JP2000000637A - METHOD FOR STIRRINGLY AND CONTINUOUSLY CASTING Al ALLOY - Google Patents

METHOD FOR STIRRINGLY AND CONTINUOUSLY CASTING Al ALLOY

Info

Publication number
JP2000000637A
JP2000000637A JP16560198A JP16560198A JP2000000637A JP 2000000637 A JP2000000637 A JP 2000000637A JP 16560198 A JP16560198 A JP 16560198A JP 16560198 A JP16560198 A JP 16560198A JP 2000000637 A JP2000000637 A JP 2000000637A
Authority
JP
Japan
Prior art keywords
molten metal
spout
alloy
imc
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16560198A
Other languages
Japanese (ja)
Other versions
JP3828664B2 (en
Inventor
Takeyoshi Nakamura
武義 中村
Nobuhiro Saito
信広 斉藤
Teruyuki Otani
輝幸 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16560198A priority Critical patent/JP3828664B2/en
Priority to US09/276,691 priority patent/US6435263B2/en
Priority to EP99106548A priority patent/EP0947262B1/en
Priority to DE69908470T priority patent/DE69908470T2/en
Publication of JP2000000637A publication Critical patent/JP2000000637A/en
Application granted granted Critical
Publication of JP3828664B2 publication Critical patent/JP3828664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for stirringly and continuously casting an Al alloy, with which crystallized quantity of harmful α intermetallic compound is restrained to the inevitable quantity and simultaneously, crystallized quantity of helpful fine β intermetallic compound can be enhanced to the upper limit value in a point of the improvement of mechanical characteristics of an Al alloy member. SOLUTION: At the time of the stirringly continuous casting method while stirring the molten metal (m) having Al alloy composition in a spout 15, the molten metal is introduced into a cylindrical mold 13 disposed just below the spout 15. As the molten metal (m) having the Al alloy compound, the metal containing 0.75 wt.% to <2 wt.% Fe, and at the time of being 0.75 wt.%<=Fe<=1.5 wt.%, Mn<=[(Fe/5)+0.2] wt.% and at the time of being 1.5 wt.%<Fe<2 wt.%, Mn<=[-Fe+2] wt.% as the Mn content, is used. Further, cooling rate CR of the molten metal (m) at the upper peripheral part (c) of molten metal stirring range forming part (b) above the inner peripheral surface (a) of the spout, is set to 10 deg.C/s<=CR<=30 deg.C/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はAl合金の攪拌連続
鋳造法、特に、Al合金組成の溶湯をスパウト内で攪拌
しつつ、そのスパウト直下に配置された筒状鋳型に導入
する攪拌連続鋳造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an agitated continuous casting method for an Al alloy, and more particularly, to an agitated continuous casting method in which a molten metal having an Al alloy composition is stirred in a spout and introduced into a cylindrical mold placed immediately below the spout. About.

【0002】[0002]

【従来の技術】従来、攪拌連続鋳造法によるAl合金イ
ンゴットは、例えばチクソキャスティング用鋳造材料と
して用いられている。チクソキャスティング法において
は、固相と液相とが共存する半溶融鋳造材料の流動性を
利用して成形を行うものであるから、初晶α等の高融点
晶出物の微細化は必須要件である。
2. Description of the Related Art Conventionally, an Al alloy ingot obtained by a stirring continuous casting method has been used, for example, as a casting material for thixocasting. In the thixocasting method, molding is performed using the fluidity of a semi-solid casting material in which a solid phase and a liquid phase coexist. It is.

【0003】しかしながら、省資源の要請からリサイク
ル材を原料とした場合、そのリサイクル材におけるC
u、Mn、Ti等の含有量が多くなると、高融点の針状
金属間化合物が粗大に晶出し、その粗大針状金属間化合
物を攪拌力だけでは微細化することができない、という
問題を生じた。
However, when a recycled material is used as a raw material due to a demand for resource saving, C in the recycled material is
If the content of u, Mn, Ti, etc. is increased, the high melting point acicular intermetallic compound crystallizes coarsely, and the problem that the coarse acicular intermetallic compound cannot be refined only by stirring power occurs. Was.

【0004】そこで、本発明者等はAl合金組成の溶湯
として、Fe含有量が0.75wt%≦Fe<2wt%
であるものを用いることにより初晶αの晶出温度と同一
またはそれ以上の高温下で、1次晶出物として硬質のF
e系金属間化合物、即ちアルファ金属間化合物(以下、
α−IMCと称す)を晶出させ、そのα−IMCを攪拌
力によって液相中をアトランダムに動き回らせながら初
晶αおよび粗大針状金属間化合物を破砕して微細化す
る、といった攪拌連続鋳造法を開発した(特願平10−
103893号明細書および図面参照)。
[0004] Therefore, the present inventors have proposed that a molten metal having an Al alloy composition has an Fe content of 0.75 wt% ≦ Fe <2 wt%.
By using a material which is as follows, at a high temperature equal to or higher than the crystallization temperature of primary crystal α, hard F
e-based intermetallic compound, that is, alpha intermetallic compound (hereinafter, referred to as
α-IMC) is crystallized, and the α-IMC is moved at random in the liquid phase by a stirring force to crush primary α and coarse acicular intermetallic compounds to make them finer. Developed a continuous casting method (Japanese Patent Application No. 10-
No. 103893 and drawings).

