JP2000005316A - Nitrogen monoxide supplying device - Google Patents

Nitrogen monoxide supplying device

Info

Publication number
JP2000005316A
JP2000005316A JP10200811A JP20081198A JP2000005316A JP 2000005316 A JP2000005316 A JP 2000005316A JP 10200811 A JP10200811 A JP 10200811A JP 20081198 A JP20081198 A JP 20081198A JP 2000005316 A JP2000005316 A JP 2000005316A
Authority
JP
Japan
Prior art keywords
gas
nitric oxide
supply device
conduit
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10200811A
Other languages
Japanese (ja)
Inventor
Toshiya Fujisato
俊哉 藤里
Takayuki Tsuji
隆之 辻
Akito Shimouchi
章人 下内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP10200811A priority Critical patent/JP2000005316A/en
Publication of JP2000005316A publication Critical patent/JP2000005316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device selectively lowering hemal resistance (blood pressure) at a specific part with minimum influence to the hemal resistance at the other parts. SOLUTION: This supplying device 1 is a conductor with a gas path 2 allowing gas to flow through in its lumen as a communicating means for supplying nitrogen monoxide or gas containing nitrogen monoxide into a living body from the outside of the living body, and a gas supplying part 3 is disposed at a part of the conductor. Then, the part 3 an air-permeable uniform film preventing the transmission of bubbles is disposed at a gas transmitting cross section communicating with the external surface of the conductor via the path 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、体内に局所的に一
酸化窒素または一酸化窒素含有ガスを導入して血管平滑
筋細胞を弛緩させ、特定部の血管抵抗の改善を行う一酸
化窒素供給システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supply of nitric oxide for locally introducing nitric oxide or a gas containing nitric oxide into a body to relax vascular smooth muscle cells and to improve vascular resistance in a specific portion. About the system.

【0002】[0002]

【従来の技術】何らかの原因のため、肺動脈内腔が狭ま
って肺に流入する血液の流れが悪くなると、血液の酸素
付加が十分に行えないため、低酸素血症を引き起こした
り、心臓右心に血液が滞留するために血圧が上昇し、肺
高血圧症を引き起こす恐れがある。また、肺高血圧症の
ために心臓肥大や循環不全が誘引される。そのため、特
に開心術の術前・術後における多く出現する肺高血圧症
の治療のため、最近では一酸化窒素吸入療法が注目を集
めている。一酸化窒素は血管平滑筋を弛緩させる作用を
有するため、患者の気道内から一酸化窒素を吸入して肺
動脈を弛緩させることによって体血圧を下げることな
く、肺血管抵抗を下げて肺高血圧症を改善するものであ
る。
2. Description of the Related Art If for some reason the lumen of the pulmonary artery is narrowed and the flow of blood flowing into the lungs is impaired, sufficient oxygenation of the blood cannot be performed, resulting in hypoxemia or heart failure. Blood retention causes blood pressure to rise, which can cause pulmonary hypertension. In addition, pulmonary hypertension leads to cardiac hypertrophy and circulatory failure. Therefore, nitric oxide inhalation therapy has recently attracted attention for the treatment of pulmonary hypertension, which frequently occurs before and after open heart surgery. Since nitric oxide has the action of relaxing vascular smooth muscle, inhaling nitric oxide from the patient's airway to relax the pulmonary arteries without lowering body blood pressure, lowering pulmonary vascular resistance and reducing pulmonary hypertension. It will improve.

