量を0.2%以上添加するこ
とが有効でかつCu,Ni,Cr,Moなどの焼入れ性
の高い合金元素の添加量を一定量以下にすることが有効
である。 靱性の向上を図るためにはオーステナイト状態での
結晶粒の細粒化を図ることが重要であり、TiNの鋼中
への微細分散が有効である。しかしながら、この場合T
iによってNが消費されるため、多量のVNを得るため
に見合ったNを確保するため、Nをさらに大幅に添加す
ることが必要である。
It is effective to increase the ferrite fraction to simultaneously secure high strength and high toughness, and to increase the ferrite fraction, it is effective to add a C amount of 0.2% or more. It is effective to reduce the addition amount of alloying elements having high hardenability such as Cu, Ni, Cr, and Mo to a certain amount or less. In order to improve the toughness, it is important to reduce the crystal grains in the austenite state, and fine dispersion of TiN in steel is effective. However, in this case T
Since N is consumed by i, it is necessary to further add N in order to secure a suitable N for obtaining a large amount of VN.

【0010】本発明は上記の知見に基づき構成したもの
であって、その要旨は下記のとおりである。 (1)重量%にて、C :0.20〜0.30%、S
i:0.01〜0.50%、Mn:1.00〜3.00
%、P :0.030%以下、S :0.001〜0.
020%、V :0.03〜0.20%、Ti:0.0
05〜0.017%、Al:0.005〜0.070
%、N :0.007〜0.030%、を含有し、残部
がFeおよび不可避的不純物から成り、引張強さ70kg
f/mm2 以上を有することを特徴とする高張力鋼。
The present invention has been made based on the above findings, and the gist thereof is as follows. (1) By weight%, C: 0.20 to 0.30%, S
i: 0.01 to 0.50%, Mn: 1.00 to 3.00
%, P: 0.030% or less, S: 0.001-0.
020%, V: 0.03 to 0.20%, Ti: 0.0
05-0.017%, Al: 0.005-0.070
%, N: 0.007 to 0.030%, the balance consisting of Fe and unavoidable impurities, and a tensile strength of 70 kg
High tensile strength steel having f / mm 2 or more.

【0011】(2)上記(1)記載の化学成分に加え、
Cu:1.5%以下、Ni:3.0%以下、Cr:1.
0%以下、Mo:1.0%以下、の1種または2種以上
を、下記式、 Cu+Ni+3×Cr+3Mo≦3.0(%) を満たす範囲で更に含有することを特徴とする高張力
鋼。
(2) In addition to the chemical components described in the above (1),
Cu: 1.5% or less, Ni: 3.0% or less, Cr: 1.
A high-strength steel further comprising one or more of 0% or less and Mo: 1.0% or less in a range satisfying the following formula: Cu + Ni + 3 × Cr + 3Mo ≦ 3.0 (%).

【0012】(3)上記(1)または(2)記載の化学
成分に加え、Nb:0.10%以下、を更に含有するこ
とを特徴とする高張力鋼。 (4)上記(1)から(3)までのいずれかに記載の化
学成分に加え、Mg:0.0005〜0.010%、を
更に含有することを特徴とする高張力鋼。
(3) A high-tensile steel characterized by further containing Nb: 0.10% or less in addition to the chemical components described in the above (1) or (2). (4) A high-strength steel characterized by further containing 0.0005 to 0.010% of Mg in addition to the chemical components described in any of (1) to (3) above.

【0013】(5)上記(1)から(4)までのいずれ
かに記載の化学組成を有する鋼を、加熱温度1150〜
1300℃かつ仕上げ温度900℃以上で熱間圧延する
ことを特徴とする高張力鋼の製造方法。
(5) The steel having the chemical composition described in any of (1) to (4) above is heated to a heating temperature of 1150 to 1150.
A method for producing high-strength steel, comprising hot rolling at 1300 ° C. and a finishing temperature of 900 ° C. or higher.