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前記攪拌
連続鋳造法について、さらに攻究を進めた結果、前記溶
湯中のMn含有量によっては、α−IMCの晶出量が増
加すると共にそれが成長することによって塊状IMCと
なり、これにより微細なベータ金属間化合物(以下、β
−IMCと称す)の晶出が抑制される、ということが判
明した。この塊状α−IMCはAl合金部材の切削性を
低下させるだけでなく、メッキ性および疲労強度の低下
を招来する。
As a result of further studies on the stirring continuous casting method, the present inventors have found that, depending on the Mn content in the molten metal, the crystallization amount of α-IMC increases and As it grows, it becomes a lump IMC, which allows fine beta intermetallic compounds (hereinafter β
-IMC) is suppressed. This massive α-IMC not only reduces the machinability of the Al alloy member, but also reduces the plating property and the fatigue strength.

【0006】[0006]

【課題を解決するための手段】本発明はα−IMCの晶
出量を不可避量に抑えると共に微細β−IMCの晶出量
を上限値まで増加させることを可能にした前記攪拌連続
鋳造法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a stirring continuous casting method capable of suppressing the crystallization amount of α-IMC to an unavoidable amount and increasing the crystallization amount of fine β-IMC to an upper limit. The purpose is to provide.

【0007】前記目的を達成するため本発明によれば、
Al合金組成の溶湯をスパウト内で攪拌しつつ、そのス
パウト直下に配置された筒状鋳型に導入する攪拌連続鋳
造法において、前記Al合金組成の溶湯として、Fe含
有量が0.75wt%≦Fe<2wt%であり、またM
n含有量が、0.75wt%≦Fe≦1.5wt%のと
きMn≦[(Fe/5)+0.2]wt%であり、一
方、1.5wt%<Fe<2wt%のときMn≦[−F
e+2]wt%であるものを用い、前記スパウト内周面
上の溶湯攪拌領域形成部の上部周縁部分における前記溶
湯の冷却速度CRを10℃/s≦CR≦30℃/sに設
定するAl合金の攪拌連続鋳造法が提供される。
[0007] To achieve the above object, according to the present invention,
In a stirring continuous casting method in which a molten metal having an Al alloy composition is introduced into a cylindrical mold placed immediately below the spout while stirring the molten metal within the spout, the molten metal having the Al alloy composition has an Fe content of 0.75 wt% ≦ Fe <2 wt%, and M
When the n content is 0.75 wt% ≦ Fe ≦ 1.5 wt%, Mn ≦ [(Fe / 5) +0.2] wt%, while when 1.5 wt% <Fe <2 wt%, Mn ≦ [-F
e + 2] wt%, and an Al alloy which sets the cooling rate CR of the molten metal at the upper peripheral portion of the molten metal stirring area forming portion on the inner peripheral surface of the spout to 10 ° C./s≦CR≦30° C./s Is provided.

【0008】FeおよびMn含有量を前記のように設定
すると、α−IMCの晶出量を不可避量に抑制すること
が可能である。また前記上部周縁部分は溶湯の冷却速度
が最も遅い位置であり、この上部周縁部分における溶湯
の冷却速度CRを前記のように設定すると、α−IMC
の成長を抑制することが可能である。これにより微細β
−IMCの晶出量を上限値まで高めることができる。前
記冷却速度は、上部周縁部分における冷却曲線を求め、
その冷却曲線より算出される。前記α−IMCは、粗大
針状金属間化合物および初晶αの破砕微細化に寄与す
る。
When the contents of Fe and Mn are set as described above, the crystallization amount of α-IMC can be suppressed to an unavoidable amount. Further, the upper peripheral portion is a position where the cooling rate of the molten metal is the slowest. When the cooling rate CR of the molten metal in the upper peripheral portion is set as described above, α-IMC
Growth can be suppressed. This allows fine β
-The crystallization amount of IMC can be increased to the upper limit. The cooling rate determines a cooling curve in the upper peripheral portion,
It is calculated from the cooling curve. The α-IMC contributes to crushing and refinement of the coarse acicular intermetallic compound and the primary crystal α.

【0009】ただし、Fe含有量およびMn含有量が前
記範囲を逸脱すると、α−IMCの晶出量が増加傾向と
なる。また前記冷却速度CRがCR<10℃/sではα
−IMCの成長が進行して微細β−IMCが晶出しにく
くなるか、または晶出しなくなる。一方、CR>30℃
/sでは冷却速度が速すぎるため、インゴットにおける
初晶αの微細化が不十分となり、またインゴットのレオ
ロジー性も低下する。
However, when the Fe content and the Mn content deviate from the above ranges, the crystallization amount of α-IMC tends to increase. When the cooling rate CR is CR <10 ° C./s, α
-The growth of IMC progresses, and fine β-IMC hardly crystallizes or does not crystallize. On the other hand, CR> 30 ° C
At / s, the cooling rate is too high, so that the primary crystal α in the ingot is not sufficiently refined, and the rheological properties of the ingot are also reduced.