【0003】しかし、一酸化窒素は体内でヘモグロビン
と急速に結合し不活性化されるため、目的の血管の抵抗
を減少させようとすると、少なからぬ量の一酸化窒素を
吸入しなければならない。ところが、この一酸化窒素は
高い反応性を有しており、また酸素とともに人体に供給
するため、有害な窒素酸化物が生成される恐れがある。
さらに、一酸化窒素吸入は目的とする血管以外の血流抵
抗も減少させることによって目的外の血管の流量が増加
し、相対的に目的の血管への流量が低下するという問題
もあった。例えば、分岐した血管の一方の流れが悪くな
っている場合、その不良の血管の流量を増加させたいた
め、血管抵抗を下げようと一酸化窒素を吸入すると、分
岐のもう一方の正常血管の抵抗を低下させ、その血管の
血流量を増加することになる。その結果、分岐部に流入
する血液量が一定であれば、流れの不良の血管側に流れ
る血液量の比率が低下して、逆効果になる恐れもあっ
た。
[0003] However, since nitric oxide is rapidly bound to hemoglobin in the body and inactivated, in order to reduce the resistance of a target blood vessel, a considerable amount of nitric oxide must be inhaled. However, this nitric oxide has high reactivity and is supplied to the human body together with oxygen, so that harmful nitrogen oxides may be generated.
Furthermore, the inhalation of nitric oxide also has a problem that the flow rate of blood vessels other than the target blood vessel is increased by reducing the blood flow resistance of the blood vessel other than the target blood vessel, and the flow rate to the target blood vessel is relatively decreased. For example, if the flow of one of the bifurcated blood vessels is poor, we want to increase the flow rate of the defective blood vessel. And increase blood flow in the blood vessel. As a result, if the amount of blood flowing into the branch portion is constant, the ratio of the amount of blood flowing to the side of the blood vessel having a poor flow may be reduced, which may have an adverse effect.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
のような従来技術の問題点を改善することにある。即
ち、まず第1に他部位の血管抵抗(血圧)にはなるべく
影響を与えずに、特定の部位の血管抵抗を選択的に下げ
ることである。第2に効果の有効な、即ち特定部位の血
管抵抗を低下できる範囲で、生体への一酸化窒素または
一酸化窒素含有ガス(以下、これらを含めて一酸化窒
素、またはNOともいう)の投与量をできるだけ減少さ
せて、窒素酸化物による生体への有害な影響を抑制する
ことにある。第3に、目的の部位に対する血管抵抗の低
下等のNO投与による効果を迅速に、また確実にするこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned problems of the prior art. That is, first, the vascular resistance at a specific site is selectively reduced without affecting the vascular resistance (blood pressure) of another site as much as possible. Second, administration of nitric oxide or a gas containing nitric oxide (hereinafter, also referred to as nitric oxide or NO, including these) to the living body within a range where the effect is effective, that is, the blood vessel resistance at a specific site can be reduced. The aim is to reduce the amount as much as possible to suppress the harmful effects of nitrogen oxides on living organisms. Third, the effect of NO administration, such as a decrease in vascular resistance to a target site, is to be achieved quickly and reliably.

【0005】[0005]

【課題を解決するための手段】本発明では、上記の課題
を解決するために鋭意研究した結果、以下の構成からな
る一酸化窒素供給装置を想到するに至った。即ち、生体
外部から生体内に一酸化窒素または一酸化窒素含有ガス
を供給するための連絡手段として、内腔に気体の流通で
きる気体通路を有する導管であって、少なくとも該導管
の一部には気体供給部が設けられ、該気体供給部におい
て、気体通路から導管の外部表面に通じるガス透過断面
に気泡の透過を防止する気体透過性の均質膜を設けたこ
とを特徴とする一酸化窒素供給装置である。図1は、目
的とする血管内に気体連絡手段である導管を挿入し、特
定部位に選択的にNOや窒素を供給する状態を概念的に
描いたものである。
According to the present invention, as a result of intensive studies for solving the above-mentioned problems, the present inventors have come up with a nitric oxide supply device having the following structure. That is, as a communication means for supplying nitric oxide or a nitric oxide-containing gas into the living body from outside the living body, a conduit having a gas passage through which gas can flow in the lumen, at least a part of the conduit. A gas supply section provided in the gas supply section, wherein a gas permeable uniform membrane for preventing gas bubbles from being transmitted is provided on a gas permeable cross section communicating from the gas passage to the outer surface of the conduit; Device. FIG. 1 conceptually illustrates a state in which a conduit serving as a gas communication means is inserted into a target blood vessel and NO and nitrogen are selectively supplied to a specific site.