【0014】[0014]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。まず、本発明において鋼成分を上記のように限定し
た理由を述べる。 C:強度確保に必要な元素であり、0.20%以上の添
加が必要であるが、0.30%を超えると、靭性が低下
するため、含有量の範囲を0.20〜0.30%とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. First, the reason for limiting the steel components in the present invention as described above will be described. C: An element necessary for securing the strength, it is necessary to add 0.20% or more. However, if it exceeds 0.30%, the toughness is reduced, so that the content range is 0.20 to 0.30. %.

【0015】Si:製鋼上脱酸元素として必要な元素で
あり、鋼中に0.01%以上の量で含有されるが、0.
50%を超えると母材、HAZ靭性を低下させる。した
がって、その範囲を0.01〜0.50%とする。 Mn:強度、靭性の確保に必要な元素である.しかしな
がら、3.0%を超えると靭性が著しく低下し、逆に、
1.0%未満では母材の強度確保が困難になるためにそ
の範囲を1.00〜3.00%に制限する。 P:粒界
脆化元素であり出来るだけ低減するのが望ましいが、
0.030%以下では脆化の程度が小さいためその上限
を0.030%とする。
Si: an element necessary as a deoxidizing element in steel making, contained in steel in an amount of 0.01% or more.
If it exceeds 50%, the base material and the HAZ toughness decrease. Therefore, the range is set to 0.01 to 0.50%. Mn: an element necessary for securing strength and toughness. However, if it exceeds 3.0%, the toughness is significantly reduced, and conversely,
If it is less than 1.0%, it becomes difficult to secure the strength of the base material, so the range is limited to 1.00 to 3.00%. P: It is a grain boundary embrittlement element and it is desirable to reduce it as much as possible.
Since the degree of embrittlement is small at 0.030% or less, the upper limit is set to 0.030%.

【0016】S:本発明において、VNの析出核として
働くMnSの生成に欠かせない元素であり、0.001
%以上の添加を必要とするが、多量な添加はMnSの粗
大化を招き靭性の低下を招くためその上限を0.020
%とする. V:本発明において中心的な役割を果たす元素であり、
前述したように、析出によって大幅な強度の上昇をもた
らすことかできるため、0.03%以上の添加が必要で
あるが、多量の添加では炭化物の析出を招き勒性が低下
するために0.20%以下に制限する。
S: In the present invention, S is an element indispensable for the production of MnS acting as a precipitation nucleus of VN.
% Or more is required, but a large amount of MnS causes coarsening of MnS and a decrease in toughness.
%. V: an element that plays a central role in the present invention,
As described above, 0.03% or more must be added because precipitation can significantly increase the strength. However, if added in a large amount, carbides are precipitated and brittleness is reduced. Limit to 20% or less.

【0017】Ti:TiNによる結晶粒の細粒化に必要
不可欠な元素であり、0.005%以上の添加が必要で
あるが、過剰の添加は炭化物が生成し靭性の低下を招く
恐れがあるために、その上限を0.017%に制限す
る。 Al:脱酸剤として必要な元素であり、0.005%以
上の添加が必要であるが、過剰に添加すると、AlNが
多量に生成し、VNの生成に有効なNが低下する恐れが
あるためにその上限を0.070%とする。
Ti: An element indispensable for refining crystal grains by TiN. Addition of 0.005% or more is necessary. However, excessive addition may cause carbides to be formed, leading to a decrease in toughness. Therefore, the upper limit is limited to 0.017%. Al: an element necessary as a deoxidizing agent, it needs to be added in an amount of 0.005% or more. However, if added excessively, a large amount of AlN is generated, and there is a possibility that N effective for generating VN may be reduced. Therefore, the upper limit is set to 0.070%.

【0018】N:TiNおよびVNの生成に必要であ
り、0.007%以上の添加が必要であるが、過剰の添
加は靭性の低下を招くために、その上限を0.030%
とする。 本発明鋼は上記を基本組成とし、強度物性上の必要に応
じて、下記4種の成分の一種または二種以上を更に含有
することができる。
N: Necessary for the production of TiN and VN, 0.007% or more must be added. However, excessive addition causes a decrease in toughness.
And The steel of the present invention has the above basic composition, and can further contain one or more of the following four components as necessary in terms of strength properties.