【0010】[0010]

【発明の実施の形態】図1,2に示す連続鋳造装置1
は、軸線を上下方向に向けた胴状本体2を有する。その
胴状本体2は、内周壁3と、その外周側に所定の間隔を
とって配置された外周壁4と、両壁3,4の上端側に存
する環状上端壁5と、両壁3,4の下端側に存する環状
下端壁6とより構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Continuous casting apparatus 1 shown in FIGS.
Has a body 2 whose axis is oriented vertically. The body 2 includes an inner peripheral wall 3, an outer peripheral wall 4 arranged at a predetermined interval on the outer peripheral side, an annular upper end wall 5 on the upper end side of the two walls 3, 4, And an annular lower end wall 6 located at the lower end side.

【0011】内周壁3は上部筒体7と下部筒体8とより
なり、上部筒体7の下部外周面に嵌着した環状ゴムシー
ル9の内向き環状部10が両筒体7,8間に挟まれてそ
れらの間をシールする。上部筒体7において、その下半
部は、内側に環状段部11が形成されるように、上半部
12よりも厚肉に形成されて筒状水冷鋳型13を構成す
る。この水冷鋳型13はAl合金(例えば、A505
2)よりなる。
The inner peripheral wall 3 is composed of an upper cylindrical body 7 and a lower cylindrical body 8, and an inward annular portion 10 of an annular rubber seal 9 fitted to a lower outer peripheral surface of the upper cylindrical body 7 is provided between the two cylindrical bodies 7, 8. It is sandwiched and seals between them. In the upper cylindrical body 7, the lower half thereof is formed to be thicker than the upper half 12 so as to form the annular step portion 11 on the inner side, and forms a cylindrical water-cooled mold 13. The water-cooled mold 13 is made of an Al alloy (for example, A505
2).

【0012】上半部12内に、薄肉の筒体14を介して
スパウト15が、水冷鋳型13と同軸上に位置するよう
に嵌合され、その下向きの溶湯出口16を形成する環状
下端面17が環状段部11に当接する。またスパウト1
5の、上端壁5から突出する部分に環状抜止め板18が
嵌合され、その抜止め板18は上端壁5に固定される。
スパウト15は、断熱耐火性を有するケイ酸カルシウム
より構成される。スパウト構成材料としてはアルミナ、
シリカ等も用いられる。スパウト15の上方に、水平注
湯を行うための溶湯供給樋19が配置され、その下向き
の給湯口20がスパウト15の上向きの溶湯受入れ口2
1に連通する。
A spout 15 is fitted into the upper half 12 through a thin cylindrical body 14 so as to be located coaxially with the water-cooled mold 13, and an annular lower end surface 17 forming a downwardly directed molten metal outlet 16. Abuts on the annular step portion 11. Also spout 1
An annular retaining plate 18 is fitted to a portion of the projection 5 protruding from the upper end wall 5, and the retaining plate 18 is fixed to the upper end wall 5.
The spout 15 is made of calcium silicate having adiabatic fire resistance. Alumina as spout constituent material,
Silica or the like is also used. A molten metal supply gutter 19 for performing horizontal pouring is disposed above the spout 15, and its downwardly-facing water supply port 20 is connected to the upwardly-facing molten metal receiving port 2 of the spout 15.
Communicate with 1.

【0013】胴状本体2において、その内、外周壁3,
4間の筒状密閉空間22に、電磁誘導式攪拌機23が配
設され、その攪拌機23はスパウト15内の溶湯mに電
磁攪拌力を付与する。攪拌機23は筒状をなす成層鉄心
24と、その成層鉄心24に巻装された複数のコイル2
5とよりなる。成層鉄心24は、図3に明示するよう
に、筒状部26と、その内周面に円周上等間隔に配置さ
れて母線方向に延びる複数の凸条27とよりなる。各コ
イル25は、1つの凸条27において2つのコイル25
の一部分が重なり合うように、相隣る両凸条27に巻装
される。
In the torso body 2, the outer peripheral wall 3,
An electromagnetic induction type stirrer 23 is provided in the cylindrical closed space 22 between the four, and the stirrer 23 applies an electromagnetic stirring force to the molten metal m in the spout 15. The stirrer 23 includes a cylindrical core 24 and a plurality of coils 2 wound around the core 24.
5 As shown in FIG. 3, the laminated iron core 24 includes a cylindrical portion 26 and a plurality of ridges 27 arranged on the inner peripheral surface thereof at equal circumferential intervals and extending in the generatrix direction. Each coil 25 includes two coils 25 on one ridge 27.
Are wound around the adjacent ridges 27 so that a part of the ridges overlap each other.

【0014】成層鉄心24の内側に、各凸条27の先端
面が密着するように薄肉のコイル外止め用筒体28が嵌
合され、その筒体28は内周面の一部を環状ゴムシール
9に密着させて筒状密閉空間22内に固定される。また
成層鉄心24は、下端壁6の環状支持部材29上に載せ
られてその部材29に複数のボルト30およびナット3
1により固定される。1つのコイル25に対して2つの
割合で複数の接続具32が用意され、各接続具32は水
密手段を以て下端壁6を貫通してそれに取付けられてい
る。
A thin-walled coil stopping cylinder 28 is fitted inside the laminated iron core 24 so that the tips of the ridges 27 are in close contact with each other. 9 and is fixed in the cylindrical closed space 22. The stratified iron core 24 is mounted on an annular support member 29 of the lower end wall 6 and a plurality of bolts 30 and nuts 3
Fixed by 1. A plurality of connecting tools 32 are prepared in two ratios for one coil 25, and each connecting tool 32 is attached to the lower end wall 6 by watertight means through the lower end wall 6.

