JP2000004701A - Creation of genetically pure genus eustoma plant by culturing ovule using false fertilization - Google Patents
Creation of genetically pure genus eustoma plant by culturing ovule using false fertilizationInfo
- Publication number
- JP2000004701A JP2000004701A JP17710398A JP17710398A JP2000004701A JP 2000004701 A JP2000004701 A JP 2000004701A JP 17710398 A JP17710398 A JP 17710398A JP 17710398 A JP17710398 A JP 17710398A JP 2000004701 A JP2000004701 A JP 2000004701A
- Authority
- JP
- Japan
- Prior art keywords
- plant
- eustoma plant
- eustoma
- ovule
- pollen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、遺伝的に純系(同
型接合体)のユーストマ属植物の作出方法に関する。遺
伝的に純系のユーストマ属植物とは、半数体ユーストマ
属植物を倍加した倍加半数体ユーストマ属植物のことで
ある。この作出された純系のユーストマ属植物は一代雑
種(F1)品種の育成などに利用できる。The present invention relates to a method for producing a genetically pure (homozygous) Eustoma plant. Genetically pure Eustoma plants are doubled haploid Eustoma plants obtained by doubling haploid Eustoma plants. The pure Eustoma plant thus produced can be used for breeding a first-generation hybrid (F1) variety.
【0002】[0002]
【従来の技術】昭和10年頃に日本へ導入されたトルコ
ギキョウ(分類学的にはEustoma grandiflorum又はEust
oma exaltatumに属する)は、日本での育種が進展し
て、数多くの品種が育成されている。導入当初は生育や
形質にばらつきがあったものの中から、優良な形質を有
するものを選抜して、自殖を繰り返し、遺伝的に固定さ
せて、品種としていた。ただしこの固定種では開花揃
い、草姿、草勢などの均一性に欠ける面があった。そし
て近年になって、主に日本の種苗会社を中心として、こ
の均一性を実現する為に、数多くのF1品種が育成され
てきている。このF1品種を育成するためには、それぞ
れ遺伝的に純系の花粉親系統と種子親系統を交配するこ
とが不可欠であり、よりよいF1品種を選抜するために
は数多くの純系同士の交配を行う必要がある。この純系
を作出するためには、遺伝的に固定されていない植物体
を5〜8年にわたって自殖させる過程が必要となり、長
い年限を要するのが現状である。その一方で、開発され
た品種の品種寿命は、消費流行の変化の加速化により、
昔に比較して短くなってきている。よって従来の自殖に
よる方法では、消費者の嗜好の変化に対応した品種を時
期相応に作出することが困難になってきている。2. Description of the Related Art Eustoma (Eustoma grandiflorum or Eustoma taxonomically) introduced into Japan around 1938
oma exaltatum) has been bred in Japan and many varieties have been bred. At the beginning of the introduction, those with excellent traits were selected from among those with variations in growth and traits, repeated selfing and genetically fixed to produce varieties. However, this fixed species lacked uniformity such as uniform flowering, plant shape, and plant vigor. In recent years, a large number of F1 varieties have been cultivated to achieve this uniformity, mainly by Japanese seed and seedling companies. In order to grow this F1 variety, it is essential to cross genetically pure pollen parent lines and seed parent lines, and in order to select better F1 varieties, cross many pure lines. There is a need. In order to produce such a pure line, a process of selfing a genetically unfixed plant for 5 to 8 years is required, and a long term is required at present. On the other hand, the life span of the varieties of the developed varieties is
It is getting shorter than in the past. Therefore, it has become difficult to produce varieties corresponding to changes in consumer preferences in a timely manner by the conventional self-breeding method.
