JP2000002073A - Excavating tool having cutting-edge with excellent compressive strength - Google Patents

Excavating tool having cutting-edge with excellent compressive strength

Info

Publication number
JP2000002073A
JP2000002073A JP10169391A JP16939198A JP2000002073A JP 2000002073 A JP2000002073 A JP 2000002073A JP 10169391 A JP10169391 A JP 10169391A JP 16939198 A JP16939198 A JP 16939198A JP 2000002073 A JP2000002073 A JP 2000002073A
Authority
JP
Japan
Prior art keywords
diamond
cutting
sintered
compressive strength
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10169391A
Other languages
Japanese (ja)
Inventor
Chuichi Ohashi
忠一 大橋
Yoichi Hamada
陽一 浜田
Yasutaka Aikawa
安孝 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oil Gas and Metals National Corp
Original Assignee
Japan National Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan National Oil Corp filed Critical Japan National Oil Corp
Priority to JP10169391A priority Critical patent/JP2000002073A/en
Publication of JP2000002073A publication Critical patent/JP2000002073A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool having a cutting-edge with an excellent compressive strength. SOLUTION: In the excavating tool having a structure, in which a plurality of posts made of a tungsten carbide-based cemented carbide are fixed onto the front end face of a bit body made of an alloy steel in a specified array and the cutting-edge pieces made of sintered diamond are blazed directly onto the front side faces of the above-mentioned posts, the cutting-edge piece has a composition formed of diamond coarse grains having grain size of 10-50 μm and a mean grain size of 20-30 μm, 80-90 vol.% diamond fine grains having a grain size of 7 μm or less and a mean grain size of 2-4 μm, a sintered assistant component composed of one kind or more of the carbonates and oxides of Mg, Ca, Sr and Ba and inevitable impurities as the remainder. The excavating tool is constituted of the sintered diamond having a texture, in which the diamond coarse grains are mutually bonded adjacently, there is the sintered assistant component among the diamond coarse grains and the diamond fine grains are dispersed and distributed in the sintered assistant component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、切刃片が高い圧
縮強さを有し、したがって高圧縮負荷のかかる高速掘削
にも切刃片に欠けやチッピング(微小欠け)などの発生
なく、長期に亘ってすぐれた耐摩耗性を発揮する掘削工
具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling tool exhibiting excellent wear resistance over a long period of time.

【0002】[0002]

