ITVE20070041A1 - CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION. - Google Patents

CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION. Download PDF

Info

Publication number
ITVE20070041A1
ITVE20070041A1 IT000041A ITVE20070041A ITVE20070041A1 IT VE20070041 A1 ITVE20070041 A1 IT VE20070041A1 IT 000041 A IT000041 A IT 000041A IT VE20070041 A ITVE20070041 A IT VE20070041A IT VE20070041 A1 ITVE20070041 A1 IT VE20070041A1
Authority
IT
Italy
Prior art keywords
semiconductor
cyclodextrin
derivatives
layer
sensor according
Prior art date
Application number
IT000041A
Other languages
Italian (it)
Inventor
Anna Bernardi
Dario Narducci
Matteo Oldani
Original Assignee
Dani Instr Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dani Instr Spa filed Critical Dani Instr Spa
Priority to IT000041A priority Critical patent/ITVE20070041A1/en
Priority to PCT/EP2008/057381 priority patent/WO2009000661A1/en
Publication of ITVE20070041A1 publication Critical patent/ITVE20070041A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds

Description

DESCRIZIONE DESCRIPTION

dell'invenzione avente per titolo: of the invention entitled:

"Sensore chimico per gas e metodo per la sua realizzazione" La presente invenzione concerne un sensore chimico per gas ed un metodo per la sua realizzazione. "Chemical sensor for gas and method for its realization" The present invention relates to a chemical sensor for gas and a method for its realization.

E’ noto dalla domanda di brevetto RM2005A000082 l'impiego di tecniche di autoassemblaggio di molecole organiche su superfici di silicio monocristallino per realizzare dispositivi in grado di rilevare miscele gassose, sfruttando le interazioni supramolecolari tra il frammento molecolare agganciato alla superficie (da qui in avanti indicato come “molecola ricettrice”) e le molecole gassose, con cui la superficie entra in contatto. Tali dispositivi (da qui in avanti indicati come “sensori molecolari”) si basano sulla modulazione del campo elettrico indotta dall'interazione supramolecolare tra la molecola gassosa e la molecola ricettrice all'interfaccia tra uno strato metallico e un materiale semiconduttore, e consentono il rilevamento della miscela gassosa attraverso la misurazione della variazione di una caratteristica elettrica di detta interfaccia. From the patent application RM2005A000082 the use of self-assembly techniques of organic molecules on monocrystalline silicon surfaces is known to create devices capable of detecting gaseous mixtures, exploiting the supramolecular interactions between the molecular fragment attached to the surface (hereinafter indicated as a "receptor molecule") and the gaseous molecules, with which the surface comes into contact. These devices (hereinafter referred to as "molecular sensors") are based on the modulation of the electric field induced by the supramolecular interaction between the gas molecule and the receptor molecule at the interface between a metal layer and a semiconductor material, and allow detection of the gaseous mixture by measuring the variation of an electrical characteristic of said interface.

Sempre dalla stessa domanda di brevetto RM2005A000083 è anche nota una specifica classe di molecole ricettrici idonee al rilevamento selettivo di nitroderivati aromatici. Also from the same patent application RM2005A000083 is also known a specific class of receptor molecules suitable for the selective detection of aromatic nitro-derivatives.

Sono anche noti materiali polimerici, sintetici e naturali, i quali hanno trovato vasta applicazione nella modificazione chimica degli elettrodi. Tra questi, le ciclodestrine sono state studiate intensamente, per la loro capacità di formare complessi di inclusione con molte molecole organiche ed inorganiche di opportune dimensione (Ferancovà, A. and Labuda, J. "Cyclodextrins as electrode modifiers", Fresenius' Journal of Analytical Chemistry, 370 (2001) 1-10.). In questi sistemi la complessazione è guidata da interazioni non-covalenti ed è quindi reversibile, e porta all'incapsulamento delle particelle ospite nella cavità dell’oligosaccaride. L’aggancio delle ciclodestrine può essere ottenuto attraverso note tecniche di formazione di monostrati autoassemblati, di film polimerici o attraverso note procedure di incorporazione in membrane elasticizzate o in materiali compositi (gel, paste a base di carbonio, eco). Polymeric, synthetic and natural materials are also known, which have found wide application in the chemical modification of electrodes. Among these, cyclodextrins have been intensively studied for their ability to form inclusion complexes with many organic and inorganic molecules of suitable size (Ferancovà, A. and Labuda, J. "Cyclodextrins as electrode modifiers", Fresenius' Journal of Analytical Chemistry, 370 (2001) 1-10.). In these systems, the complexation is driven by non-covalent interactions and is therefore reversible, and leads to the encapsulation of the host particles in the oligosaccharide cavity. The coupling of the cyclodextrins can be obtained through known techniques for the formation of self-assembled monolayers, polymeric films or through known procedures for incorporation into elastic membranes or composite materials (gels, carbon-based pastes, eco).