【0003】純系の植物体を短期間で作出する方法とし
ては、葯培養、偽受精胚珠培養、未受精胚珠培養などの
方法がある。葯培養とは、葯(雄しべ)の中の花粉を分
裂させて植物体を再生させ、半数体の植物を得る技術で
ある。葯から花粉を取り出して培養する場合を花粉培
養、葯のまま培養し、中の花粉を分裂させる場合を葯培
養という。偽受精胚珠培養とは、胚珠から植物体を再生
させ、半数体の植物を得る技術である。花粉は、雌しべ
(柱頭)に受粉して、花粉管を伸ばし、花粉の中の精核
が卵細胞と受精する。偽受精胚珠培養とは、このとき花
粉を、放射線などで花粉としての機能を失活させて、あ
たかも受精させたかのように植物に感知させ、半数体の
胚珠を培養する方法である。未受精胚珠培養とは、上記
偽受精胚珠培養における失活した花粉を受精させること
なく、半数体の胚珠を培養する方法である。再生した植
物体は、半数体であり、自然倍加が起こらない限り、そ
のままでは実が稔らない。そこで、染色体を倍加する薬
剤(コルヒチン、コルセミド、オリザリンなど)でカル
スまたは植物体を処理し、染色体を倍加することが行わ
れている。[0003] Methods for producing a pure plant in a short period of time include methods such as anther culture, pseudo-fertilized ovule culture, and unfertilized ovule culture. Anther culture is a technique in which pollen in anthers (stamens) is split to regenerate plants and obtain haploid plants. The case where pollen is taken out from the anther and cultured is called pollen culture, and the case where the anther is cultured as it is and the inside pollen is divided is called anther culture. Pseudofertilized ovule culture is a technique for regenerating plants from ovules to obtain haploid plants. The pollen pollinates the pistil (stigma), extends the pollen tube, and the nucleus in the pollen fertilizes with the egg cell. Pseudofertilized ovule culture is a method of culturing haploid ovules by inactivating pollen at this time by inactivating the function of the pollen by radiation or the like so that the plant senses as if fertilized. The unfertilized ovule culture is a method of culturing a haploid ovule without fertilizing the inactivated pollen in the pseudo-fertilized ovule culture. The regenerated plant is a haploid, and as long as natural doubling does not occur, the fruit does not fertilize as it is. Therefore, the callus or the plant is treated with an agent that doubles the chromosome (colchicine, colcemide, oryzalin, etc.) to double the chromosome.
【0004】ユーストマ属の半数体作出に関する研究
は、主に葯培養で行われきた(岡山農試、1991-199
5)。しかし、現在までにユーストマ属の半数体作出の
報告例は1つだけあるが、幼苗段階で枯死している(岡
山農試、1995)。そしてこの実験系による追試は成功し
ていない。また未受精胚珠及び偽受精胚珠を培養する方
法も試みられていたが(岡山農試、1994-1995)、こち
らの手法でも半数体作出に成功していない。例えば、岡
山農試は、X線照射量5〜40kRで花粉を不活化し、
受粉後75日後に胚珠を取り出して培養することを行っ
ているが(岡山農試、「単年度試験研究成績」(作成平
成7年1月)及び(作成平成8年1月))、得られた発
根個体について「発根個体のなかに半数体がみられなか
ったことから、花粉へのX線照射による半数体作出条件
は明らかにできなかった」(「単年度試験研究成績」
(作成平成8年1月)の3.結果の概要(2)参照)と
報告している。[0004] Studies on the production of haploids of the genus Eustoma have been conducted mainly by anther culture (Okayama Agricultural Exp., 1991-199).
Five). However, up to now, there has been only one report of the production of Eustoma haploids, but they have died at the seedling stage (Okayama Agricultural Sciences, 1995). And the retest by this experimental system has not been successful. A method of culturing unfertilized ovules and pseudo-fertilized ovules has also been attempted (Okayama Agricultural Research Institute, 1994-1995), but this method has not succeeded in producing haploids. For example, Okayama agricultural test inactivates pollen with an X-ray irradiation dose of 5 to 40 kR,
75 days after pollination, the ovules are taken out and cultured (Okayama Agricultural Research Institute, “Single Year Study Results” (created January 1995) and (created January 1996)). "The absence of haploids in the rooting individuals did not clarify the conditions for producing haploids by irradiating pollen with X-rays."
(Created January 1996) 3. Summary of the results (2)).