【0015】外周壁4に複数の給水口33が形成され、
各給水口33を通じて密閉空間22内に冷却水wが供給
される。成層鉄心24内側の筒体28に、その上端部近
傍に位置させて複数の通孔34が形成され、これにより
環状ゴムシール9の上方に冷却水溜り35が存する。水
冷鋳型13は冷却水溜り35により冷却されると共にそ
の冷却水溜り35の冷却水wを斜め下向きに噴出する複
数の噴出孔36を有する。通孔34は筒体28の下部側
にも形成されている。
A plurality of water supply ports 33 are formed in the outer peripheral wall 4,
Cooling water w is supplied into the closed space 22 through each water supply port 33. A plurality of through holes 34 are formed in the cylindrical body 28 inside the laminated iron core 24 near the upper end thereof, so that a cooling water reservoir 35 exists above the annular rubber seal 9. The water-cooled mold 13 is cooled by the cooling water sump 35 and has a plurality of jet holes 36 for jetting the cooling water w of the cooling water sump 35 obliquely downward. The through hole 34 is also formed on the lower side of the cylindrical body 28.

【0016】水冷鋳型13と溶湯mとの間に潤滑油を供
給すべく、スパウト15周りには次のような潤滑油通路
が存在する。内周壁3において、その上部筒体7の上端
部には上端壁5の下部板37が一体に設けられている。
上端壁5の上部板38および下部板37間に、スパウト
15を囲繞する環状路39と、その環状路39から放射
方向に延びる複数の直線路40とが設けられる。各直線
路40の端部に、上部板38に形成された入口41が連
通し、その入口41は給油ポンプに接続される。図2に
明示するように、上部筒体7の上半部12内周面と筒体
14外周面間に筒状路42が形成され、その筒状路42
および環状路39間を連通する複数の斜め下向きの通孔
43が上半部12と下部板37との連設部に形成されて
いる。また筒状路42の下端は、環状段部11およびス
パウト15の環状下端面17間に放射状に配列された複
数のV字状出口44に連通する。
In order to supply lubricating oil between the water-cooled mold 13 and the molten metal m, there are the following lubricating oil passages around the spout 15. In the inner peripheral wall 3, a lower plate 37 of the upper end wall 5 is integrally provided at an upper end of the upper cylindrical body 7.
An annular path 39 surrounding the spout 15 and a plurality of straight paths 40 extending radially from the annular path 39 are provided between the upper plate 38 and the lower plate 37 of the upper end wall 5. An inlet 41 formed in the upper plate 38 communicates with an end of each straight path 40, and the inlet 41 is connected to a refueling pump. As clearly shown in FIG. 2, a cylindrical path 42 is formed between the inner peripheral surface of the upper half 12 of the upper cylindrical body 7 and the outer peripheral surface of the cylindrical body 14.
In addition, a plurality of obliquely downward facing through holes 43 communicating between the annular passages 39 are formed in a continuous portion between the upper half portion 12 and the lower plate 37. The lower end of the cylindrical path 42 communicates with a plurality of V-shaped outlets 44 radially arranged between the annular step 11 and the annular lower end face 17 of the spout 15.

【0017】スパウト15内における溶湯攪拌領域A
は、略筒状をなす一群のコイル25によって囲繞される
空間部、したがって一群のコイル25の上端面と同一高
さ位置に在るスパウト15内の中間部から溶湯出口16
までであり、またスパウト内周面a上の溶湯攪拌領域形
成部bは湾曲面をなす。さらに、スパウト15の溶湯出
口16の内半径をr1 とし、一方、水冷鋳型13の内半
径をr2 としたとき、両内半径r1 ,r2 の間に、r1
<r2 およびr2 −r1 =Δr(但し、Δrはスパウト
15の張出し量)の関係が成立する。即ち、スパウト1
5は、その溶湯出口16回りに環状張出し部15aを有
する。
The molten metal stirring area A in the spout 15
Is a space surrounded by a group of coils 25 having a substantially cylindrical shape, that is, an intermediate portion in the spout 15 located at the same height position as the upper end surface of the group of coils 25, and a melt outlet 16.
The molten metal stirring area forming portion b on the spout inner peripheral surface a forms a curved surface. Furthermore, the inner radius of the molten metal outlet 16 of the spout 15 and r 1, whereas, the inner radius of the water-cooled mold 13 when the r 2, between the two within a radius r 1, r 2, r 1
<R 2 and r 2 −r 1 = Δr (where Δr is the overhang amount of the spout 15). That is, spout 1
5 has an annular overhang 15a around the melt outlet 16 thereof.

【0018】図1において、Al合金組成の溶湯mを溶
湯供給樋19の給湯口20からスパウト15内に供給す
ると、その溶湯mはスパウト15内において攪拌機23
により電磁攪拌されつつ、スパウト15直下に配置され
た水冷鋳型13に導入され、そこで冷却されてインゴッ
トIが得られる。
In FIG. 1, when a molten metal m having an Al alloy composition is supplied into a spout 15 through a water supply port 20 of a molten metal supply gutter 19, the molten metal m is stirred in the spout 15 by a stirrer 23.
While being electromagnetically stirred by, the water is introduced into a water-cooled mold 13 disposed immediately below the spout 15, where it is cooled to obtain an ingot I.