【従来の技術】従来、一般に、例えば石油などの掘削
に、図1(a)および(b)にそれぞれ概略斜視図およ
び概略正面図で示される通り、合金鋼製ビット本体の先
端面に、複数の炭化タングステン基超硬合金製ポスト
(以下、超硬ポストと云う)が所定の配列でろう付けや
焼きばめなどの手段により固着され、前記超硬ポストの
先方側面に焼結ダイヤモンド製切刃片が直接ろう付けさ
れた構造の掘削工具が用いられていることは良く知られ
るところである。また、上記掘削工具を構成する切刃片
が、容量%(以下、%は容量%を示す)で、平均粒径が
3〜30μmのダイヤモンド粒:85〜99.9%、M
g、Ca、Sr、およびBaの炭酸塩および酸化物(以
下、それぞれMgCO3 、CaCO3 、SrCO3 、B
aCO3 、MgO、CaO、SrO、およびBaOで示
す)のうちの1種または2種以上からなる焼結助剤成分
および不可避不純物:残り、からなる組成を有すると共
に、上記ダイヤモンド粒が相互に隣接結合し、これに前
記焼結助剤成分が分散分布した組織を有する焼結ダイヤ
モンドで構成されていることも知られている。
2. Description of the Related Art Conventionally, in general, for excavation of petroleum or the like, for example, as shown in a schematic perspective view and a schematic front view in FIGS. Tungsten carbide-based cemented carbide posts (hereinafter referred to as cemented carbide posts) are fixed in a predetermined arrangement by means such as brazing or shrink fitting, and a cutting edge made of sintered diamond is attached to the front side surface of the cemented carbide posts. It is well known that a drilling tool having a structure in which pieces are directly brazed is used. In addition, the cutting edge pieces constituting the above-mentioned excavation tool are diamond particles having a volume% (hereinafter,% indicates volume%) and an average particle diameter of 3 to 30 μm: 85 to 99.9%, M
g, Ca, Sr, and Ba carbonates and oxides (hereinafter, MgCO 3 , CaCO 3 , SrCO 3 , B
aCO 3 , MgO, CaO, SrO, and BaO), and sintering aid components consisting of one or more of them and unavoidable impurities: the remainder, and the diamond grains are adjacent to each other. It is also known that the sintering aid component is composed of sintered diamond having a structure in which the sintering aid component is dispersed and distributed.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の石油はじ
め、各種の掘削装置の高性能化および高出力化はめざま
しく、かつ掘削作業の省力化および省エネ化に対する要
求も強く、これに伴い、掘削作業は高速化の傾向にある
が、上記の従来掘削工具においては、特にこれの切刃片
を構成する焼結ダイヤモンドのもつ圧縮強さが十分でな
いために、高速掘削時に発生する高圧縮負荷に耐えられ
ず、このため前記切刃片には欠けやチッピングなどが発
生し易く、これによって摩耗進行が促進されるようにな
ることから、比較的短時間で使用寿命に至るのが現状で
ある。
On the other hand, in recent years, various types of drilling equipment such as petroleum have been remarkably improved in performance and output, and there is a strong demand for labor saving and energy saving in drilling work. The work tends to be faster, but in the above-mentioned conventional drilling tools, in particular, the compressive strength of the sintered diamond constituting the cutting edge piece is not sufficient, so that the high compression load generated during high-speed The cutting edge piece is not easily tolerated, and therefore, the cutting piece tends to be chipped or chipped, thereby promoting the progress of abrasion.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、掘削工具を構成する焼結ダイヤ
モンド製切刃片に着目し、高速掘削時に発生する高圧縮
負荷にも十分満足に耐えることのできる圧縮強さを焼結
ダイヤモンド製切刃片に具備せしめるべく研究を行った
結果、切刃片を構成する焼結ダイヤモンドにおけるダイ
ヤモンド粒を、10〜50μmの粒径を有し、かつ平均
粒径が20〜30μmのダイヤモンド粗粒と、7μm以
下の粒径を有し、かつ平均粒径が2〜4μmのダイヤモ
ンド細粒で構成すると、この結果の焼結ダイヤモンド
は、前記ダイヤモンド粗粒が相互に隣接結合し、前記ダ
イヤモンド粗粒間に焼結助剤成分が存在し、かつ前記焼
結助剤成分中に上記ダイヤモンド細粒が分散分布した組
織をもつようになり、このような組織をもった焼結ダイ
ヤモンドで切刃片を構成した掘削工具は、高速掘削でも
前記焼結ダイヤモンドが高い圧縮強さをもつようになる
ことから、切刃片に欠けやチッピングなどの発生なく、
長期に亘ってすぐれた掘削性能を発揮するようになると
いう研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, attention has been paid to sintered diamond cutting blades constituting a drilling tool, and the sintered diamond cutting blade has a compressive strength that can sufficiently withstand a high compression load generated during high-speed excavation. As a result of conducting research to provide the cutting pieces, it was found that the diamond grains in the sintered diamond constituting the cutting edge piece were made of diamond coarse grains having a grain size of 10 to 50 μm and having an average grain size of 20 to 30 μm, and 7 μm. When composed of diamond fine particles having the following particle diameters and having an average particle diameter of 2 to 4 μm, the resulting sintered diamond is such that the diamond coarse particles are mutually adjacently bonded and sintered between the diamond coarse particles. The binder aid component is present, and the diamond fine particles have a structure in which the diamond fine particles are dispersed and distributed in the sintering aid component. The cutting edge piece is composed of sintered diamond having such a structure. Drilling tool that, since it will have the sintered diamond has high compressive strength even at high drilling, without occurrence of chipping or chipping the cutting edge strip,
The research results show that they will exhibit excellent excavation performance over a long period of time.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、合金鋼製ビット本体の先端面に
複数の超硬ポストが所定の配列で固着され、前記ポスト
の先方側面に焼結ダイヤモンド製切刃片が直接ろう付け
された構造の掘削工具において、上記切刃片が、10〜
50μmの粒径を有し、かつ平均粒径が20〜30μm
のダイヤモンド粗粒:80〜90%、7μm以下の粒径
を有し、かつ平均粒径が2〜4μmのダイヤモンド細
粒:50〜10%、Mg、Ca、Sr、およびBaの炭
酸塩および酸化物のうちの1種または2種以上からなる
焼結助剤成分および不可避不純物:残り、からなる組成
を有すると共に、上記ダイヤモンド粗粒が相互に隣接結
合し、前記ダイヤモンド粗粒間に上記焼結助剤成分が存
在し、かつ前記焼結助剤成分中に上記ダイヤモンド細粒
が分散分布した組織を有する焼結ダイヤモンドで構成し
てなる、切刃片がすぐれた圧縮強さを有する掘削工具に
特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of carbide posts are fixed in a predetermined arrangement to the tip end surface of an alloy steel bit main body, and the front side surface of the post is sintered. In a drilling tool having a structure in which a cutting diamond-made cutting piece is directly brazed, the cutting piece is preferably 10 to 10 mm.
Having a particle size of 50 μm and an average particle size of 20 to 30 μm
Diamond coarse particles: 80-90%, fine particles having a particle diameter of 7 μm or less and having an average particle diameter of 2-4 μm: 50-10%, carbonate and oxidation of Mg, Ca, Sr, and Ba Sintering aid components and unavoidable impurities consisting of one or more of the following: A cutting tool having excellent compressive strength, wherein the cutting component has an auxiliary component, and is composed of sintered diamond having a structure in which the diamond fine particles are dispersed and distributed in the sintering auxiliary component. It has features.