【0005】[0005]
【発明が解決しようとする課題】本発明は従来行われて
きた遺伝的に純系のユーストマ属植物の作出方法に関わ
る諸問題を解決することを目的としたものである。言い
換えれば、短期間に純系の植物体を作出できうる手段の
提供を目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to solve various problems related to a method for producing a genetically pure Eustoma plant which has been conventionally performed. In other words, the object is to provide means capable of producing a pure plant in a short period of time.
【0006】[0006]
【課題を解決するための手段】本発明者は、ユーストマ
属植物の半数体もしくは倍加半数体系統を作出する方法
について鋭意検討した結果、特定の条件で偽受精胚珠培
養を行うことにより、ユーストマ属植物において、効率
的に遺伝的に純系の植物体を作出できる手段を完成させ
た。即ち、本発明は、雄性不稔系統のユーストマ属植物
又は除雄したユーストマ属植物の雌蕊に、細胞核を不活
化させた花粉を授粉し、該授粉から3〜4週間後に胚珠
を摘出し、該胚珠を培養して、生育させることを特徴と
する遺伝的に純系のユーストマ属植物の作出方法であ
る。Means for Solving the Problems The present inventors have conducted intensive studies on a method for producing a haploid or doubled haploid line of a plant belonging to the genus Eustoma. We have completed a means of efficiently producing genetically pure plants in plants. That is, the present invention pollinates the pistil of a male sterile line Eustoma plant or a emasculated Eustoma plant with pollen in which the cell nucleus is inactivated, and extracts an ovule 3 to 4 weeks after the pollination. A method for producing a genetically pure Eustoma plant characterized by culturing and growing ovules.
【0007】[0007]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明はユーストマ属植物の全てに適用できるが、とく
にトルコギキョウに適用するのが好ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The present invention is applicable to all Eustoma plants, but is particularly preferably applied to Eustoma.
【0008】本発明のユーストマ属植物は次のようにし
て作出することができる。まず、ユーストマ属植物の蕾
から葯を除く。除雄は開花前に行い、除雄した蕾は袋な
どで覆う。雄性不稔性の植物を使用する場合は、除雄を
必要としないが、袋かけは行う。次に花芽が開花し、柱
頭が開いて授粉可能となった時点で、予め核を不活化さ
せておいた花粉を柱頭部に授粉させる。核の不活化は、
開花時期の通常花粉にX線を照射することにより行うこ
とができる。その照射量は50〜150kRとするのが
望ましいが、花粉の核を不活化できる量であれば特に限
定されない。授粉後の雌蕊は、再び袋などで覆い、子房
が十分に肥大するまで放置する。子房が十分肥大化する
までの期間は、用いた雌親植物や栽培環境により異なる
が、通常授粉から3〜4週間程度である。この肥大化し
た子房を採取し、エタノールなどで殺菌した後、無菌的
に分解して胚珠を摘出する。取り出した胚珠を所定の培
地に置床する。この時、胎座をつけたまま置床し、培養
することも可能であるが、好ましくは、胚珠だけを置床
する。ここで用いる培地の基本組成は特に限定されるも
のではなく、例えば、MS培地の無機塩及び有機物組成
に蔗糖を加えたものを用いる。またココナッツミルクの
添加が望ましい。培養開始から3〜5週間程度で植物体
が出現する。通常は、培養の過程で自然倍加するので、
特別な処理をすることなく、倍加半数体系統、即ち遺伝
的に純系の植物を得ることができるが、必要に応じて染
色体の倍加処理を行ってもよい。倍加処理は、コルヒチ
ン、コルセミド、オリザリンなどの、通常の倍加処理時
に用いられる試薬を含む溶液を使用して行うことができ
る。また、予め半数体植物と倍加半数体植物とを識別し
ておき、半数体植物についてのみ倍加処理を行ってもよ
い。識別方法としては、染色体の調査、孔辺細胞内の葉
緑体数、フローサイトメトリーによるDNA含量の定量
などを用いることができる。[0008] The Eustoma plant of the present invention can be produced as follows. First, the anthers are removed from the buds of the genus Eustoma. The emasculation is performed before flowering, and the emasculated buds are covered with a bag or the like. When using male sterile plants, emasculation is not required, but bagging is performed. Next, when the flower buds bloom and the stigma is opened and pollination is possible, pollen whose nucleus has been inactivated in advance is pollinated to the stigma. Nuclear inactivation is