【0019】Al合金組成の溶湯mとしては、Fe含有
量が0.75wt%≦Fe<2wt%であり、またMn
含有量が、0.75wt%≦Fe≦1.5wt%のとき
Mn≦[(Fe/5)+0.2]wt%であり、一方、
1.5wt%<Fe<2wt%のときMn≦[−Fe+
2]wt%であるものが用いられる。またスパウト内周
面a上の溶湯攪拌領域形成部bの上部周縁部分cにおけ
る溶湯mの冷却速度CRは10℃/s≦CR≦30℃/
sに設定される。
As the molten alloy m of the Al alloy composition, the Fe content is 0.75 wt% ≦ Fe <2 wt%, and Mn is
When the content is 0.75 wt% ≦ Fe ≦ 1.5 wt%, Mn ≦ [(Fe / 5) +0.2] wt%.
When 1.5 wt% <Fe <2 wt%, Mn ≦ [−Fe +
2] wt% is used. Further, the cooling rate CR of the molten metal m at the upper peripheral portion c of the molten metal stirring region forming portion b on the inner peripheral surface a of the spout is 10 ° C./s≦CR≦30° C. /
s.

【0020】FeおよびMn含有量を前記のように設定
すると、α−IMCの晶出量を不可避量に抑制すること
が可能である。また前記上部周縁部分cは溶湯mの冷却
速度が最も遅い位置であり、この上部周縁部分cにおけ
る溶湯mの冷却速度CRを前記のように設定すると、α
−IMCの成長を抑制することが可能である。これによ
り微細β−IMCの晶出量を上限値まで高めることがで
きる。晶出したα−IMCは、粗大針状金属間化合物お
よび初晶αの破砕微細化に寄与する。 〔実施例1〕表1はAl合金(1)〜(12)の組成お
よびMnの上限値を示す。その上限値は、0.75wt
%≦Fe≦1.5wt%のときMn=[(Fe/5)+
0.2]wt%であり、一方、1.5wt%<Fe<2
wt%のときMn=[−Fe+2]wt%である。
When the contents of Fe and Mn are set as described above, the crystallization amount of α-IMC can be suppressed to an unavoidable amount. Further, the upper peripheral portion c is a position where the cooling rate of the molten metal m is the slowest. When the cooling rate CR of the molten metal m in the upper peripheral portion c is set as described above, α
-It is possible to suppress the growth of IMC. Thereby, the crystallization amount of fine β-IMC can be increased to the upper limit. The crystallized α-IMC contributes to crushing and refinement of the coarse acicular intermetallic compound and the primary crystal α. Example 1 Table 1 shows the compositions of Al alloys (1) to (12) and the upper limit of Mn. The upper limit is 0.75wt
% ≦ Fe ≦ 1.5 wt%, Mn = [(Fe / 5) +
0.2] wt%, whereas 1.5 wt% <Fe <2
When wt%, Mn = [− Fe + 2] wt%.

【0021】[0021]

【表1】 [Table 1]

【0022】各Al合金(1)〜(12)を用いて前記
攪拌連続鋳造装置1によりインゴットIを鋳造した。鋳
造条件は、溶解温度:730℃;スパウト15直上の溶
湯温度:650℃;鋳造引出し速度:150mm/min ;
スパウト15の張出し量Δr:2mm;インゴットIの直
径:152.4mm;溶湯攪拌領域形成部bにおける磁束
密度:360Gs(4極コイル、50Hz);上部周縁
部分cにおける溶湯mの冷却速度CR:15.5℃/
s;に設定された。
An ingot I was cast from each of the Al alloys (1) to (12) by the stirring continuous casting apparatus 1. Casting conditions were as follows: melting temperature: 730 ° C .; molten metal temperature immediately above spout 15: 650 ° C .; casting withdrawal speed: 150 mm / min;
Projecting amount Δr of spout 15: 2 mm; diameter of ingot I: 152.4 mm; magnetic flux density in molten metal stirring region forming portion b: 360 Gs (4-pole coil, 50 Hz); cooling speed CR of molten metal m in upper peripheral portion c: 15 .5 ° C /
s;

【0023】各インゴットIについて、α−IMCおよ
び微細β−IMCの存在を調べたところ、Al合金
(1),(3),(4),(7),(10),(11)
よりなる各インゴットIにおいては多量の微細β−IM
Cの存在が認められたが、Al合金(2),(5),
(6),(8),(9),(12)よりなる各インゴッ
トIにおいては多量のα−IMCの存在が認められた。
When the existence of α-IMC and fine β-IMC was examined for each ingot I, Al alloys (1), (3), (4), (7), (10), (11)
A large amount of fine β-IM
Although the presence of C was recognized, Al alloys (2), (5),
In each ingot I consisting of (6), (8), (9) and (12), a large amount of α-IMC was observed.

【0024】図4は、Fe含有量を横軸に、またMn含
有量を縦軸にそれぞれとって、各Al合金(1)〜(1
2)を、そのFeおよびMn含有量で表示したものであ
る。図中、点(1)〜(12)がAl合金(1)〜(1
2)にそれぞれ該当する。
FIG. 4 shows the Al alloys (1) to (1) with the Fe content on the horizontal axis and the Mn content on the vertical axis.
2) is expressed by its Fe and Mn contents. In the figure, points (1) to (12) correspond to Al alloys (1) to (1).
This corresponds to 2).