【0006】つぎに、この発明の掘削工具の切刃片を構
成する焼結ダイヤモンドにおけるダイヤモンド粗粒およ
びダイヤモンド細粒の粒径および平均粒径、さらに含有
割合を上記の通りに限定した理由を説明する。 (A)ダイヤモンド粗粒 (a)粒径 ダイヤモンド粗粒の粒径は、経験的に定めたものであっ
て、その粒径を10〜50μmとすることにより、この
発明の焼結ダイヤモンドのもつ組織、すなわち相互に隣
接結合したダイヤモンド粗粒間に焼結助剤成分が存在
し、かつ前記焼結助剤成分中に上記ダイヤモンド細粒が
分散分布した組織の形成が可能となり、このダイヤモン
ド粗粒の相互隣接結合によって所望の高い圧縮強さを確
保するようにしたものであり、したがって粒径が10μ
m未満のものや、50μmを越えたものが存在すると、
この部分での上記組織の形成が困難になるばかりでな
く、この部分の強度低下が避けられず、この部分が欠け
やチッピングの起点となることから、その粒径を10〜
50μmと定めた。 (b)平均粒径 その平均粒径が20μm未満になると、相対的に細粒組
織となりすぎ、耐摩耗性に低下傾向が現れるようにな
り、一方その平均粒径が30μmを越えると反対に粗粒
組織となり、特に切刃片に欠けやチッピングが発生し易
くなることから、その平均粒径を20〜30μmと定め
た。 (c)含有割合 その含有割合が80%未満になると、耐摩耗性が急激に
低下するようになり、一方その含有割合が90%を越え
ると、耐欠損性が低下するようになることから、その含
有割合を80〜90%と定めた。
Next, the reason why the grain size, the average grain size, and the content ratio of the coarse and fine diamond grains in the sintered diamond constituting the cutting edge of the cutting tool of the present invention are limited as described above. I do. (A) Diamond Coarse Grain (a) Particle Size The particle size of the diamond coarse particles is empirically determined, and by setting the particle size to 10 to 50 μm, the structure of the sintered diamond of the present invention is obtained. That is, the sintering aid component exists between the diamond coarse particles bonded adjacent to each other, and the structure in which the diamond fine particles are dispersed and distributed in the sintering aid component can be formed. Adjacent bonds ensure the desired high compressive strength, so that the particle size is 10 μm.
m or more than 50 μm,
Not only is it difficult to form the structure in this part, but also the strength of this part is unavoidable, and this part becomes the starting point of chipping and chipping.
It was determined to be 50 μm. (B) Average particle size When the average particle size is less than 20 μm, the structure becomes too fine and the wear resistance tends to decrease. The average grain size was determined to be 20 to 30 μm because the grain structure was formed, and chipping and chipping were particularly likely to occur in the cutting piece. (C) Content ratio When the content ratio is less than 80%, the wear resistance rapidly decreases. On the other hand, when the content ratio exceeds 90%, the fracture resistance decreases. The content ratio was determined to be 80 to 90%.