It can be carried out by irradiating the normal pollen at the flowering time with X-rays. The irradiation amount is preferably 50 to 150 kR, but is not particularly limited as long as it can inactivate pollen nuclei. The pistil after pollination is again covered with a bag or the like, and left until the ovary is sufficiently enlarged. The period until the ovary is sufficiently enlarged depends on the female parent plant used and the cultivation environment, but is usually about 3 to 4 weeks after pollination. The enlarged ovary is collected, sterilized with ethanol or the like, and then aseptically decomposed to remove an ovule. The removed ovule is placed on a predetermined medium. At this time, it is possible to place and culture with the placenta attached, but preferably only the ovule is placed. The basic composition of the medium used here is not particularly limited, and for example, a medium obtained by adding sucrose to the inorganic salt and organic substance composition of the MS medium is used. It is desirable to add coconut milk. Plants appear about 3 to 5 weeks after the start of culture. Usually, natural doubling occurs during the culture process,
A doubled haploid line, that is, a genetically pure plant can be obtained without special treatment, but doubling treatment of the chromosome may be performed if necessary. The doubling treatment can be performed by using a solution containing a reagent used in a usual doubling treatment, such as colchicine, colcemide, orizarin. Alternatively, a haploid plant and a doubled haploid plant may be identified in advance, and the doubling process may be performed only on the haploid plant. As the identification method, chromosome investigation, chloroplast number in guard cells, quantification of DNA content by flow cytometry, and the like can be used.
【0009】[0009]
【実施例】〔実施例1〕 花粉親として使用する植物の
遺伝子的性質の確認 (1)花色が紫という形質に関して遺伝的に固定してい
ると確認された植物体の選抜 育成素材の中から花色が紫である植物体を選抜し、その
植物体が花色に関して遺伝的に紫に固定していると確認
されるまで、自殖を繰り返した。 (2)花色が紫であるという形質が遺伝的に優性である
ことの調査 (1)で遺伝的に花色が紫で固定していると確認された
植物体を、他の花色を有する個体に定法に従い交配し
た。そのF1世代は全て花色が紫となり、花色が紫とい
う形質は遺伝的に優性であることが示された。[Example 1] [Example 1] Confirmation of genetic properties of a plant used as a pollen parent (1) Selection of plants that have been confirmed to be genetically fixed with respect to the trait of purple flower color From among breeding materials Plants with a purple flower color were selected and selfing was repeated until the plants were confirmed to be genetically fixed in purple with respect to flower color. (2) Investigation that the trait of purple flower color is genetically dominant Plants that have been genetically confirmed to have a fixed purple flower color in (1) can be used for individuals with other flower colors They were crossed according to the usual method. The flower color of all the F1 generations became purple, and the trait of purple flower color was shown to be genetically dominant.
【0010】〔実施例2〕 ユーストマの偽受精胚珠培
養による植物体の作出 (1)開葯前の蕾からの除雄 パイプハウスで栽培された遺伝的に固定されていない
(純系でない)ユーストマ系統の蕾から開葯前の葯をピ
ンセットにより除去し、パラフィン紙製の袋で除雄した
蕾を覆った。 (2)偽受精 除雄後2〜7日間経過し、雌蕊が授粉可能となった状態
の花の袋を取り除き、花色が紫という形質に関して遺伝
的に固定していると確認されいる植物体から採取した花
粉にX線をそれぞれ0kR(未照射)、50kR、10
0kR、150kR照射し、これらを予め除雄しておい
た花の雌蕊の柱頭部に授粉した。その後再びパラフィン
紙製の袋を花に被せて他の花粉との意図しない交雑が起
こるのを防止した。[Example 2] Production of a plant by pseudo-fertilized ovule culture of Eustoma (1) Removal of buds before opening of anthers Genetic unfixed (not pure) Eustoma strain cultivated in a pipe house Anthers before anther opening were removed from the buds with tweezers, and the emasculated buds were covered with a paraffin paper bag. (2) False fertilization Two to seven days after emasculation, the pistil is removed from the flower bag in a pollinable state, and the plant is confirmed to be genetically fixed for the trait of purple flower color. X-rays were applied to the collected pollen at 0 kR (unirradiated), 50 kR, and 10 kR, respectively.