L’impiego di lunghe e flessibili catene alifatiche (dette “spaziatori”) è comunemente ritenuto fondamentale al fine di consentire l’aggancio covalente di molecole di grandi dimensioni (quali le ciclodestrine) a superfici di solidi cristallini. Tale esigenza è tuttavia in contrasto con l'impiego di qualsiasi molecola come molecola ricettrice nei sensori chimici per gas descritti nella stessa citata domanda di brevetto RM2005A000082. Infatti la presenza di “spaziatori” introduce gradi di libertà conformazionali nella molecola agganciata alla superficie, e questi conducono all’annullamento del campo elettrico addizionale medio indotto dalla formazione del complesso supramolecolare tra detta molecola e la molecola gassosa. The use of long and flexible aliphatic chains (called "spacers") is commonly considered essential in order to allow the covalent coupling of large molecules (such as cyclodextrins) to surfaces of crystalline solids. However, this need is in contrast with the use of any molecule as a receptor molecule in the chemical sensors for gases described in the aforementioned patent application RM2005A000082. In fact, the presence of "spacers" introduces conformational degrees of freedom in the molecule attached to the surface, and these lead to the cancellation of the average additional electric field induced by the formation of the supramolecular complex between said molecule and the gas molecule.

Secondo l’invenzione il problema è risolto con un sensore chimico per gas comprendente uno strato di materiale conduttore, uno strato di molecole organiche legate covalentemente alla superficie dello strato semiconduttore con un legame diretto carbonio-atomo della superficie del semiconduttore, ed uno strato di materiale poroso, caratterizzato dal fatto che lo strato di molecole organiche comprende derivati di ciclodestrine. According to the invention, the problem is solved with a chemical sensor for gas comprising a layer of conductive material, a layer of organic molecules covalently bonded to the surface of the semiconductor layer with a direct carbon-atom bond on the surface of the semiconductor, and a layer of material porous, characterized in that the layer of organic molecules comprises cyclodextrin derivatives.

Sempre secondo l’invenzione, per realizzare il sensore si attiva la superficie del semiconduttore mediante aggancio con legame covalente carbonioatomo della superficie del semiconduttore, di materiale destinato a reagire con derivati di ciclodestrine. Still according to the invention, to create the sensor, the surface of the semiconductor is activated by coupling the surface of the semiconductor with a covalent carbonatom bond, of a material intended to react with cyclodextrin derivatives.

La presente invenzione viene qui di seguito ulteriormente chiarita nella sue caratteristiche generali ed in alcuni esempi di pratica realizzazione riportata a scopo puramente esemplificativo non limitativo con riferimento alle allegate tavole di disegni, in cui: The present invention is further clarified hereinafter in its general characteristics and in some examples of practical embodiment given purely by way of non-limiting example with reference to the attached drawings, in which:

la figura 1 mostra la formula di struttura e la relativa rappresentazione generale convenzionale della β-ciclodestrina monoazide, Figure 1 shows the structural formula and its conventional general representation of β-cyclodextrin monoazide,

la figura 2 mostra la formula di struttura e la relativa rappresentazione generale convenzionale della β-ciclodestrina monoammina, Figure 2 shows the structural formula and its conventional general representation of β-cyclodextrin monoamine,

la figura 3 mostra la rappresentazione generale delle differenti ciclodestrine agganciata alla superficie del semiconduttore, Figure 3 shows the general representation of the different cyclodextrins attached to the surface of the semiconductor,

la figura 4 mostra la β-ciclodestrina monoazide agganciata alla superficie del semiconduttore, Figure 4 shows the β-cyclodextrin monoazide attached to the surface of the semiconductor,

la figura 5 mostra la β-ciclodestrina monoammina agganciata alla superficie del semiconduttore, Figure 5 shows the β-cyclodextrin monoamine attached to the surface of the semiconductor,

la figura 6 mostra un confronto tra le risposte elettriche di un sensore molecolare funzionalizzata con acido benzoico, secondo lo stato dell’arte, e con βciclodestrina, secondo l'invenzione, alla introduzione di vapori di paranitrotoluene (0.13% voi.). Figure 6 shows a comparison between the electrical responses of a molecular sensor functionalized with benzoic acid, according to the state of the art, and with βcyclodextrin, according to the invention, to the introduction of paranitrotoluene vapors (0.13% vol.).