【0007】(B)ダイヤモンド細粒 (a)粒径 ダイヤモンド細粒の粒径も経験的に定めたものであっ
て、その粒径が7μmを越えると、焼結助剤成分中に分
散分布する密度が比例的に低くなって、所望のすぐれた
圧縮強さを確保することができなくなることから、その
粒径を7μm以下と定めた。 (b)平均粒径 その平均粒径も同じく経験的に定めたものであり、その
平均粒径が2μm未満になると、耐摩耗性の低下傾向が
避けられず、一方その平均粒径が4μmを越えると、圧
縮強さの低下が避けられなくなることから、その平均粒
径を2〜4μmと定めた。 (c)含有割合その含有割合が5%未満では、圧縮強さ
に所望の向上効果が得られず、一方その含有割合が10
%を越えても、圧縮強さに低下傾向が現れるようになる
ことから、その含有割合を5〜10%と定めた。
(B) Diamond Fine Particles (a) Particle Size The particle size of diamond fine particles is also empirically determined, and if the particle size exceeds 7 μm, it is dispersed and distributed in the sintering aid component. Since the density becomes proportionally low and the desired excellent compressive strength cannot be secured, the particle size is set to 7 μm or less. (B) Average particle size The average particle size is also determined empirically. If the average particle size is less than 2 μm, the tendency of abrasion resistance to decrease is inevitable, while the average particle size is 4 μm. If it exceeds, the reduction in compressive strength cannot be avoided, so the average particle size is set to 2 to 4 μm. (C) Content rate If the content rate is less than 5%, the desired effect of improving the compressive strength cannot be obtained, while the content rate is 10%.
%, The compressive strength tends to decrease, so the content ratio is set to 5 to 10%.

【0008】[0008]