Irradiation was performed at 0 kR and 150 kR, and these were pollinated to the stigma of the pistil of the flower, which had been emasculated in advance. Thereafter, a bag of paraffin paper was again placed over the flowers to prevent unintentional hybridization with other pollen.
【0011】(3)胚珠培養 X線照射した花粉の授粉後3〜4週間経過した子房を採
取し、表面殺菌後、子房を解剖し胚珠を摘出し培地に置
床した。 (4)培養に用いた培地 培地には植物の組織培養で一般に利用されているMS培
地を用いた。ただしショ糖を3%、ココナッツミルクを
50ml/l、ゲランガムを0.8%添加し、pHは5.8
に調整した。(3) Ovule culture The ovary 3 to 4 weeks after pollination of the pollen irradiated with X-rays was collected, and after sterilizing the surface, the ovary was dissected and the ovule was excised and placed on a medium. (4) Medium used for culture The medium used was an MS medium generally used in tissue culture of plants. However, 3% of sucrose, 50 ml / l of coconut milk and 0.8% of gellan gum were added, and the pH was 5.8.
Was adjusted.
【0012】〔実施例3〕 偽受精胚珠培養により得ら
れた植物体の栽培試験及び倍数性の調査 (1)植物体の出現 偽受精誘発処理後、培養を開始した胚珠から3〜5週間
で植物体が出現した。 (2)植物の開花検定 偽受精誘発処理で得られた植物体を栽培し、開花させ
た。50kR、100kR、150kR照射区では、そ
のうち88%(129個体中114個体)が、不活化し
た花粉の遺伝的関与の指標となりうる紫色花ではない、
他の色の花を咲かせた。またこれらの植物体の花の色は
偽受精を施した植物体の花色と決して同一ではなく、分
離した花の色を呈した。これらの結果は、偽受精誘発処
理で得られた植物体が通常の受精胚や偽受精を施した植
物体の体細胞からではなく、偽受精が誘発された胚に由
来するものと推察される。一方、0kR照射(未照射)
区では、授粉させた花粉の遺伝的関与が見られる紫花色
を100%(30個体中30個体)示した。[Example 3] Cultivation test and examination of ploidy of a plant obtained by pseudo-fertilized ovule culture (1) Appearance of plant 3 to 5 weeks after the start of culture after pseudo-fertilization induction treatment A plant has appeared. (2) Plant Flowering Assay Plants obtained by the pseudo-fertilization induction treatment were cultivated and flowered. In the 50 kR, 100 kR, and 150 kR irradiation groups, 88% (114 out of 129 individuals) are not purple flowers that can be an indicator of genetic involvement of inactivated pollen.
Blossomed flowers of other colors. Also, the flower color of these plants was not the same as the flower color of the plants that had been subjected to pseudo-fertilization, but exhibited the color of a separated flower. These results suggest that the plants obtained by the pseudo-fertilization induction treatment are not derived from somatic cells of normal fertilized embryos or plants subjected to pseudo-fertilization, but from embryos in which pseudo-fertilization was induced. . On the other hand, 0kR irradiation (not irradiated)
In the plot, 100% (30 out of 30 individuals) showed purple flower color in which the pollinated pollen was genetically involved.
【0013】(3)倍数性の調査 得られた植物体から選んだ200個体の倍数性につい
て、フローサイトメトリーによるDNA分析、孔辺細胞
内の葉緑体数及び花粉の大きさを指標として調べた結
果、調査した個体は全て二倍体であることが判明した。
培養の過程で自然倍加したものと推察される。(3) Investigation of ploidy The ploidy of 200 individuals selected from the obtained plants was examined using DNA analysis by flow cytometry, the number of chloroplasts in guard cells and the size of pollen as indices. As a result, all the individuals examined were found to be diploid.
It is presumed that natural doubling occurred during the culture process.