Con riferimento ai disegni, il sensore molecolare secondo l'invenzione utilizza una metodologia di sintesi che non introduce gradi di libertà conformazionali nella ciclodestrina agganciata alla superficie del semiconduttore, dato che non utilizza spaziatori convenzionali, ma piccoli frammenti rigidi, come triazoli o ammidi di acidi benzoici autosostenentisi. Tale risultato viene conseguito a partire da un comune intermedio ciclodestrinico, tipicizzato dalla β-ciclodestrina monoazide di fig. 1, con una sequenza di due passaggi: nel primo la superficie viene funzionalizzata con acetilene o con acidi benzoici autosostenentisi, nella seconda viene realizzato l’aggancio della β-ciclodestrina monoazide o del suo derivato β-ciclodestrina monoammina. With reference to the drawings, the molecular sensor according to the invention uses a synthesis methodology that does not introduce conformational degrees of freedom in the cyclodextrin attached to the semiconductor surface, since it does not use conventional spacers, but small rigid fragments, such as triazoles or acid amides. self-sustaining benzoics. This result is achieved starting from a common cyclodextrin intermediate, typified by the β-cyclodextrin monoazide of fig. 1, with a two-step sequence: in the first the surface is functionalized with acetylene or with self-sustaining benzoic acids, in the second the coupling of β-cyclodextrin monoazide or its derivative β-cyclodextrin monoamine is achieved.

È noto dalla letteratura scientifica un metodo per la funzionalizzazione non ossidativa di monocristalli di silicio (111) con benzochinoni, che procede in due passaggi: una reazione di acetilenazione della superficie seguita da una reazione di cicloaddizione di Huisgen catalizzata da Cu di un’azide sull’alchino agganciato sulla superficie di silicio (Rohde, R.D., Agnew, H.D. et al. "A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si(111 )", J. Am. Chem. Soc., 128 (2006) 9518-9525.). Tale nota metodica, fin qui applicata solo a molecole di ridotte dimensioni, può essere impiegata con successo all’aggancio diretto alla superficie di silicio anche di molecole fortemente ingombranti come le ciclodestrine. Secondo l’invenzione la superficie di Si viene etinilata esaurientemente e ad essa viene agganciata una α- o β- o γ- ciclodestrina monoazide protetta o non protetta (formula generale 1 in figura 1 e 2) utilizzando un catalizzatore di rame. Legandosi al residuo acetilenico sulla superficie, il gruppo azide si trasforma in un triazolo. La superficie risulta quindi funzionai izzata con un residuo di struttura generale triazol-4-ciclodestrina (formula generale 2, figura 2). Alternativamente, il derivato ciclodestrinico 2 e’ stato agganciato direttamente alle superfici di silicio monocristallino mediante la formazione di un legame ammidico. In entrambi i casi, lo strato organico così realizzato mediante la formazione di legami covalenti Si-C, presenta un alto grado di stabilità e risulta rigidamente solidale alla superficie di silicio. A method for the non-oxidative functionalization of silicon (111) single crystals with benzoquinones is known from the scientific literature, which proceeds in two steps: a surface acetylenation reaction followed by a Cu-catalyzed Huisgen cycloaddition reaction of an azide on the alkyne bonded to the silicon surface (Rohde, R.D., Agnew, H.D. et al. "A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si (111)", J. Am. Chem. Soc., 128 (2006) 9518- 9525.). This methodical note, so far applied only to small molecules, can be successfully used for the direct attachment to the silicon surface even of highly bulky molecules such as cyclodextrins. According to the invention, the Si surface is thoroughly ethinylated and a protected or unprotected α- or β- or γ-cyclodextrin monoazide is attached to it (general formula 1 in figures 1 and 2) using a copper catalyst. Upon binding to the acetylene residue on the surface, the azide group transforms into a triazole. The surface is then functionalized with a residue of general structure triazol-4-cyclodextrin (general formula 2, figure 2). Alternatively, the cyclodextrin derivative 2 was hooked directly to the monocrystalline silicon surfaces by forming an amide bond. In both cases, the organic layer thus obtained by forming Si-C covalent bonds has a high degree of stability and is rigidly integral with the silicon surface.

Superfici di silicio su cui siano state ancorate con la metodica qui riportata ciclodestrine possono essere utilmente impiegate nella realizzazione di sensori chimici per gas. I vantaggi derivanti dalla disponibilità di sensori così funzionalizzati sono vari e notevoli. Nella figura 6 è riportata in maniera comparativa la risposta elettrica di un “sensore molecolare” che impiega una βciclodestrina come molecola ricettrice e di un “sensore molecolare” che impiega acido benzoico come molecola ricettrice, all’introduzione di para-nitrotoluene. I dati sperimentali dimostrano come l’impiego di ciclodestrine rigidamente solidali ad una superficie di silicio consentano il rilevamento di molecole gassose con una risposta significativamente superiore a quella registrata nel caso di frammenti aromatici agganciati alla superficie. Silicon surfaces on which cyclodextrins have been anchored with the method described here can be usefully used in the production of chemical sensors for gases. The advantages deriving from the availability of sensors thus functionalized are varied and remarkable. Figure 6 comparatively shows the electrical response of a "molecular sensor" that uses a βcyclodextrin as a receptor molecule and of a "molecular sensor" that uses benzoic acid as a receptor molecule, to the introduction of para-nitrotoluene. The experimental data show how the use of cyclodextrins rigidly attached to a silicon surface allows the detection of gaseous molecules with a significantly higher response than that recorded in the case of aromatic fragments attached to the surface.