【0019】Cu:靭性および強度を改善する元素とし
て有効であり、その効果は0.2%以上の添加で有効で
あるが、1.5%を超える過剰の添加ではかえって靭性
の低下をきたすためにその上限を1.5%とする。 Ni:靭性の向上に有効な元素であり、0.2%以上の
添加が必要であるが、3.0%を超える添加ではその効
果が飽和してしまうため3.0%を上限とする。
Cu: Effective as an element for improving toughness and strength, its effect is effective when added at 0.2% or more, but excessively over 1.5% causes the toughness to decrease. The upper limit is 1.5%. Ni: an element effective for improving toughness, it is necessary to add 0.2% or more. However, if the addition exceeds 3.0%, the effect is saturated, so the upper limit is 3.0%.

【0020】CrおよびMo:強度上昇のため、それぞ
れ、0.05%以上の添加が必要であるが、過剰な添加
は靭性を阻害するために、その範囲をいずれも1.0%
までに限定する。これらの元素を添加する場合、それぞ
れの添加量が、 Cu+Ni+3・Cr+3・Mo≦3.0(%) なる式の範囲を満たすことが必要である。この理由は、
先に述べたように、圧延ままでのミクロ組織をフェライ
ト主体のものにするための制約条件であり、この値が
3.0を超えるとベイナイトやマルテンサイト組織の生
成が著しくなり靱性の確保が困難になる。
Cr and Mo: For increasing the strength, it is necessary to add 0.05% or more, respectively. However, since excessive addition impairs the toughness, the range of each is 1.0%.
Limited to When these elements are added, it is necessary that the respective addition amounts satisfy the range of the following formula: Cu + Ni + 3 · Cr + 3 · Mo ≦ 3.0 (%). The reason for this is
As described above, this is a constraint for making the as-rolled microstructure mainly composed of ferrite. If this value exceeds 3.0, the formation of bainite and martensite structures becomes remarkable, and the toughness is secured. It becomes difficult.

【0021】本発明鋼は、上記基本組成に加え、あるい
は上記基本組成および上記4成分の一種または二種以上
の添加に加え、下記範囲でNbを含有することができ
る。 Nb:靭性および強度を改善する元素として有効であ
り、その効果は0.005%以上の添加で有効である
が、0.1%を超える過剰の添加ではかえって靭性の低
下をきたすためにその上限を0.1%とする。
The steel of the present invention may contain Nb in the following range in addition to the above basic composition, or in addition to one or more of the above basic composition and the above four components. Nb: Effective as an element for improving toughness and strength, its effect is effective when added in an amount of 0.005% or more, but when added in excess of 0.1%, on the contrary, the toughness is reduced. Is set to 0.1%.

【0022】本発明鋼は、上記基本組成に加え、あるい
は上記基本組成および上記4成分の一種または二種の添
加以上に加え、あるいは上記基本組成および上記4成分
の一種または二種以上および上記Nbに加え、更に下記
範囲でMgを含有することができる。 Mg:TiNの微細分散を通じて、結晶粒の微細化に効
果があり、その効果は0.0005%以上の添加で得ら
れるが、0.010%を超えて添加すると靱性が低下す
る。
The steel of the present invention may contain, in addition to the above basic composition, one or more of the above basic composition and the above four components, or one or more of the above basic composition and the above four components and the above Nb. In addition to the above, Mg can be further contained in the following range. Through the fine dispersion of Mg: TiN, there is an effect on the refinement of the crystal grains. The effect can be obtained by adding 0.0005% or more. However, when adding more than 0.010%, the toughness is reduced.