【0014】〔実施例4〕 偽受精胚珠培養により得ら
れた植物体の自殖後代の栽培試験 (1)自殖後代の栽培 実施例2の植物1個体について、自殖を行い、自殖系統
50個体を栽培した。 (2)固定度の調査 (1)の植物体の形態上の特性、特に花色について調査
した結果、同一系統内の個体間では、明らかな差異は認
められなかった。よってこれらの系統は遺伝的に純系で
あると確認できた。実施例1によりユーストマ属植物に
偽受精胚珠培養を行うと植物体が得られること、実施例
2及び3により偽受精胚珠培養により得られた植物体が
倍加半数体系統であることが確認できた。以上の結果に
より偽受精胚珠培養によりユーストマ属植物で倍加半数
体系統を作出できることが判明した。[Example 4] Cultivation test of self-propagated progeny of plants obtained by pseudo-fertilized ovule culture (1) Cultivation of self-propagated progeny One plant of Example 2 was self-pollinated and self-pollinated. Fifty individuals were cultivated. (2) Investigation of the degree of fixation As a result of investigating the morphological characteristics of the plant, particularly the flower color, of (1), no clear difference was observed between individuals in the same line. Therefore, these lines could be confirmed to be genetically pure. It was confirmed that a plant body was obtained by performing pseudofertilized ovule culture on Eustoma plants according to Example 1, and that the plants obtained by pseudofertilized ovule culture were doubled haploid lines according to Examples 2 and 3. . From the above results, it was found that a doubled haploid line could be created in a genus Eustoma by pseudofertilized ovule culture.
【0015】[0015]
【発明の効果】本発明は、効率的に遺伝的に純系のユー
ストマ属植物を作出する方法を提供するものである。こ
のような遺伝的に純系のユーストマ属植物を利用するこ
とにより、ユーストマ属植物のF1品種を効率的に短期
間で育成することが可能になる。Industrial Applicability The present invention provides a method for efficiently producing a genetically pure Eustoma plant. By utilizing such a genetically pure Eustoma plant, it is possible to efficiently grow an F1 variety of Eustoma plant in a short period of time.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 由比 真美子 栃木県小山市大字出井1900 日本たばこ産 業株式会社植物開発研究所内 Fターム(参考) 2B030 AA02 AB03 AD12 CB02 CD03 CD07 CD09 CD14 CG01 HA01 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Mamiko Yui 1900 Irai, Oyama, Toyama, Japan Tobacco Industry Co., Ltd. Plant Development Laboratory F-term (reference) 2B030 AA02 AB03 AD12 CB02 CD03 CD07 CD09 CD14 CG01 HA01
Claims (5)
雄したユーストマ属植物の雌蕊に、細胞核を不活化させ
た花粉を授粉し、該授粉から2〜10週間後に胚珠を摘
出し、該胚珠を培養して、生育させることを特徴とする
遺伝的に純系のユーストマ属植物の作出方法。1. A pollen having a cell nucleus inactivated is pollinated to a pistil of a male sterile line Eustoma plant or a emasculated Eustoma plant, and an ovule is extracted 2 to 10 weeks after the pollination. A method for producing a genetically pure Eustoma plant characterized by cultivating and growing Eustoma.
あることを特徴とする請求項1記載の遺伝的に純系のユ
ーストマ属植物の作出方法。2. The method for producing a genetically pure Eustoma plant according to claim 1, wherein the ovule is removed 3 to 4 weeks after pollination.
以上の電離放射線を花粉に照射することによって得られ
たものであることを特徴とする請求項1又は請求項2記
載の遺伝的に純系のユーストマ属植物の作出方法。3. The pollen in which the cell nucleus has been inactivated is 50 kR.
The method for producing a genetically pure Eustoma plant according to claim 1 or 2, wherein the method is obtained by irradiating the pollen with the above ionizing radiation.
とを特徴とする請求項3記載の遺伝的に純系のユースト
マ属植物の作出方法。4. The method for producing a genetically pure Eustoma plant according to claim 3, wherein the ionizing radiation is 50 to 200 kR.