La realizzazione di un sensore molecolare secondo l’invenzione prevede dapprima la sintesi di ciclodestrine monoazide e monoammina paracetilate e successivamente il loro aggancio alla superficie del semiconduttore preventivamente funzionalizzato. The realization of a molecular sensor according to the invention first involves the synthesis of monoazide cyclodextrins and paracetylated monoamine and subsequently their coupling to the surface of the previously functionalized semiconductor.

La preparazione delle ciclodestrine da agganciare è esemplificata per il caso della β-ciclodestrina (CD) monoazide (figura 1, 1, n=7, R=H), della monoazide peracetilata (figura 1, 1, n=7, R=Ac) e della β-ciclodestrina (CD) monoammina peracetilata (figura 1, 2, n=7, R=H). La sequenza sintetica è illustrata nello Schema 1: The preparation of the cyclodextrins to be coupled is exemplified for the case of β-cyclodextrin (CD) monoazide (figure 1, 1, n = 7, R = H), of peracetylated monoazide (figure 1, 1, n = 7, R = Ac ) and peracetylated β-cyclodextrin (CD) monoamine (figure 1, 2, n = 7, R = H). The synthetic sequence is illustrated in Scheme 1:

Schema 1. sintesi dei derivati ciclodestrinici utilizzati per le reazioni di aggancio Scheme 1. Synthesis of cyclodextrin derivatives used for the coupling reactions

Sintesi della β-CD monotosilato 3. Il monotosilato 3 è stato preparato secondo Bausanne, I. et al , Chem. Comm. 2000, 1489-1490 Synthesis of monosylated β-CD 3. Monotosylate 3 was prepared according to Bausanne, I. et al, Chem. Comm. 2000, 1489-1490

Ad una soluzione di β-CD (10 g, 8.8 mmoli, 1 eq., PM=1134.98 g/mol) in acqua distillata (500 mi) si aggiunge CuS04*5H20 (7.5 g, 30 mmoli, 3 eq., PM=249.68 g/mol) in acqua distillata (750 mi), e successivamente NaOH 1M (10 g, 250 mmoli, 25 eq., PM= 40 g/mol). CuS04 * 5H20 (7.5 g, 30 mmol, 3 eq., PM = 249.68 g / mol) in distilled water (750 ml), and subsequently 1M NaOH (10 g, 250 mmol, 25 eq., MW = 40 g / mol).

Dopo dieci minuti si inizia a gocciolare in questa soluzione una soluzione di p-toluensolfonil-CI (15.01 g, 79 mmoli, 7.9 eq., PM=190 g/mol) in CH3CN (100 ml) nell’arco di un’ora. La reazione viene lasciata sotto agitazione magnetica per 5 ore a T ambiente. Si neutralizza la soluzione con l'aggiunta di HCI 1M (50 mi) e si filtrano i sali di rame su letto di celite. La soluzione viene liofilizzata per un terzo del volume e il solido restante viene filtrato, ricristallizzato due volte da acqua, lavato due volte con acetone (40 mi) e poi con etere etilico (30 mi); quindi asciugato sotto vuoto. Resa: 48% ( 6.2 g) After ten minutes, a solution of p-toluenesulfonyl-Cl (15.01 g, 79 mmol, 7.9 eq., MW = 190 g / mol) in CH3CN (100 ml) in CH3CN (100 ml) begins to drop into this solution over an hour. The reaction is left under magnetic stirring for 5 hours at room temperature. The solution is neutralized by adding 1M HCl (50 ml) and the copper salts are filtered on a celite bed. The solution is lyophilized for one third of the volume and the remaining solid is filtered, recrystallized twice from water, washed twice with acetone (40 ml) and then with ethyl ether (30 ml); then dried under vacuum. Yield: 48% (6.2 g)

Sintesi della β-CD monoazide 1 (n =7, R=H) Riferimento bibliografico: Jicsinszky I., Ivanyi R., Carbohydr. Polym., 2001, 45, 139-145. Synthesis of β-CD monoazide 1 (n = 7, R = H) Reference: Jicsinszky I., Ivanyi R., Carbohydr. Polym., 2001, 45, 139-145.