【発明の実施の形態】つぎに、この発明の掘削工具を実
施例により具体的に説明する。原料粉末として、それぞ
れ表1に示される最大粒径、最小粒径、および平均粒径
を有するダイヤモンド粗粒およびダイヤモンド細粒、さ
らに各種の焼結助剤成分を用意し、これら原料粉末を同
じく表1に示される配合割合に秤量し、まず、前記ダイ
ヤモンド細粒と焼結助剤成分をアセトンを溶剤として用
い、ボールミル中で6時間混合した後、真空乾燥し、つ
いで、これに残りのダイヤモンド粗粒を加えて、さらに
ボールミルで2時間乾式混合して混合粉末とし、この混
合粉末を1ton/cm2 の圧力で圧粉体にプレス成形
し、この圧粉体をTaカプセルに封入した状態で通常の
ベルト式超高圧焼結装置に装填し、圧力:7〜9GP
a、温度:2000〜2400℃の範囲内の所定の圧力
および温度に30分間保持の条件で焼結して、いずれも
直径:10mm×厚さ:1.2mmの寸法をもった円形
チップ形状の焼結体をそれぞれ16個づつ形成し、これ
らの焼結体の表面をダイヤモンド砥石を用いて鏡面研磨
した後、レーザーを用いて直径:8mmに加工して焼結
ダイヤモンド製切刃片とし、この場合同時に直径:1.
5mm×長さ:1.5mmの寸法をもった圧縮強さ測定
用焼結試験片も形成し、ついで前記切刃片16個を、い
ずれも同じCo:6重量%、WCおよび不可避不純物:
残りの組成および最大径:15mm×底面径:13mm
×長さ:24mmの寸法並びに図1に示す形状を有する
16個の超硬ポストの先方側面に、Ti:2重量%、A
gおよび不可避不純物:残りの組成をもった厚さ:0.
1mmのろう材を用い、このろう材を挟んだ状態で、A
rガス中、温度:950℃に5分間保持の条件でろう付
けし、さらにこのように切刃片をろう付けした16個の
超硬ポストを、図1に示される通りJIS・SCM41
5に規定される合金鋼で構成されたビット本体の直径:
240mmの先端面に十字状に配列形成された深さ:8
mmの合計16個の凹みのそれぞれに、その底部を重量
%でCu−40%Ag−6%Sn−2%Niの組成をも
った厚さ:0.1mmのろう材を挟んで嵌着し、Arガ
ス中、温度:800℃に5分間保持の条件でろう付けす
ることにより本発明掘削工具1〜12をそれぞれ製造し
た。また、比較の目的で、原料粉末として上記のダイヤ
モンド粗粒およびダイヤモンド細粒に代わって、表2に
示される通りの平均粒径を有する市販のダイヤモンド粒
を用いる以外は同一の条件で従来掘削工具1〜12を製
造した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an excavating tool according to the present invention will be described in detail with reference to embodiments. As raw material powders, diamond coarse particles and diamond fine particles having the maximum particle size, the minimum particle size, and the average particle size shown in Table 1, respectively, and various sintering aid components were prepared. First, the diamond fine granules and the sintering aid component were mixed in a ball mill for 6 hours using acetone as a solvent, and then vacuum-dried. The granules are added, and the mixture is dry-mixed with a ball mill for 2 hours to form a mixed powder. The mixed powder is pressed into a green compact at a pressure of 1 ton / cm 2 , and the green compact is usually encapsulated in a Ta capsule. , And pressure: 7-9GP
a, Temperature: Sintered at a predetermined pressure and temperature in the range of 2000 to 2400 ° C. for 30 minutes, and each has a circular chip shape having a size of 10 mm in diameter × 1.2 mm in thickness. Sixteen sintered bodies were formed, and the surfaces of these sintered bodies were mirror-polished using a diamond grindstone, then processed to a diameter of 8 mm using a laser to form sintered diamond cutting blades. At the same time the diameter: 1.
A sintered test piece for measuring compressive strength having a size of 5 mm × length: 1.5 mm was also formed, and then 16 of the cutting blade pieces were replaced with the same Co: 6% by weight, WC and unavoidable impurities:
Remaining composition and maximum diameter: 15 mm x bottom diameter: 13 mm
× Length: Ti: 2% by weight, A on the front side surface of 16 carbide posts having dimensions of 24 mm and the shape shown in FIG.
g and unavoidable impurities: thickness with remaining composition: 0.
A 1 mm brazing material is used.
In the r gas, brazing was carried out at a temperature of 950 ° C. for 5 minutes, and the 16 cemented carbide posts to which the cutting blade pieces were brazed in this manner were JIS SCM41 as shown in FIG.
Diameter of bit body composed of alloy steel specified in 5:
Depth formed in a cross shape on the tip surface of 240 mm: 8
In each of the 16 dents having a total thickness of 0.1 mm, a bottom portion thereof is fitted with a brazing material having a composition of Cu-40% Ag-6% Sn-2% Ni having a thickness of 0.1 mm by weight. , Ar gas and brazing at a temperature of 800 ° C. for 5 minutes to produce excavating tools 1 to 12 of the present invention, respectively. For the purpose of comparison, a conventional drilling tool was used under the same conditions except that commercially available diamond particles having an average particle diameter as shown in Table 2 were used instead of the above-described diamond coarse particles and diamond fine particles as the raw material powder. 1-12 were produced.