【0025】前記鋳造結果より、図4において点(0.
75,0)、点(1)、点(3)、点(7)、点(1
0)、点(11)、点(2.0,0)を結んで得られる
四辺形の内側が微細β−IMCを多量に晶出させ得る領
域であると言える。この場合、前記領域には、線Fe=
0.75、線Mn=(Fe/5)+0.2および線Mn
=−Fe+2は含まれるが、線Mn=0は含まれない。 〔実施例2〕表2はAl合金の組成およびMnの上限値
を示す。その上限値は、0.75wt%≦Fe≦1.5
wt%であるからMn=[(Fe/5)+0.2]wt
%である。
From the casting results, the point (0.
75, 0), point (1), point (3), point (7), point (1
0), the point (11), and the inside of the quadrilateral obtained by connecting the points (2.0, 0) can be said to be a region where a large amount of fine β-IMC can be crystallized. In this case, a line Fe =
0.75, line Mn = (Fe / 5) +0.2 and line Mn
= −Fe + 2 is included, but the line Mn = 0 is not included. Example 2 Table 2 shows the composition of the Al alloy and the upper limit of Mn. The upper limit is 0.75 wt% ≦ Fe ≦ 1.5
wt%, Mn = [(Fe / 5) +0.2] wt
%.

【0026】[0026]

【表2】 [Table 2]

【0027】Al合金を用いて前記攪拌連続鋳造装置1
によりインゴットIを鋳造した。鋳造条件は、溶解温
度:730℃;スパウト15直上の溶湯温度:650
℃;鋳造引出し速度:150〜270mm/min ;スパウ
ト15の張出し量Δr:2〜36mm;インゴットIの直
径:152.4mm;溶湯攪拌領域形成部bにおける磁束
密度:360Gs(4極コイル、50Hz);に設定さ
れ、上部周縁部分cにおける溶湯mの冷却速度CRを、
鋳造引出し速度およびスパウト15の張出し量Δrを前
記範囲においてそれぞれ変更することによって変化させ
た。
The stirring continuous casting apparatus 1 using an Al alloy
Ingot I was cast. The casting conditions were as follows: melting temperature: 730 ° C .; molten metal temperature immediately above spout 15: 650
° C; casting withdrawal speed: 150 to 270 mm / min; overhang amount of spout 15 Δr: 2 to 36 mm; diameter of ingot I: 152.4 mm; magnetic flux density in molten metal stirring area forming part b: 360 Gs (4-pole coil, 50 Hz) ; The cooling rate CR of the molten metal m in the upper peripheral portion c is:
The casting withdrawal speed and the overhang amount Δr of the spout 15 were changed by changing each in the above range.

【0028】各インゴットIについて、α−IMCおよ
び微細β−IMCの存在率およびレオロジー性を調べた
ところ、表3の結果を得た。
For each ingot I, the existence ratio and rheological properties of α-IMC and fine β-IMC were examined, and the results shown in Table 3 were obtained.

【0029】α−IMCの存在率D1 および微細β−I
MCの存在率D2 は、金属顕微鏡100倍視野における
α−IMCの面積率をd1 とし、β−IMCの面積率を
2としたとき、D1 ={d1 /(d1 +d2 )}×1
00、D2 ={d2 /(d1+d2 )}×100の式に
よって求められた。
Α-IMC abundance D 1 and fine β-I
Prevalence D 2 of the MC is the area ratio of the alpha-IMC in metallurgical microscope 100 times viewing and d 1, when the area ratio of the beta-IMC was d 2, D 1 = {d 1 / (d 1 + d 2 )} × 1
00, D 2 = {d 2 / (d 1 + d 2 )} × 100.

【0030】レオロジー性については、各インゴットI
からそれぞれ直径3mm、厚さ2mmの試験片を切出し、図
5に示すように天秤45の一方の皿46に20gの分胴
47を載せ、また他方の容器48に試験片49を嵌め込
み、そして試験片49をヒータ50により加熱すると共
に直径1mm、長さ2mmのピン51を試験片49に押し付
け、20gの分胴47と釣合った押圧力でピン51が試
験片49に刺さっていくときの温度、つまりTMA温度
を測定した。
Regarding rheological properties, each ingot I
, A test piece having a diameter of 3 mm and a thickness of 2 mm was cut out from the sample, a 20 g separating cylinder 47 was placed on one plate 46 of a balance 45, and a test piece 49 was fitted into the other container 48 as shown in FIG. The piece 49 is heated by the heater 50 and a pin 51 having a diameter of 1 mm and a length of 2 mm is pressed against the test piece 49, and the temperature at which the pin 51 pierces the test piece 49 with a pressing force balanced with the 20 g separating cylinder 47. That is, the TMA temperature was measured.

【0031】[0031]

【表3】 [Table 3]

【0032】表3から明らかなように、冷却速度CRを
10℃/s≦CR≦30℃/sに設定すると、例8〜1
2のごとくα−IMCの存在率を5%、つまりその晶出
量を不可避量に抑制して、微細β−IMCの存在率を9
5%、つまりその晶出量を上限値まで高めることができ
る。
As is clear from Table 3, when the cooling rate CR is set to 10 ° C./s≦CR≦30° C./s, Examples 8 to 1
2, the a-IMC abundance was 5%, that is, the amount of crystallization was suppressed to an unavoidable amount, and the abundance of fine β-IMC was 9%.
5%, that is, the crystallization amount can be increased to the upper limit.