【0006】[0006]

【発明の実施の形態】次に、本発明の一酸化窒素供給装
置の様々な実施態様について説明する。前記のように、
一酸化窒素供給装置は内腔に気体の流通できる気体通路
を有する導管である。便宜的にこの導管において、生体
内の目的部位に保持する側の端部を先端部といい、反対
側の端部を基端部という。気体通路の先端側が閉塞した
状態にある一方が盲端に形成された導管である。また、
該導管は全体が気体透過性である必要はないが、少なく
とも目的部位に配置される先端部においては、NO気体
透過性を有する必要がある。むしろ、先端部のみが気体
透過性に形成されている方が、特定部位への選択的なN
O供給という点で好ましい場合がある。このように、導
管内腔から生体内の特定部位に一酸化窒素を供給するた
めに、導管の一部に気体が透過できる気体供給部を設け
る。
Next, various embodiments of the nitric oxide supply device of the present invention will be described. As mentioned above,
The nitric oxide supply device is a conduit having a gas passage through which a gas can flow. For the sake of convenience, in this conduit, the end on the side that is held at the target site in the living body is called the distal end, and the opposite end is called the proximal end. One end of the gas passage in a closed state is a conduit formed at a blind end. Also,
The conduit need not be entirely gas permeable, but must be NO gas permeable, at least at the tip located at the target site. Rather, if only the tip is formed to be gas permeable, selective N
It may be preferable in terms of O supply. As described above, in order to supply nitric oxide from the lumen of the conduit to a specific site in the living body, a gas supply unit through which gas can pass is provided in a part of the conduit.

【0007】また、この気体供給部において、単に気体
透過性が良いというのであれば、多孔性構造にして透過
性を向上することもできるが、導管を透過したNOが気
泡として生体内に流出すると、生体に好ましくない様々
な結果を引き起こす。そのため、気体供給部からNOの
気泡が流出しないような構造が必要である。そのため、
気体通路から導管の外部表面に通じるガス透過断面の一
部に気泡の透過を防止する気体透過性の均質膜を設けて
も良いし、或いは気体透過性の良好な素材であれば、ガ
ス透過断面全体を均質膜で形成しても良い。血栓を付着
しにくくするという点からは、生体と接触する導管の外
部表面は均質膜で形成するのが好ましい。気体透過性の
均質膜は、0.01〜10.0m2/s.Pa×10-14の範囲の
気体透過係数を有するものが好ましく、0.20〜0.
80m2/s.Pa×10-14の範囲の気体透過係数を有するもの
は、さらに好ましい。素材の例としてはシリコーン樹脂
やポリウレタン、または極薄ポリオレフィン膜等が好適
である。或いは、前記の素材をいろいろ組み合わせて均
質膜を成形しても良い。ガス透過断面は内腔から外部に
気泡の流出を防止できさえすれば、気体透過性の良い構
造であるのが好ましく、例えば均質膜以外の部分は多孔
性であっても良い。導管がNO供給時のガス圧に耐えう
るように、所定の耐圧性が必要であるのは言うまでもな
い。
If the gas supply section simply has good gas permeability, the gas permeability can be improved by adopting a porous structure. However, if NO permeating through the conduit flows out into the living body as air bubbles. Causes various undesirable effects on the living body. For this reason, a structure that does not allow NO bubbles to flow out of the gas supply unit is required. for that reason,
A part of the gas permeable cross section that communicates from the gas passage to the outer surface of the conduit may be provided with a gas permeable homogeneous membrane that prevents the transmission of air bubbles, or a gas permeable cross section if the gas permeable material is good. The whole may be formed of a homogeneous film. From the viewpoint of making it difficult for thrombus to adhere, the outer surface of the conduit that comes into contact with the living body is preferably formed of a homogeneous film. The gas permeable homogeneous membrane preferably has a gas permeability coefficient in the range of 0.01 to 10.0 m 2 /s.Pa×10 -14 , and is preferably in the range of 0.20 to 0.
Those having a gas permeability coefficient in the range of 80 m 2 /s.Pa×10 -14 are more preferable. Suitable examples of the material include a silicone resin, a polyurethane, and an ultra-thin polyolefin film. Alternatively, a uniform film may be formed by variously combining the above materials. The gas permeable cross section preferably has a structure having good gas permeability as long as bubbles can be prevented from flowing out of the lumen to the outside. For example, portions other than the homogeneous membrane may be porous. It goes without saying that a certain pressure resistance is required so that the conduit can withstand the gas pressure during NO supply.