【0009】この結果得られた本発明掘削工具1〜12
および従来掘削工具1〜12は、それぞれこれを構成す
る焼結ダイヤモンド製切刃片が表1、2に示される配合
割合と実質的に同じ組成を有し、かつ本発明掘削工具1
〜12の切刃片は、いずれもダイヤモンド粗粒が相互に
隣接結合し、前記ダイヤモンド粗粒間に焼結助剤成分が
存在し、かつ前記焼結助剤成分中にダイヤモンド細粒が
分散分布した組織をもち、一方従来掘削工具1〜12の
切刃片は、いずれもダイヤモンド粒が相互に隣接結合
し、これに焼結助剤成分が分散分布した組織をもつもの
であった。
The resulting excavating tools 1 to 12 of the present invention
Further, in the conventional drilling tools 1 to 12, the sintered diamond cutting blades constituting the same have substantially the same composition as the compounding ratio shown in Tables 1 and 2, and the drilling tool 1 according to the present invention.
In any of the cutting blades Nos. 1 to 12, diamond coarse particles are mutually adjacently bonded, a sintering aid component exists between the diamond coarse particles, and diamond fine particles are dispersed and distributed in the sintering aid component. On the other hand, the cutting blades of the conventional drilling tools 1 to 12 have a structure in which diamond grains are adjacently bonded to each other, and a sintering aid component is dispersed and distributed therein.