Si scioglie β-CD monotosilato (1 g, 0.77 mmoli, 1 eq., PM= 1288.53 g/mol) in DMF anidra (7 mi) e si aggiunge NaN3(60 mg, 0.925 mmoli, 1.2 eq., PM=65 g/mol) sotto agitazione magnetica. Si lascia reagire sotto azoto per 1 ora a 110°C, poi si lascia raffreddare e si precipita il prodotto da acetone 2 volte, si filtra e si asciuga sotto vuoto. Resa : 90-95 % (800-830 mg) Monotosylated β-CD (1 g, 0.77 mmol, 1 eq., MW = 1288.53 g / mol) is dissolved in anhydrous DMF (7 ml) and NaN3 (60 mg, 0.925 mmol, 1.2 eq., PM = 65 g) is added. / mol) under magnetic stirring. It is left to react under nitrogen for 1 hour at 110 ° C, then it is allowed to cool and the product is precipitated from acetone twice, filtered and dried under vacuum. Yield: 90-95% (800-830 mg)

Sintesi della β -CD monoazide peracetilata 1 (n=7, R=Ac) Riferimento bibliografico: Yin-Fun Poon, I. W. Muderawan, Siu-Choon Ng, J.of Chrom. A, 2006, 1101, 185-197. Synthesis of peracetylated β -CD monoazide 1 (n = 7, R = Ac) References: Yin-Fun Poon, I. W. Muderawan, Siu-Choon Ng, J.of Chrom. A, 2006, 1101, 185-197.

Ad una soluzione di β-CD monoazide (1.5 g, 1.3 mmoli, 1 eq., PM=1160 g/mol) in piridina anidra (21 mi), sotto flusso di azoto e sotto agitazione magnetica , si aggiunge anidride acetica (5 mi) e si lascia a reagire una notte a 60°C. Al termine si evapora completamente la piridina a rotavapor, si aggiunge acqua distillata e HCI 10% fino a pH 5 e si estrae con acetato di etile. Si anidrifica la fase organica con Na2S04, si filtra e si porta a secco a rotavapor. Resa: quantitativa (2.60 g) To a solution of β-CD monoazide (1.5 g, 1.3 mmol, 1 eq., MW = 1160 g / mol) in anhydrous pyridine (21 ml), under nitrogen flow and magnetic stirring, acetic anhydride (5 ml ) and it is left to react overnight at 60 ° C. At the end, the pyridine is evaporated completely in rotavapor, distilled water and 10% HCI are added up to pH 5 and extracted with ethyl acetate. The organic phase is dried with Na2SO4, filtered and dried in a rotavapor. Yield: quantitative (2.60 g)

Sintesi della β -CD monoammina peracetilata 2 (n=7, R=Ac) Synthesis of peracetylated β -CD monoamine 2 (n = 7, R = Ac)

Si scioglie la β-CD monoazide peracetilata ( 2.6 g, 1.3 mmoli, 1 eq., PM=2000 g/mol) in MeOH dry (13 mi) nell’apposito cilindro in vetro da inserire in autoclave, si aggiunge una punta di spatola di catalizzatore (Pd/C 10% wt., Aldrich 330108-10G), si lascia a reagire in autoclave, a T ambiente e 80 psi (circa 4 atm) per una notte a temperatura ambiente. Terminata la riduzione si filtra su celite e si evapora il MeOH. Si ridiscioglie il prodotto a freddo in CH2CI2o MeOH e si decanta con l'aiuto di una Pasteur, per eliminare il catalizzatore. Ulteriori tracce di metallo possono essere eliminate filtrando la soluzione in MeOH freddo attraverso una siringa con filtro da HPLC (45 pm di porosità). The peracetylated β-CD monoazide (2.6 g, 1.3 mmol, 1 eq., MW = 2000 g / mol) is dissolved in MeOH dry (13 ml) in the special glass cylinder to be inserted in the autoclave, a spatula tip is added. of catalyst (Pd / C 10% wt., Aldrich 330108-10G), it is left to react in an autoclave, at room T and 80 psi (about 4 atm) for one night at room temperature. At the end of the reduction, it is filtered on celite and the MeOH is evaporated. The product is redissolved cold in CH2CI2o MeOH and decanted with the help of a Pasteur, to eliminate the catalyst. Further traces of metal can be eliminated by filtering the solution in cold MeOH through a syringe with an HPLC filter (45 µm porosity).

Resa: 90% Yield: 90%

Una volta ottenuta la β-CD monoazide o monoammina pre-acetilata, il suo aggancio alla superficie del semiconduttore, costituito ad esempio da silicio (111) prevede la preventiva funzionalizzazione della sua superficie. Once the β-CD monoazide or pre-acetylated monoamine has been obtained, its attachment to the surface of the semiconductor, consisting for example of silicon (111) provides for the preventive functionalization of its surface.