【0008】また、図1に示したように導管が異なるガ
スを供給できる構造にしても良い。図1では窒素とNO
を供給するものを示しているが、先端部に酸素供給用中
空繊維と一酸化炭素供給用中空繊維とを設けて、酸素と
NOを供給するようにすることもできる。そして、血管
内に2種類以上のガスを供給するために複数の気体通路
を形成し、各気体通路に異なる気体が流通するような構
成にしても良い。前記導管の内腔ににこの場合は外部表
面に血栓が付着しないように、抗血液凝固剤であるヘパ
リンの表面固定化等の抗血栓処理を行っても良い。ま
た、気体供給部のNO気体透過面積をかせぐため、導管
先端部に一端の閉塞した均質膜からなる多数の極細中空
繊維を接着剤でポッティングして、中空繊維からなる気
体供給部を設けるのも望ましい。この場合も中空繊維の
外表面は抗血栓処理を行うのが望ましい。さらに、既述
したように気泡流出防止等、安全性確保のために気泡検
出用超音波カテーテル等の気泡検出手段を設けても良
い。
Further, as shown in FIG. 1, a structure may be adopted in which the conduit can supply different gases. In FIG. 1, nitrogen and NO
Although oxygen is supplied, oxygen and NO can be supplied by providing a hollow fiber for supplying oxygen and a hollow fiber for supplying carbon monoxide at the tip. Then, a plurality of gas passages may be formed to supply two or more types of gas into the blood vessel, and a different gas may flow through each gas passage. In this case, antithrombotic treatment such as immobilization of heparin, an anticoagulant on the surface, may be performed on the lumen of the conduit so that the thrombus does not adhere to the outer surface in this case. Also, in order to increase the NO gas permeation area of the gas supply unit, a large number of ultrafine hollow fibers composed of a homogeneous membrane with one end closed at the tip of the conduit may be potted with an adhesive to provide a gas supply unit composed of hollow fibers. desirable. Also in this case, it is desirable that the outer surface of the hollow fiber be subjected to antithrombotic treatment. Further, as described above, an air bubble detection means such as an ultrasonic catheter for air bubble detection may be provided for ensuring safety such as prevention of air bubble outflow.

【0009】[0009]

【実施例】市販の膜型人工肺のホローファイバーを使用
して、導管先端部に中空繊維(以下、ホローファイバー
ともいう)からなる気体供給部を設けた場合に、要求さ
れる気体透過性を中空繊維膜が有するか、否かを確認し
た。新生児の体外循環用として、臨床的に使用されてい
る膜面積0.3m2、ファイバー本数3000本のシリ
コーンホローファイバー膜型人工肺を使用して、一酸化
窒素及び窒素、酸素の気体透過性の測定を行った。図1
に示すように、人工肺の一方を閉じて盲端とし、他方の
ガス流入口からガスを圧入した。圧入ガスは純酸素、純
窒素、窒素と一酸化窒素の混合ガスでNO濃度が46.
6ppm、203.0ppm、2005ppmの計5種
類を使用した。NO濃度の測定にはオゾンを用いた化学
発光法によるNO濃度測定器(ECL−88US、ヤナ
コ社製)を用いた。なお、本例で使用した人工肺の耐圧
性能は約0.087MPaである。
EXAMPLE When a gas supply unit composed of hollow fibers (hereinafter also referred to as hollow fibers) is provided at the distal end of a conduit using hollow fibers of a commercially available membrane oxygenator, the required gas permeability is determined. It was confirmed whether or not the hollow fiber membrane had. Measurement of gas permeability of nitric oxide and nitrogen and oxygen using a silicone hollow fiber membrane oxygenator with a membrane area of 0.3 m2 and 3000 fibers clinically used for extracorporeal circulation of neonates Was done. FIG.
As shown in (1), one end of the oxygenator was closed to form a blind end, and gas was injected from the other gas inlet. The injection gas is pure oxygen, pure nitrogen, or a mixed gas of nitrogen and nitrogen monoxide, and has a NO concentration of 46.
A total of 5 types of 6 ppm, 203.0 ppm, and 2005 ppm were used. For the measurement of the NO concentration, a NO concentration measuring device (ECL-88US, manufactured by Yanaco) using a chemiluminescence method using ozone was used. The pressure resistance of the oxygenator used in this example is about 0.087 MPa.