【0023】本発明鋼の製造にあたっては、上記のうち
のいずれかの化学組成を有する鋼を転炉、電気炉等で溶
製し、連続鋳造、あるいは造挽分塊法によりスラブある
いがビレットなどの鋼片を鋳造する。その後、鋼片を加
熱し、熱間圧延を施し所定の厚みの鋼板および型鋼など
とする。この際、生産性を低下させない製造方法とし
て、通常加熱、通常圧延を行うが、加熱温度は加熱効率
の一番よい1200℃を以上が好ましいが、1150℃
未満では加熱効率が悪く、1300℃を超えると燃料使
用量が増加するため、1150〜1300℃に限定す
る。圧延仕上温度は上記加熱温度に加熱後、圧延パス間
の温度待ちのない圧延効率のよい方法では好ましくは9
00℃以上となるように圧延すべきであるので900℃
を下限とする。
In producing the steel of the present invention, a steel having any one of the above chemical compositions is melted in a converter, an electric furnace, or the like, and is subjected to continuous casting or a slab or billet method by a grinding method. Casting a billet such as. Thereafter, the slab is heated and subjected to hot rolling to obtain a steel plate and a mold steel having a predetermined thickness. At this time, as a manufacturing method that does not reduce the productivity, normal heating and normal rolling are performed, and the heating temperature is preferably 1200 ° C. or more, which is the best in heating efficiency, but 1150 ° C.
If it is less than 1300 ° C., the heating efficiency is poor, and if it exceeds 1300 ° C., the amount of fuel used increases, so it is limited to 1150 to 1300 ° C. The rolling finish temperature is preferably 9 after heating to the above-mentioned heating temperature and in a method of high rolling efficiency without waiting for the temperature between rolling passes.
900 ° C because it should be rolled to be over 00 ° C
Is the lower limit.

【0024】厚板加熱以降の製造条件については、現在
公知になっている技術の種々の技術を適用しても鋼板の
性質にはなんら影響を及ぼさない。以下、実施例により
本発明を更に詳細に説明する。
Regarding the manufacturing conditions after the heating of the thick plate, even if various techniques of the currently known techniques are applied, the properties of the steel sheet are not affected at all. Hereinafter, the present invention will be described in more detail with reference to examples.

【0025】[0025]

【実施例】表1に示す組成を有する鋼片を第2表に示す
温度加熱後、所定の板厚まで熱間圧延され圧延ままで厚
板あるいは型鋼として製造されたものについて、厚板の
場合には板厚中央部から、型鋼の場合はフランジ部中央
部から試験片を採取し、引張試験により引張強さを、さ
らにシャルピー試験により0℃での吸収エネルギーを求
めた。その結果を表2に示す。
EXAMPLE A steel slab having the composition shown in Table 1 was heated as shown in Table 2 and then hot-rolled to a predetermined thickness and rolled to produce a thick plate or die steel. Specimens were sampled from the center of the sheet thickness and from the center of the flange in the case of a mold steel, and the tensile strength was determined by a tensile test, and the absorbed energy at 0 ° C. was determined by a Charpy test. Table 2 shows the results.

【0026】表中、本発明鋼A〜Hはすべて本発明の範
囲にある鋼で、700MPa(70kgf/mm2 )以上の引
張強さを有すると同時に、80J以上の優れた靱性を有
している。それに対し、比較鋼I〜Rは組成が本発明の
範囲から逸脱しているものであり、引張強さが700M
Pa(70kgf/mm2 )未満であるかまたは靱性が60J
以下と低い。
In the table, steels A to H of the present invention are all steels within the scope of the present invention and have a tensile strength of not less than 700 MPa (70 kgf / mm 2 ) and an excellent toughness of not less than 80 J. I have. On the other hand, the comparative steels I to R have compositions deviating from the scope of the present invention, and have a tensile strength of 700M.
Pa (70 kgf / mm 2 ) or toughness of 60 J
Below and low.