【0033】表2と同一組成のAl合金を用い無攪拌に
て得られたインゴットに関するTMA温度は600℃で
あり、これはレオロジー性が劣り、チクソキャスティン
グ用鋳造材料として用いることはできない。前記冷却速
度CRの範囲内で鋳造された例8〜12のTMA温度は
600℃未満であり、したがって良好なレオロジー性を
有する。
The TMA temperature of an ingot obtained by using an Al alloy having the same composition as in Table 2 without stirring was 600 ° C., which was inferior in rheology and could not be used as a casting material for thixocasting. The TMA temperature of Examples 8 to 12 cast in the range of the cooling rate CR is less than 600 ° C., and thus has good rheological properties.

【0034】次に例5および例8を用いてチクソキャス
ティング法を行い2種のAl合金部材を鋳造した。鋳造
条件は、鋳造材料の温度580℃、射出速度2.0m/
s、金型温度250℃に設定された。
Next, thixocasting was performed using Examples 5 and 8 to cast two types of Al alloy members. The casting conditions were as follows: the temperature of the casting material was 580 ° C., and the injection speed was 2.0 m / m.
s, the mold temperature was set to 250 ° C.

【0035】各Al合金部材から試験片を作製し、それ
らについて、引張圧縮疲労試験を行ったところ、図6の
結果を得た。図中、例5,8はそれぞれ前記インゴット
の例5,8にそれぞれ対応する。図6から明らかなよう
に、多量の微細β−IMCを有する例8を用いると、α
−IMCのみを有する例5を用いた場合に比べて、優れ
た疲労強度を有するAl合金部材を得ることができる。
Test pieces were prepared from each of the Al alloy members, and subjected to a tensile compression fatigue test. The results shown in FIG. 6 were obtained. In the figure, examples 5 and 8 respectively correspond to examples 5 and 8 of the ingot. As is clear from FIG. 6, using Example 8 having a large amount of fine β-IMC,
-An Al alloy member having excellent fatigue strength can be obtained as compared with the case of using Example 5 having only IMC.

【0036】[0036]

【発明の効果】本発明によれば前記のような手段を採用
することにより、Al合金部材の機械的特性向上の点に
おいて、有害なα−IMCの晶出量を不可避量に抑制す
ると同時に有益な微細β−IMCの晶出量を上限値まで
高めることが可能な、Al合金の攪拌連続鋳造法を提供
することができる。
According to the present invention, by employing the above-described means, the amount of harmful α-IMC crystallized can be reduced to an unavoidable amount while improving the mechanical properties of the Al alloy member. It is possible to provide an agitated continuous casting method of an Al alloy capable of increasing the amount of fine β-IMC crystallized to the upper limit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造装置の縦断面図である。FIG. 1 is a longitudinal sectional view of a continuous casting apparatus.

【図2】図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】成層鉄心とコイルの関係を示す要部平面図であ
る。
FIG. 3 is a plan view of a main part showing a relationship between a laminated core and a coil.

【図4】各種Al合金をFe含有量およびMn含有量で
表示したグラフである。
FIG. 4 is a graph showing Fe contents and Mn contents of various Al alloys.

【図5】TMA温度測定法を示す説明図である。FIG. 5 is an explanatory diagram showing a TMA temperature measuring method.

【図6】疲労試験結果を示すグラフである。FIG. 6 is a graph showing the results of a fatigue test.

【符号の説明】[Explanation of symbols]

13 水冷鋳型 15 スパウト a スパウト内周面 b 溶湯攪拌領域形成部 c 上部周縁部分 m 溶湯 A 溶湯攪拌領域 13 Water-cooled mold 15 Spout a Spout inner peripheral surface b Melt stirring area forming part c Upper peripheral part m Melt A Melt stirring area

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月20日(1999.4.2
0)
[Submission date] April 20, 1999 (1999.4.2
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前記攪拌
連続鋳造法について、さらに攻究を進めた結果、前記溶
湯中のMn含有量によっては、α−IMCの晶出量が増
加すると共にそれが成長することによって塊状α−IM
Cとなり、これにより微細なベータ金属間化合物(以
下、β−IMCと称す)の晶出が抑制される、というこ
とが判明した。この塊状α−IMCはAl合金部材の切
削性を低下させるだけでなく、メッキ性および疲労強度
の低下を招来する。
As a result of further studies on the stirring continuous casting method, the present inventors have found that, depending on the Mn content in the molten metal, the crystallization amount of α-IMC increases and As it grows, the mass α- IM
C, thereby suppressing crystallization of a fine beta intermetallic compound (hereinafter referred to as β-IMC). This massive α-IMC not only reduces the machinability of the Al alloy member, but also reduces the plating property and the fatigue strength.