コナッツミルクを添加した培地を用いることを特徴とす
る請求項1乃至4記載の遺伝的に純系のユーストマ属植
物の作出方法。5. The method for producing a genetically pure Eustoma plant according to claim 1, wherein a medium to which coconut milk is added is used as a medium for culturing the extracted ovules.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17710398A JP2000004701A (en) | 1998-06-24 | 1998-06-24 | Creation of genetically pure genus eustoma plant by culturing ovule using false fertilization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17710398A JP2000004701A (en) | 1998-06-24 | 1998-06-24 | Creation of genetically pure genus eustoma plant by culturing ovule using false fertilization |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000004701A true JP2000004701A (en) | 2000-01-11 |
Family
ID=16025209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17710398A Pending JP2000004701A (en) | 1998-06-24 | 1998-06-24 | Creation of genetically pure genus eustoma plant by culturing ovule using false fertilization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000004701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878866B2 (en) | 2001-08-03 | 2005-04-12 | Noboru Sase | Eustomahaving deformed pistil and method for breeding the same |
-
1998
- 1998-06-24 JP JP17710398A patent/JP2000004701A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878866B2 (en) | 2001-08-03 | 2005-04-12 | Noboru Sase | Eustomahaving deformed pistil and method for breeding the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0618023A2 (en) | cropping plant of the genus lactuca or its progeny and method for its production, microcalo, mitochondria and mitochondrial genome of cropping plant of the genus lactuca and method for production of the first generation branch seed | |
Warchoł et al. | The effect of auxin and genotype on the production of Avena sativa L. doubled haploid lines | |
Zhang et al. | A protocol for fertility restoration of F 1 hybrid derived from Lilium× formolongi ‘Raizan 3’× oriental hybrid ‘Sorbonne’ | |
Rahman et al. | Behind the scenes of microspore-based double haploid development in Brassica napus: A review | |
Sari et al. | Doubled haploid production in watermelon | |
Zhou et al. | Effects of colchicine on Populus canescens ectexine structure and 2n pollen production | |
CN111543310A (en) | Method for breeding by using rice indica subspecies cross/doubled tetraploid recombinant inbred line | |
Kato et al. | Production of interspecific hybrids in ornamental plants | |
Martinez et al. | BIII progeny (2 n+ n) from apomictic Paspalum notatum obtained through early pollination | |
Ishizaka et al. | Amphidiploids between Cyclamen persicum Mill. and C. hederifolium Aiton induced through colchicine taeatment of ovules in vitro and plants | |
Dewitte et al. | Induction of 2n pollen formation in Begonia by trifluralin and N 2 O treatments | |
Sestili et al. | Irradiated pollen for haploid production | |
US20230157233A1 (en) | Methods for improved microspore embryogenesis and production of doubled haploid microspore-derived embryos | |
Nicoll et al. | Endosperm responses to irradiated pollen in apples | |
Ravi et al. | Genome elimination by tailswap CenH3: in vivo haploid production in Arabidopsis thaliana | |
Roy et al. | Generation of interspecific hybrids of Trifolium using embryo rescue techniques | |
Nowaczyk et al. | Effect of 2, 4-dichlorophenoxyacetic acid pretreatment of Capsicum spp. donor plants on the anther culture efficiency of lines selected by capsaicinoid content | |
Chen et al. | Induction of apomixis by dimethyl sulfoxide (DMSO) and genetic identification of apomictic plants in cassava | |
Bagniewska-Zadworna et al. | A successful application of the embryo rescue technique as a model for studying crosses between Salix viminalis and Populus species | |
Yahata et al. | Production of haploid plant of ‘Banpeiyu’pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen | |
JP5734969B2 (en) | How to create a doubled haploid plant | |
Rosenbaumová et al. | Sexual reproduction as a source of ploidy level variation in the model agamic complex of Pilosella bauhini and P. officinarum (Asteraceae: Lactuceae) | |
JP2000004701A (en) | Creation of genetically pure genus eustoma plant by culturing ovule using false fertilization | |
Wickramasinghe et al. | Reproductive biology and intergeneric breeding compatibility of ornamental Portulaca and Calandrinia (Portulacaceae) | |
Bagheri et al. | Production of haploid embryos and plants in Iranian melon (Cucumis melo L.) through irradiated pollen-induced parthenogenesis. |