【0010】それぞれのガスにおける、シリコーンファ
イバー内に与えた圧力とファイバーを透過したガス流量
との関係を調べた。酸素は純窒素のガス透過性の約2倍
であり、NOは酸素と比較してほぼ同程度、またはやや
高めのガス透過性を示した。この結果より、NOを生体
に供給するために導管内腔に流すガス圧や流量は、酸素
を透過させる場合とだいたい同じ条件で良いことが確認
できる。
The relationship between the pressure applied to the silicone fiber and the flow rate of gas permeating the fiber was examined for each gas. Oxygen is about twice the gas permeability of pure nitrogen, and NO has almost the same or slightly higher gas permeability than oxygen. From this result, it can be confirmed that the gas pressure and the flow rate flowing into the lumen of the conduit in order to supply NO to the living body may be approximately the same as those in the case of transmitting oxygen.

【0011】次に、膜素材によってガス透過性がどのよ
うに異なるかについて、検討を行った。表1に示したよ
うなモジュール仕様の人工肺を使用して、それぞれの人
工肺の膜のガス透過性能を測定した。表1に示すよう
に、全体が均質膜であるシリコーンホローファイバー
と、シリコーンコーティングポリプロピレンホローファ
イバーと、ポリウレタン−ポリエチレン−ポリウレタン
の三層膜からなるホローファイバーの3種類の人工肺に
ついて、測定を行った。
Next, how the gas permeability differs depending on the membrane material was examined. Using an oxygenator having a module specification as shown in Table 1, the gas permeability of each membrane of the oxygenator was measured. As shown in Table 1, the measurement was performed on three types of artificial lungs: a silicone hollow fiber having a homogeneous film as a whole, a silicone-coated polypropylene hollow fiber, and a hollow fiber consisting of a three-layer film of polyurethane-polyethylene-polyurethane. .

【0012】[0012]

【表1】 [Table 1]

【0013】ガス透過性の測定は、既述したように人工
肺のファイバー膜の一方を閉じて盲端とし、他方からガ
スを圧入して、ファイバーを透過するガス流量とガス濃
度を測定した。NO濃度の測定も先の実施例に述べた通
りである。本例で検討した3種類のモジュール(ガス膜
を集合してハウジング内に挿入したもの)はいずれも約
1気圧前後の耐圧を有していた。前記の3種類の素材の
膜透過性を表すため、所定の圧力下での酸素、窒素、一
酸化窒素の各ガスの透過流量を表2に示した。表2に示
されるように、シリコーンホローファイバーにおけるN
Oの透過流量は48ml/minであり、酸素の透過流
量の44.7ml/minとほぼ同等、窒素の透過流量
20.3ml/minの約2倍であった。また、その他
の膜においても、NOは窒素や酸素より高い透過流量を
示した。
As described above, the gas permeability was measured by closing one of the fiber membranes of the artificial lung to form a blind end and injecting gas from the other, and measuring the gas flow rate and gas concentration passing through the fiber. The measurement of the NO concentration is also as described in the previous embodiment. Each of the three types of modules studied in this example (gas films assembled and inserted into the housing) had a pressure resistance of about 1 atm. Table 2 shows the permeation flow rate of each gas of oxygen, nitrogen and nitric oxide under a predetermined pressure in order to show the membrane permeability of the above three kinds of materials. As shown in Table 2, N in the silicone hollow fiber
The permeation flow rate of O was 48 ml / min, which was almost equal to the permeation flow rate of oxygen of 44.7 ml / min, and about twice the permeation flow rate of nitrogen of 20.3 ml / min. Also in other films, NO showed a higher permeation flow rate than nitrogen and oxygen.