Aggancio di acetileni e successiva immobilizzazione della β-CD alla superficie di Si (111) tramite cicloaddizione di Huisgen Attachment of acetylenes and subsequent immobilization of β-CD to the Si (111) surface by Huisgen cycloaddition

Questa funzionalizzazione viene effettuata su campione di Si (111) di tipo p, 8-12 ohm*cm. La superficie di silicio viene sottoposta ad un trattamento di pulitura da residui organici consistente in due lavaggi in trielina per 10 minuti sotto agitazione ultrasonica e due lavaggi in acetone per 10 min. sotto agitazione ultrasonica. Successivamente il campione viene risciacquato per 1 min in H20 bidistillata, e quindi viene sottoposto a (1) trattamento in una soluzione acquosa contenente acqua ossigenata e acido cloridrico a 90°C per 20 min; (2) risciacquo per 1 min in H20 bidistillata; (3) trattamento in soluzione acquosa di NH4F al 40% per 5 min. al buio sotto flusso di Ar; (4) risciacquo in H20 bidistillata per 1 min. Il campione è quindi trasferito in reattore per la reazione di attivazione superficiale in presenza di una piccola quantità di perossido di benzoile. L’ambiente di reazione è costantemente mantenuto sotto azoto e tutta la vetreria preventivamente anidrificata in stufa per una notte a 120°C. A parte, in un pallone di reazione, si sciolgono sotto agitazione magnetica 230 mg di PCI5in 4 mi di clorobenzene anidro (soluzione sovrassatura con presenza di corpo di fondo). Dopo qualche minuto di agitazione la soluzione surnatante viene trasferita nel reattore dove era stato posto il campione e lasciata reagire per 1 ora a 90°C sotto agitazione. Trascorso tale tempo, la soluzione viene rimossa ed il campione viene sciacquato con tre lavaggi in clorobenzene anidro. La reazione di aggancio del frammento acetilenico ha luogo nello stesso reattore, introducendo una quantità di acetiluro di sodio 18% p/p in xilene e olio minerale sufficiente a ricoprire totalmente il campione. Dopo una notte a 130°C la soluzione viene rimossa ed il campione sciacquato per tre volte con tetraidrofurano anidro. Successivamente, nel reattore insieme al campione, vengono introdotti 200 mg della monoazide della β-CD peracetilata. A parte si preparano una soluzione 3.4 mM di ascorbato di sodio in dimetilformammide ed una 11.6 mM di solfato di rame pentaidrato in dimetilformammide. Si prelevano 0.75 mi della prima soluzione ed altrettanti della seconda soluzione che vengono introdotti nel reattore. Si porta a volume con altri 1.5 mi di dimetilformammide e si lascia reagire per una notte. Al termine del tempo previsto si rimuove la soluzione e il campione viene lavato tre volte con dimetilformammide, due volte con CH2CI2, due volte con metanolo e lasciato infine per 10 min in metanolo sotto agitazione ultrasonica. This functionalization is carried out on a p-type Si (111) sample, 8-12 ohm * cm. The silicon surface is subjected to a cleaning treatment from organic residues consisting of two washes in trichlorethylene for 10 minutes under ultrasonic stirring and two washes in acetone for 10 minutes. under ultrasonic stirring. Subsequently the sample is rinsed for 1 min in bidistilled H20O, and then it is subjected to (1) treatment in an aqueous solution containing hydrogen peroxide and hydrochloric acid at 90 ° C for 20 min; (2) rinsing for 1 min in bidistilled H20; (3) treatment in aqueous solution of 40% NH4F for 5 min. in the dark under the flow of Ar; (4) rinse in double distilled H20 for 1 min. The sample is then transferred to a reactor for the surface activation reaction in the presence of a small amount of benzoyl peroxide. The reaction environment is constantly maintained under nitrogen and all the glassware previously dried in a stove for one night at 120 ° C. Separately, 230 mg of PCI5 in 4 ml of anhydrous chlorobenzene (supersaturated solution with bottom body) are dissolved under magnetic stirring in a reaction flask. After a few minutes of stirring, the supernatant solution is transferred to the reactor where the sample was placed and left to react for 1 hour at 90 ° C under stirring. After this time, the solution is removed and the sample is rinsed with three washes in anhydrous chlorobenzene. The coupling reaction of the acetylene fragment takes place in the same reactor, introducing a quantity of sodium acetylide 18% w / w in xylene and mineral oil sufficient to completely cover the sample. After one night at 130 ° C the solution is removed and the sample rinsed three times with anhydrous tetrahydrofuran. Subsequently, 200 mg of the peracetylated β-CD monoazide are introduced into the reactor together with the sample. Separately, a 3.4 mM solution of sodium ascorbate in dimethylformamide and an 11.6 mM of copper sulphate pentahydrate in dimethylformamide are prepared. 0.75 ml of the first solution are taken and as many of the second solution are introduced into the reactor. It is made up to the mark with another 1.5 ml of dimethylformamide and is left to react overnight. At the end of the foreseen time the solution is removed and the sample is washed three times with dimethylformamide, twice with CH2CI2, twice with methanol and finally left for 10 min in methanol under ultrasonic stirring.