【0010】つぎに、この結果得られた各種の掘削工具
について、 掘削材:1010kg/cm2 の一軸圧縮強度および7
5のショア硬さを有する安山岩、 掘削速度:45cm/min、 給水量:90l/min、 回転速度:150r.p.m.、 給圧:500kg/ビット、 の条件で高速掘削試験を行ない、使用寿命に至るまでの
掘削長をそれぞれ測定した。これらの測定結果を表1、
2に示した。また、表1、2には上記焼結試験片を用い
て圧縮強さを測定した結果も合わせて示した。
[0010] Next, various drilling tools obtained as a result of the drilling were: 1010 kg / cm 2 uniaxial compressive strength and 7%.
Andesite with Shore hardness of 5, excavation speed: 45 cm / min, water supply: 90 l / min, rotation speed: 150 r. p. m. A high-speed excavation test was performed under the following conditions: a supply pressure: 500 kg / bit; and the excavation length up to the service life was measured. Table 1 shows the results of these measurements.
2 is shown. Tables 1 and 2 also show the results of measuring the compressive strength using the sintered test pieces.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】表1、2に示される結果から、本発明掘
削工具1〜12は、これを構成する切刃片が、いずれも
ダイヤモンド粗粒が相互に隣接結合し、前記ダイヤモン
ド粗粒間に焼結助剤成分が存在し、かつ前記焼結助剤成
分中にダイヤモンド細粒が分散分布した組織をもつこと
によって、きわめて高い圧縮強さをもつようになること
から、苛酷な条件での掘削作業となる高速掘削にもかか
わらず、前記切刃片に欠けやチッピングなどが発生する
のが著しく抑制され、これによってすぐれた耐摩耗性を
示し、すぐれた掘削性能を長期に亘って発揮するのに対
して、従来掘削工具1〜12は、これを構成する切刃片
が、いずれも高速掘削時に発生する高圧縮負荷に耐えら
れず、このため前記切刃片には欠けやチッピングなどが
発生し易く、この結果掘削開始後短時間で使用寿命に至
ることが明らかである。
According to the results shown in Tables 1 and 2, the cutting tools 1 to 12 according to the present invention have the cutting blade pieces formed by the diamond coarse particles which are adjacently bonded to each other. Since the sintering aid component is present in the sintering aid component, and has a structure in which diamond fine particles are dispersed and distributed in the sintering aid component, it has an extremely high compressive strength. Despite high-speed excavation, which is an excavation work, the occurrence of chipping or chipping in the cutting piece is significantly suppressed, thereby exhibiting excellent wear resistance and exhibiting excellent excavation performance over a long period of time. On the other hand, in the conventional drilling tools 1 to 12, none of the cutting pieces constituting the cutting tools can withstand a high compression load generated during high-speed excavation, and therefore, the cutting pieces have chipping or chipping. Easy to occur, this It is clear that lead to service life in a short time after the start of fruit drilling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】掘削工具を示す概略斜視図(a)および切刃片
付超硬ポストの概略正面図(b)である。
FIG. 1 is a schematic perspective view (a) showing a drilling tool and a schematic front view (b) of a carbide post with a cutting edge piece.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年9月17日(1998.9.1
7)
[Submission date] September 17, 1998 (1998.9.1)
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、合金鋼製ビット本体の先端面に
複数の超硬ポストが所定の配列で固着され、前記ポスト
の先方側面に焼結ダイヤモンド製切刃片が直接ろう付け
された構造の掘削工具において、上記切刃片が、10〜
50μmの粒径を有し、かつ平均粒径が20〜30μm
のダイヤモンド粗粒:80〜90%、7μm以下の粒径
を有し、かつ平均粒径が2〜4μmのダイヤモンド細
粒:〜10%、Mg、Ca、Sr、およびBaの炭酸
塩および酸化物のうちの1種または2種以上からなる焼
結助剤成分および不可避不純物:残り、からなる組成を
有すると共に、上記ダイヤモンド粗粒が相互に隣接結合
し、前記ダイヤモンド粗粒間に上記焼結助剤成分が存在
し、かつ前記焼結助剤成分中に上記ダイヤモンド細粒が
分散分布した組織を有する焼結ダイヤモンドで構成して
なる、切刃片がすぐれた圧縮強さを有する掘削工具に特
徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of carbide posts are fixed in a predetermined arrangement to the tip end surface of an alloy steel bit main body, and the front side surface of the post is sintered. In a drilling tool having a structure in which a cutting diamond-made cutting piece is directly brazed, the cutting piece is preferably 10 to 10 mm.
Having a particle size of 50 μm and an average particle size of 20 to 30 μm
Diamond coarse particles: 80 to 90%, fine particles having a particle size of 7 μm or less and having an average particle size of 2 to 4 μm: 5 to 10%, carbonate and oxidation of Mg, Ca, Sr, and Ba Sintering aid components and unavoidable impurities consisting of one or more of the following: A cutting tool having excellent compressive strength, wherein the cutting component has an auxiliary component, and is composed of sintered diamond having a structure in which the diamond fine particles are dispersed and distributed in the sintering auxiliary component. It has features.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合金鋼製ビット本体の先端面に複数の炭
化タングステン基超硬合金製ポストが所定の配列で固着
され、前記ポストの先方側面に焼結ダイヤモンド製切刃
片が直接ろう付けされた構造の掘削工具において、 上記切刃片を、 10〜50μmの粒径を有し、かつ平均粒径が20〜3
0μmのダイヤモンド粗粒:80〜90容量%、 7μm以下の粒径を有し、かつ平均粒径が2〜4μmの
ダイヤモンド細粒:50〜10容量%、 Mg、Ca、Sr、およびBaの炭酸塩および酸化物の
うちの1種または2種以上からなる焼結助剤成分および
不可避不純物:残り、 からなる組成を有すると共に、上記ダイヤモンド粗粒が
相互に隣接結合し、前記ダイヤモンド粗粒間に上記焼結
助剤成分が存在し、かつ前記焼結助剤成分中に上記ダイ
ヤモンド細粒が分散分布した組織を有する焼結ダイヤモ
ンドで構成したことを特徴とする切刃片がすぐれた圧縮
強さを有する切削工具。
1. A plurality of tungsten carbide-based cemented carbide posts are fixed to a tip end surface of an alloy steel bit body in a predetermined arrangement, and a sintered diamond cutting blade is directly brazed to a front side surface of the post. In the excavating tool having the above-mentioned structure, the cutting edge piece has a particle diameter of 10 to 50 μm and an average particle diameter of 20 to 3.
0 μm diamond coarse particles: 80 to 90% by volume, diamond fine particles having a particle size of 7 μm or less and having an average particle size of 2 to 4 μm: 50 to 10% by volume, carbonate of Mg, Ca, Sr, and Ba A sintering aid component and one or more unavoidable impurities consisting of one or more of salts and oxides: the remainder, having the following composition: The cutting edge piece has an excellent compressive strength, characterized in that the cutting edge piece has a structure in which the sintering aid component is present and has a structure in which the diamond fine particles are dispersed and distributed in the sintering aid component. Cutting tool having
JP10169391A 1998-06-17 1998-06-17 Excavating tool having cutting-edge with excellent compressive strength Withdrawn JP2000002073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10169391A JP2000002073A (en) 1998-06-17 1998-06-17 Excavating tool having cutting-edge with excellent compressive strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10169391A JP2000002073A (en) 1998-06-17 1998-06-17 Excavating tool having cutting-edge with excellent compressive strength