【0014】[0014]

【表2】 [Table 2]

【0015】これより、換算した各膜素材の3種類のガ
ス透過係数を表3に示した。その結果、それぞれの膜
は、生体の特定部位にNOガスを供給するために必要と
する十分な透過性能を有していることが確認された。
Table 3 shows the calculated three types of gas permeability coefficients of the respective membrane materials. As a result, it was confirmed that each membrane had sufficient permeation performance required to supply NO gas to a specific part of the living body.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】発明が解決しようとする課題で述べたよ
うに、本発明の一酸化窒素供給装置を使用することによ
って、NOを特定の部位に直接供給できるため、その部
位の血管抵抗を選択的に下げることができる。次に、特
定部位へのNOの選択的な供給によって、NO供給量を
減少させることができ、その結果窒素酸化物の生成を抑
制することができる。また、特定部位への直接の供給に
よって、血圧低下等の効果をより迅速に、より確実にす
ることができる。さらに、限定された部位における効果
が確認できるため、生体における有効な作用部位の特定
ができる。
As described in the problem to be solved by the invention, NO can be directly supplied to a specific site by using the nitric oxide supply device of the present invention. Can be lowered. Next, by selectively supplying NO to a specific portion, the NO supply amount can be reduced, and as a result, generation of nitrogen oxides can be suppressed. In addition, the effect of lowering the blood pressure and the like can be more promptly and more reliably provided by directly supplying the specific portion. Furthermore, since the effect at a limited site can be confirmed, an effective site of action in a living body can be specified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の一酸化窒素供給装置を示す概略
図である。
FIG. 1 is a schematic view showing an example of a nitric oxide supply device of the present invention.

【符号の説明】[Explanation of symbols]

1.一酸化窒素供給装置(導管) 2.気体通路 3.気体供給部 1. 1. Nitric oxide supply device (conduit) Gas passage 3. Gas supply section

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 生体外部から生体内に一酸化窒素または
一酸化窒素含有ガスを供給するための連絡手段として、
内腔に気体の流通できる気体通路を有する導管であっ
て、該導管の一部には気体供給部が設けられ、該気体供
給部において、気体通路から導管の外部表面に通じるガ
ス透過断面に気泡の透過を防止する気体透過性の均質膜
を設けたことを特徴とする一酸化窒素供給装置。
As a communication means for supplying nitric oxide or a gas containing nitric oxide from outside the living body to the living body,
A conduit having a gas passage through which a gas can flow in an inner lumen, wherein a part of the conduit is provided with a gas supply portion, and in the gas supply portion, gas bubbles are formed in a gas permeation cross-section communicating from the gas passage to an outer surface of the conduit. A nitric oxide supply device comprising a gas permeable homogeneous membrane for preventing permeation of water.
【請求項2】 気体供給部の前記ガス透過断面全てが前
記均質膜からなる請求項1記載の一酸化窒素供給装置。
2. The nitrogen monoxide supply device according to claim 1, wherein the entire gas permeation cross section of the gas supply section is formed of the homogeneous membrane.
【請求項3】 前記均質膜がシリコーン樹脂からなる請
求項1または2に記載の一酸化窒素供給装置。
3. The nitric oxide supply device according to claim 1, wherein the homogeneous film is made of a silicone resin.
【請求項4】 前記均質膜がポリウレタンおよび/また
はポリオレフィンからなる請求項1または2に記載の一
酸化窒素供給装置。
4. The nitric oxide supply device according to claim 1, wherein the homogeneous film is made of polyurethane and / or polyolefin.
【請求項5】 前記気体透過断面の大部分が多孔性に形
成されている請求項1,3,4のいずれかの項に記載の
一酸化窒素供給装置。
5. The nitric oxide supply device according to claim 1, wherein most of the gas permeation cross section is formed porous.
【請求項6】 少なくとも2つの前記気体通路が形成さ
れ、各気体通路に異なる気体が流通する請求項1〜5の
いずれかの項に記載の一酸化窒素供給装置。
6. The nitrogen monoxide supply device according to claim 1, wherein at least two of said gas passages are formed, and a different gas flows through each gas passage.
【請求項7】 前記気体通路の一方が盲端に形成された
請求項1〜6のいずれかの項に記載の一酸化窒素供給装
置。
7. The nitric oxide supply device according to claim 1, wherein one of the gas passages is formed at a blind end.
【請求項8】 前記気体供給部が中空繊維膜からなる請
求項1〜7のいずれかの項に記載の一酸化窒素供給装
置。
8. The nitric oxide supply device according to claim 1, wherein the gas supply unit is formed of a hollow fiber membrane.
【請求項9】 前記均質膜が0.01〜10.0m2/s.P
a×10-14の範囲の気体透過係数を有する請求項1〜8の
いずれかの項に記載の一酸化窒素供給装置。
9. The method according to claim 1, wherein the homogeneous film has a thickness of 0.01 to 10.0 m 2 / sP.
9. The nitric oxide supply device according to claim 1, having a gas permeability coefficient in the range of a × 10 −14 .
【請求項10】 導管の外表面に抗血栓性処理を施され
た請求項1〜9のいずれかの項に記載の一酸化窒素供給
装置。
10. The nitric oxide supply device according to claim 1, wherein an outer surface of the conduit is subjected to antithrombotic treatment.
【請求項11】 請求項1〜10のいずれかの項に記載
された導管に、気泡検出用手段を設けてなることを特徴
とする一酸化窒素供給装置。
11. A nitric oxide supply device, characterized in that the conduit according to any one of claims 1 to 10 is provided with means for detecting bubbles.
JP10200811A 1998-04-24 1998-07-15 Nitrogen monoxide supplying device Pending JP2000005316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10200811A JP2000005316A (en) 1998-04-24 1998-07-15 Nitrogen monoxide supplying device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-115026 1998-04-24
JP11502698 1998-04-24
JP10200811A JP2000005316A (en) 1998-04-24 1998-07-15 Nitrogen monoxide supplying device