Aggancio di acido benzoico e successiva immobilizzazione della β-CD alla superficie di Si (100) attraverso la formazione di una ammide Attachment of benzoic acid and subsequent immobilization of β-CD to the Si (100) surface through the formation of an amide

La funzionalizzazione della superficie viene effettuata su campione di Si (100) di tipo p, 8-12 ohm*cm. La superficie di silicio viene sottoposta ad un trattamento di pulitura da residui organici e contaminazioni metalliche denominato RCA consistente in un lavaggio in trielina per 10 minuti ad una temperatura di circa 80 °C seguito da un lavaggio in acetone per 10 minuti ad una temperatura di circa 50 °C e risciacquo finale in acqua bidistillata a freddo agitando. Vengono quindi eseguiti i seguenti trattamenti: (a) attacco APM (NH3(32%vol.) : H2O2(30%vol.) : H20 = 1 : 1 : 5 ) per 10 minuti ad una temperatura di circa 80°C; (b) lavaggio per 2 minuti, a freddo e agitando in H20 bidistillata; (c) trattamento in DHF (Diluited Hydrofluoric Acid; HF (50%vol.): ΗΙ20 = 1:50) per 30 secondi agitando a freddo; (d) lavaggio per 2 minuti, a freddo e agitando in ΗΙ20 bidistillata; (e) trattamento in HPM (HCI (37%) : H2O2(30%) : H20 = 1 : 1 : 5 ) per 10 minuti ad una temperatura di circa 80°C; (f) trattamento in DFIF per 30 secondi agitando a freddo e risciacquo con ΗΙ20 bidistillata; (g) lavaggio per 2 minuti, a freddo e agitando in ΗΙ20 bidistillata. La superficie finale risulta idrogenata e pronta per la reazione di auto-assemblaggio. Il campione così preparato viene posto in un reattore preventivamente anidrificato e mantenuto in atmosfera di azoto. In questo vengono aggiunti un catalizzatore metallorganico (Ru(CO)HCI(PPh3)3) e l’estere benzilico dell’acido 4-etinilbenzoico in rapporto 0.1 mmol : 2 mmol utilizzando come solvente CH2CI2anidro. La reazione procede sotto agitazione, a temperatura ambiente, in atmosfera inerte e per 15 ore. Successivamente la soluzione viene rimossa ed il campione lavato per tre volte con CH2CI2anidro e sonicato per 5 minuti in questo stesso solvente. Il monostrato auto-assemblato di estere benzilico viene trasformato nel corrispondente acido per mezzo di un trattamento in TFA (acido trifluoroacetico) 6M in CH2CI2per 5 giorni, cui seguono 3 lavaggi in CH2CI2anidro e sonicazione per 5 minuti nello stesso solvente. The functionalization of the surface is carried out on a sample of Si (100) of type p, 8-12 ohm * cm. The silicon surface is subjected to a cleaning treatment from organic residues and metal contaminations called RCA consisting of a washing in trichlorethylene for 10 minutes at a temperature of about 80 ° C followed by a washing in acetone for 10 minutes at a temperature of about 50 ° C and final rinse in cold distilled water, stirring. The following treatments are then carried out: (a) APM attack (NH3 (32% vol.): H2O2 (30% vol.): H20 = 1: 1: 5) for 10 minutes at a temperature of about 80 ° C; (b) washing for 2 minutes, cold and stirring in bidistilled H20; (c) treatment in DHF (Diluited Hydrofluoric Acid; HF (50% vol.): ΗΙ20 = 1:50) for 30 seconds with cold shaking; (d) washing for 2 minutes, cold and stirring in bidistilled ΗΙ20; (e) treatment in HPM (HCI (37%): H2O2 (30%): H20 = 1: 1: 5) for 10 minutes at a temperature of about 80 ° C; (f) treatment in DFIF for 30 seconds with cold shaking and rinsing with ΗΙ20 bidistilled; (g) washing for 2 minutes, cold and shaking in ΗΙ20 bidistilled. The final surface is hydrogenated and ready for the self-assembly reaction. The sample thus prepared is placed in a previously anhydrified reactor and maintained in a nitrogen atmosphere. A metallorganic catalyst (Ru (CO) HCI (PPh3) 3) and the benzyl ester of 4-ethinylbenzoic acid in a 0.1 mmol: 2 mmol ratio are added using anhydrous CH2CI2 as solvent. The reaction proceeds under stirring, at room temperature, in an inert atmosphere and for 15 hours. Subsequently the solution is removed and the sample washed three times with anhydrous CH2CI2 and sonicated for 5 minutes in this same solvent. The self-assembled monolayer of benzyl ester is transformed into the corresponding acid by means of a treatment in TFA (trifluoroacetic acid) 6M in CH2CI2 for 5 days, followed by 3 washes in anhydrous CH2CI2 and sonication for 5 minutes in the same solvent.

La superficie così funzionalizzata viene attivata via cloruro o via anidride mista. The functionalized surface is activated via chloride or mixed anhydride.