【0027】すなわち、比較鋼I,JはC量が本発明範
囲から逸脱しており、比較鋼Iは0.18%と低くはず
れており、逆に比較鋼Jは0.32%と高くはずれてい
る。この場合、比較鋼Iは引張強さが低く、700MP
aを満足しておらず、比較鋼Jは靱性が極めて低い。比
較鋼KはSiが0.88%と本発明範囲より高く逸脱し
ているもので、靱性が低下している。比較鋼L、M、N
はそれぞれMn、V、Tiが本発明範囲から低くはずれ
ているもので、比較鋼Lは引張強さが低く、比較鋼M,
Nは靱性が低い。
That is, in Comparative Steels I and J, the C content deviated from the range of the present invention, Comparative Steel I was deviated as low as 0.18%, and Comparative Steel J was deviated as high as 0.32%. ing. In this case, the comparative steel I has a low tensile strength and 700 MPa
a is not satisfied, and the comparative steel J has extremely low toughness. Comparative steel K has a Si content of 0.88%, which is higher than the range of the present invention, and has a reduced toughness. Comparative steel L, M, N
Are those in which Mn, V, and Ti deviate from the range of the present invention, respectively. Comparative steel L has a low tensile strength, and comparative steel M,
N has low toughness.

【0028】比較鋼OはNbが0.108%と本発明範
囲を超えて多量に添加されており、著しい靱性の低下が
認められる。比較鋼P,QはN量が本発明範囲を逸脱し
ている例であり、比較鋼Pは低く、比較鋼Qは高くはず
れている。そのために、比較鋼Pでは引張強さと靱性が
低下しており、比較鋼Qでは靱性が低い値を示してい
る。最後に比較鋼RはCu,Ni、Cr、Moの添加量
の合計が、Cu+Ni+3xCr+3Mo≦3.0の式
を満足していない例であり、この場合靱性が極めて低く
なっている。
The comparative steel O contains Nb in a large amount of 0.108%, which is beyond the range of the present invention, and a remarkable decrease in toughness is observed. Comparative steels P and Q are examples in which the amount of N is out of the range of the present invention. Comparative steel P is low, and comparative steel Q is high. Therefore, the tensile strength and toughness of the comparative steel P are reduced, and the toughness of the comparative steel Q is low. Finally, Comparative Steel R is an example in which the total amount of Cu, Ni, Cr, and Mo does not satisfy the expression Cu + Ni + 3 × Cr + 3Mo ≦ 3.0, and in this case, the toughness is extremely low.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】以上説明したように、本発明範囲の化学
組成を有する鋼を何ら温度規制のない圧延ままで製造す
ることで、従来の圧延時の温度規制による圧延効率の低
下、熱処理による生産性の低下をきたした製造方法に比
べ、大幅なコストダウンを実現できる各種用途向けの高
い生産性を有する引張強さ70kgf/mm2 以上の鋼が提供
される。
As described above, by producing a steel having the chemical composition within the range of the present invention as it is without any temperature regulation, the rolling efficiency is reduced by the conventional temperature regulation during rolling, and the production by heat treatment is reduced. A steel with a tensile strength of 70 kgf / mm 2 or more, which has high productivity for various applications and can realize a significant cost reduction as compared with a production method having a reduced resistance, is provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 俊永 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA00 AA01 AA05 AA11 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA00 BA01 CA02 CA03 CC04  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshinaga Hasegawa 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 4K032 AA00 AA01 AA05 AA11 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA00 BA01 CA02 CA03 CC04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C :0.20〜0.30%、 Si:0.01〜0.50%、 Mn:1.00〜3.00%、 P :0.030%以下、 S :0.001〜0.020%、 V :0.03〜0.20%、 Ti:0.005〜0.017%、 Al:0.005〜0.070%、 N :0.007〜0.030%、 を含有し、残部がFeおよび不可避的不純物から成り、
引張強さ70kgf/mm2 以上を有することを特徴とする高
張力鋼。
1. In weight%, C: 0.20 to 0.30%, Si: 0.01 to 0.50%, Mn: 1.00 to 3.00%, P: 0.030% or less , S: 0.001 to 0.020%, V: 0.03 to 0.20%, Ti: 0.005 to 0.017%, Al: 0.005 to 0.070%, N: 0.007 ~ 0.030%, with the balance being Fe and unavoidable impurities,
A high-strength steel having a tensile strength of 70 kgf / mm 2 or more.
【請求項2】 請求項1記載の化学成分に加え、 Cu:1.5%以下、 Ni:3.0%以下、 Cr:1.0%以下、 Mo:1.0%以下、 の1種または2種以上を、下記式、 Cu+Ni+3×Cr+3Mo≦3.0(%) を満たす範囲で更に含有することを特徴とする高張力
鋼。
2. In addition to the chemical components described in claim 1, one of the following: Cu: 1.5% or less, Ni: 3.0% or less, Cr: 1.0% or less, Mo: 1.0% or less Alternatively, a high-strength steel further comprising two or more kinds in a range satisfying the following formula: Cu + Ni + 3 × Cr + 3Mo ≦ 3.0 (%).
【請求項3】 請求項1または2記載の化学成分に加
え、 Nb:0.10%以下、を更に含有することを特徴とす
る高張力鋼。
3. A high-strength steel further comprising Nb: 0.10% or less in addition to the chemical components according to claim 1.
【請求項4】 請求項1から3までのいずれか1項に記
載の化学成分に加え、 Mg:0.0005〜0.010%、を更に含有するこ
とを特徴とする高張力鋼。
4. A high-strength steel, further comprising Mg: 0.0005 to 0.010%, in addition to the chemical composition according to claim 1.
【請求項5】 請求項1から4までのいずれか1項に記
載の化学組成を有する鋼を、加熱温度1150〜130
0℃かつ仕上げ温度900℃以上で熱間圧延することを
特徴とする高張力鋼の製造方法。
5. A steel having the chemical composition according to claim 1, wherein the steel is heated to a heating temperature of 1150 to 130.
A method for producing high-strength steel, comprising hot rolling at 0 ° C. and a finishing temperature of 900 ° C. or higher.
JP17289198A 1998-06-19 1998-06-19 High tensile strength steel and its production Withdrawn JP2000008135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17289198A JP2000008135A (en) 1998-06-19 1998-06-19 High tensile strength steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17289198A JP2000008135A (en) 1998-06-19 1998-06-19 High tensile strength steel and its production