Publications (1)

Publication Number Publication Date
JP2000005316A true JP2000005316A (en) 2000-01-11

Family

ID=26453644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10200811A Pending JP2000005316A (en) 1998-04-24 1998-07-15 Nitrogen monoxide supplying device

Country Status (1)

Country Link
JP (1) JP2000005316A (en)

Similar Documents

Publication Publication Date Title
US8419671B2 (en) Appliance for cannulation of a blood vessel
CA1318560C (en) Apparatus and method for in vivo extrapulmonary blood gas exchange
US8834344B2 (en) Left and right side heart support
EP0168439B1 (en) Intraluminal membrane oxygenator
KR102318993B1 (en) Carbon dioxide removal system
US8409502B2 (en) Methods, apparatuses, and applications for compliant membrane blood gas exchangers
JP5066156B2 (en) Blood oxygenation apparatus and method
JPH021295A (en) Apparatus and method for maintaining viability of gastroenteric tube organ
US9101711B2 (en) Intravascular nano-bubbling oxygenator
EP2747807B1 (en) Artificial placenta
JPH0422106B2 (en)
JPH07506266A (en) endometrial pulmonary device
JPH05501216A (en) Apparatus and method for twisting extrapulmonary blood gas exchange devices
US20200188568A1 (en) System and method for hypobaric oxygenation with membrane oxygenator
JPH11319108A (en) Nitrogen monoxide supplying device
JP2000005316A (en) Nitrogen monoxide supplying device
Federspiel et al. Temporary support of the lungs-the artificial lung
Tao et al. Performance of an intravenous gas exchanger (IVOX) in a venovenous bypass circuit
JP2001286567A (en) Nitrogen monoxide feeder
JP3141601B2 (en) CATHETER FOR TREATMENT OF LOCAL ANEMIA AND TREATMENT DEVICE USING THE SAME
Schmidt et al. A new perfusion circuit for the newborn with lung immaturity: extracorporeal CO2 removal via an umbilical arteriovenous shunt during apneic O2 diffusion
Kawahito et al. Preclinical evaluation of a new hollow fiber silicone membrane oxygenator for pediatric cardiopulmonary bypass: ex-vivo study
Matsuda et al. Microvascular pressures in isolated perfused immature lamb lungs: effects of flow rate, left atrial pressure and surfactant therapy
Zombolas et al. Severe gas pathway obstruction of a hollow-fibre membrane oxygenator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080310