Publications (1)

Publication Number Publication Date
JP2000002073A true JP2000002073A (en) 2000-01-07

Family

ID=15885740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10169391A Withdrawn JP2000002073A (en) 1998-06-17 1998-06-17 Excavating tool having cutting-edge with excellent compressive strength

Country Status (1)

Country Link
JP (1) JP2000002073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384793A3 (en) * 2002-07-26 2006-01-18 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
CN101200998A (en) * 2002-07-26 2008-06-18 三菱麻铁里亚尔株式会社 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
JP2013500920A (en) * 2009-07-31 2013-01-10 エレメント シックス リミテッド Polycrystalline diamond composite compact
JP2016538230A (en) * 2013-09-11 2016-12-08 スミス インターナショナル インコーポレイテッド Thermally stable polycrystalline diamond and method for making the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384793A3 (en) * 2002-07-26 2006-01-18 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US7261753B2 (en) 2002-07-26 2007-08-28 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
CN100358670C (en) * 2002-07-26 2008-01-02 三菱麻铁里亚尔株式会社 Fusion structure and method for hard alloy and diamond piece and drilling tool and cutting piece
CN101200998A (en) * 2002-07-26 2008-06-18 三菱麻铁里亚尔株式会社 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US7621974B2 (en) 2002-07-26 2009-11-24 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US8147573B2 (en) 2002-07-26 2012-04-03 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US8728184B2 (en) 2002-07-26 2014-05-20 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
JP2013500920A (en) * 2009-07-31 2013-01-10 エレメント シックス リミテッド Polycrystalline diamond composite compact
JP2016538230A (en) * 2013-09-11 2016-12-08 スミス インターナショナル インコーポレイテッド Thermally stable polycrystalline diamond and method for making the same
US11306542B2 (en) 2013-09-11 2022-04-19 Schlumberger Technology Corporation Thermally stable polycrystalline diamond and methods of making the same

Similar Documents

Publication Publication Date Title
JP3146747B2 (en) Cutting tools made of cubic boron nitride based ultra-high pressure sintered material with excellent wear and fracture resistance
JP3087555B2 (en) Cutting tool made of diamond-based ultra-high pressure sintered material with excellent chipping resistance and its manufacturing method
JPH08126903A (en) Cutting tool made of cubic boron nitride super high pressure sintered material excellent in wear resistance
JP2000002073A (en) Excavating tool having cutting-edge with excellent compressive strength
JP2861486B2 (en) High hardness sintered cutting tool
JP3942127B2 (en) Drilling tool having excellent breaking strength with brazed portion of cutting edge piece
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP2861487B2 (en) High hardness sintered cutting tool
JP4111469B2 (en) WC-containing cemented carbide reinforced by intragranular dispersion with oxide and method for producing the same
JP2663474B2 (en) Square cutting tip made of cemented carbide for cutting Ti alloy
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JP3391231B2 (en) Cutting tool made of sintered diamond with excellent fracture resistance
JP3303688B2 (en) Cemented carbide end mill with excellent wear resistance with cutting edge
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JP4154643B2 (en) Cemented carbide square end mill with excellent chipping resistance with high-speed cutting.
JP2001259919A (en) Cemented carbide end mill having tip end surface cutting edge surface and outer pheripheral edge showing excellent heat-resistant plastic deformation performance
JP3794234B2 (en) Fine-grained tungsten carbide-based cemented carbide end mills with excellent tipping resistance on the cutting edge surface and outer peripheral edge
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JP2002013377A (en) Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JP2855740B2 (en) Cemented carbide parts for cutting tools with excellent wear resistance and toughness
JP3358477B2 (en) Cutting tool with excellent brazing joint strength with cutting edge piece
JP2000178082A (en) SOLDER MATERIAL EXCELLENT IN JOINTING OF DIAMOND-BASED PR cBM-BASED HIGH-PRESSURE SINTERED BODY TO SUBSTRATE HARD METAL
JP2000052085A (en) High performance super high pressure cutting tool of brazing type composed of diamond group super high pressure sintered compact and substrate hard metal
JP4510322B2 (en) Cemented carbide throwaway cutting tip that provides excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070727