フロントページの続き (72)発明者 大谷 輝幸 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4E004 AA09 KA12 MC05 NC08 Continued on the front page (72) Inventor Teruyuki Otani 1-4-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (Reference) 4E004 AA09 KA12 MC05 NC08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al合金組成の溶湯(m)をスパウト
(15)内で攪拌しつつ、そのスパウト(15)直下に
配置された筒状鋳型(13)に導入する攪拌連続鋳造法
において、前記Al合金組成の溶湯(m)として、Fe
含有量が0.75wt%≦Fe<2wt%であり、また
Mn含有量が、0.75wt%≦Fe≦1.5wt%の
ときMn≦[(Fe/5)+0.2]wt%であり、一
方、1.5wt%<Fe<2wt%のときMn≦[−F
e+2]wt%であるものを用い、前記スパウト内周面
(a)上の溶湯攪拌領域形成部(b)の上部周縁部分
(c)における前記溶湯(m)の冷却速度CRを10℃
/s≦CR≦30℃/sに設定することを特徴とするA
l合金の攪拌連続鋳造法。
1. A stirring continuous casting method in which a molten metal (m) having an Al alloy composition is stirred in a spout (15) and introduced into a cylindrical mold (13) disposed immediately below the spout (15). As the molten alloy (m) of the Al alloy composition, Fe
When the content is 0.75 wt% ≦ Fe <2 wt%, and when the Mn content is 0.75 wt% ≦ Fe ≦ 1.5 wt%, Mn ≦ [(Fe / 5) +0.2] wt%. On the other hand, when 1.5 wt% <Fe <2 wt%, Mn ≦ [−F
e + 2] wt%, and the cooling rate CR of the molten metal (m) at the upper peripheral portion (c) of the molten metal stirring region forming portion (b) on the inner peripheral surface (a) of the spout is set at 10 ° C.
/ A ≦ CR ≦ 30 ° C./s
Continuous stirring method for 1 alloy.
JP16560198A 1998-03-31 1998-06-12 Stirring continuous casting of Al alloy Expired - Lifetime JP3828664B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16560198A JP3828664B2 (en) 1998-06-12 1998-06-12 Stirring continuous casting of Al alloy
US09/276,691 US6435263B2 (en) 1998-03-31 1999-03-26 Agitated continuous casting process for aluminum alloy
EP99106548A EP0947262B1 (en) 1998-03-31 1999-03-30 Agitated continuous casting process for aluminium alloy
DE69908470T DE69908470T2 (en) 1998-03-31 1999-03-30 Process for the continuous casting of aluminum alloys with stirring action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16560198A JP3828664B2 (en) 1998-06-12 1998-06-12 Stirring continuous casting of Al alloy

Publications (2)

Publication Number Publication Date
JP2000000637A true JP2000000637A (en) 2000-01-07
JP3828664B2 JP3828664B2 (en) 2006-10-04

Family

ID=15815462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16560198A Expired - Lifetime JP3828664B2 (en) 1998-03-31 1998-06-12 Stirring continuous casting of Al alloy

Country Status (1)

Country Link
JP (1) JP3828664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369699C (en) * 2006-04-29 2008-02-20 东北大学 Method and equipment for inhibiting crack of high-alloying aluminium alloy square billet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369699C (en) * 2006-04-29 2008-02-20 东北大学 Method and equipment for inhibiting crack of high-alloying aluminium alloy square billet

Also Published As

Publication number Publication date
JP3828664B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
CN105525158B (en) A kind of semisolid pressure casting aluminum alloy materials and the method using the material die cast
US4967827A (en) Method and apparatus for melting and casting metal
US6089309A (en) Method for manufacturing gradient material by continuous and semi-continuous casting
CN107150116B (en) A kind of method that electromagnetism regulation and control manufacture large-scale casting ingot from inoculation
CN108085546A (en) A kind of 2024 aluminium alloy smelting casting methods
CN101817064A (en) Device and method for preparing metal semi-solid slurry
CN105401059A (en) Manufacturing technology and device for improved forged steel roller neck high nickel chrome molybdenum alloy cast composite roller
CN105568122A (en) Center segregation control method of phi280mm 30CrMo circular tube blank
CN112430767B (en) Large-size hollow ingot casting and ingot casting method
CN115074584A (en) Die-casting aluminum alloy and preparation method thereof
CN105803149A (en) Equiaxial crystal ratio control method for 35CrMo round pipe billet with phi 280 mm
CN106544578A (en) A kind of marine diesel engine piston ring apical ring material DPR DG III and its casting method
CN109112418B (en) Continuous casting method of high manganese steel
EP0657235A1 (en) Process for the production of semi-solidified metal composition
EP0512118B1 (en) Process for continuous casting of ultralow-carbon aluminum-killed steel
JP2000000637A (en) METHOD FOR STIRRINGLY AND CONTINUOUSLY CASTING Al ALLOY
EP3775310B1 (en) Silicon based alloy, method for the production thereof and use of such alloy
CN110904365A (en) Novel 3-series aluminum alloy and preparation method thereof
CN115717203B (en) Preparation method of aluminum alloy cast ingot
JP2967415B1 (en) Stirring continuous casting of Al alloy
CN116083757A (en) Crust breaking hammer and preparation method thereof
JP2973107B2 (en) Stirring continuous casting equipment
JPS63149055A (en) Refining method for molten steel in tundish for continuous casting
CN114558999B (en) Bloom medium-carbon high-aluminum steel casting blank, preparation method thereof and spare and accessory parts
KR100362659B1 (en) A method of manufacturing medium carbon steel plate for offshore structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4