Publications (1)

Publication Number Publication Date
JP2000008135A true JP2000008135A (en) 2000-01-11

Family

ID=15950253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17289198A Withdrawn JP2000008135A (en) 1998-06-19 1998-06-19 High tensile strength steel and its production

Country Status (1)

Country Link
JP (1) JP2000008135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125820A1 (en) 2008-04-09 2009-10-15 新日本製鐵株式会社 PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
CN102796970A (en) * 2012-09-05 2012-11-28 钢铁研究总院 Anti-seismic, weather-proof and high-strength YS700MPa hot-rolled reinforced bar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125820A1 (en) 2008-04-09 2009-10-15 新日本製鐵株式会社 PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
US7918948B2 (en) 2008-04-09 2011-04-05 Nippon Steel Corporation Method of production of 780 MPa class high strength steel plate excellent in low temperature toughness
KR101031945B1 (en) 2008-04-09 2011-04-29 신닛뽄세이테쯔 카부시키카이샤 Manufacturing method of 780MPa class high tensile strength steel sheet excellent in low temperature toughness
CN102796970A (en) * 2012-09-05 2012-11-28 钢铁研究总院 Anti-seismic, weather-proof and high-strength YS700MPa hot-rolled reinforced bar

Similar Documents

Publication Publication Date Title
CN111979489A (en) 780 MPa-grade high-plasticity cold-rolled DH steel and preparation method thereof
CN116904873A (en) Hot rolled steel sheet and method for producing same
JP2001152248A (en) Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness
CN114525452A (en) Hot-galvanized low-alloy high-strength steel with yield strength of 700Mpa and preparation method thereof
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
KR20220073762A (en) Composite steel with high hole expandability and manufacturing method therefor
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2002275576A (en) Low yield ratio steel for low temperature use and production method therefor
JP2000008135A (en) High tensile strength steel and its production
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JPH06145808A (en) Manufacture of composite structural cold rolled steel sheet excellent in impact resistance
JPH04325625A (en) Production of non-ni-added-type high tensile strength steel with high toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906