Per l’attivazione via cloruro il prisma in silicio viene messo sotto azoto in un apposito reattore in vetro tappato con un setto in silicone e viene spurgata l’aria con un ago inserito nel setto in silicone. Dopo 15 minuti viene aggiunto il Toluene anidro (1.5 mi) come solvente e trietilammina (20 μΙ, 0.143 mmoli, d=0.726 g/ml, PM=101.19 g/mol), si sonica per un minuto per garantire la miscelazione della soluzione e quindi si aggiunge SOCI2(3 mi, 15.46 mmoli, d=1.631 g/ml, PM=118.97 g/mol). Si sonica la reazione a 40°C per 30 minuti. Si preleva il prisma, si lava abbondantemente, sonicando con Toluene anidro. La β-CD monoammina peracetilata (1.3 g, 0.65 mmoli, PM=1974 g/mol), tenuta una notte in stufa a 100°C, viene sciolta in toluene (4+2 mi) in un pallone; quindi trasferita con una siringa nel reattore contenente il prisma, e trietilammina (20 μΙ, 0.143 mmoli, d=0.726 g/ml, PM=101.19 g/mol). La reazione viene mantenuta sotto agitazione utilizzando una piastra basculante per 84 ore. Si procede quindi ad un ciclo di lavaggi in toluene- CH2CI2-THF-H2O 1:1. For activation via chloride, the silicon prism is placed under nitrogen in a special glass reactor capped with a silicone septum and the air is purged with a needle inserted in the silicone septum. After 15 minutes anhydrous Toluene (1.5 ml) is added as solvent and triethylamine (20 μΙ, 0.143 mmol, d = 0.726 g / ml, MW = 101.19 g / mol), sonicated for one minute to ensure the mixing of the solution and then SOCI2 (3 ml, 15.46 mmoles, d = 1.631 g / ml, MW = 118.97 g / mol) is added. The reaction is sonicated at 40 ° C for 30 minutes. The prism is removed, washed abundantly, sonicating with anhydrous Toluene. The peracetylated β-CD monoamine (1.3 g, 0.65 mmoles, MW = 1974 g / mol), kept overnight in an oven at 100 ° C, is dissolved in toluene (4 + 2 ml) in a flask; then transferred with a syringe into the reactor containing the prism, and triethylamine (20 μΙ, 0.143 mmol, d = 0.726 g / ml, MW = 101.19 g / mol). The reaction is maintained under stirring using a tilting plate for 84 hours. A washing cycle is then carried out in toluene-CH2CI2-THF-H2O 1: 1.

Per l'attivazione via anidride mista il prisma in silicio viene messo sotto azoto in un apposito reattore in vetro tappato con un setto in silicone e viene spurgata l'aria con un ago inserito nel setto in silicone. Dopo 15 minuti viene aggiunto il THF anidro (4 mi) come solvente e N-metil morfolina (3.3 μΙ, 0.03 mmoli, d=0.92 g/ml, PM= 101 g/mol), si sonica per un minuto per garantire la miscelazione della soluzione e quindi si aggiunge l’isobutilcloroformiato (1.3 μΙ, 0.01 mmoli, d=1.04 g/ml, PM=136.58 g/mol). Si sonica la reazione a 40°C per 1 ora. Si preleva il prisma, si lava abbondantemente, sonicando con THF anidro. For activation via mixed anhydride, the silicon prism is placed under nitrogen in a special glass reactor capped with a silicone septum and the air is purged with a needle inserted in the silicone septum. After 15 minutes anhydrous THF (4 ml) is added as solvent and N-methyl morpholine (3.3 μΙ, 0.03 mmol, d = 0.92 g / ml, MW = 101 g / mol), sonicated for one minute to ensure mixing. of the solution and then isobutyl chloroformate is added (1.3 μΙ, 0.01 mmol, d = 1.04 g / ml, MW = 136.58 g / mol). The reaction is sonicated at 40 ° C for 1 hour. The prism is removed, washed abundantly, sonicating with anhydrous THF.

La β-CD monoammina peracetilata (300 mg, 0.14 mmoli, PM=1974 g/mol), tenuta una notte in stufa a 100°C, viene sciolta in THF (4 mi) in un pallone; quindi trasferita con una siringa asciutta nel reattore contenente il prisma. Per le quattro ore successive la reazione viene sonicata, e per altre 40 ore viene mantenuta sotto agitazione utilizzando una piastra basculante. Il prisma viene poi sottoposto ad un ciclo di lavaggi in THF, H20, CH2CI2. The peracetylated β-CD monoamine (300 mg, 0.14 mmoles, MW = 1974 g / mol), kept overnight in an oven at 100 ° C, is dissolved in THF (4 ml) in a flask; then transferred with a dry syringe into the reactor containing the prism. For the following four hours the reaction is sonicated, and for another 40 hours it is kept under stirring using a tilting plate. The prism is then subjected to a wash cycle in THF, H20, CH2CI2.

La presente invenzione è stata illustrata e descritta nei suoi principi generali ed in alcuni esempi pratici di realizzazione, ma si intende che varianti esecutive potranno ad essa in pratica apportarsi senza peraltro uscire daN'ambito di protezione del presente brevetto per invenzione industriale. The present invention has been illustrated and described in its general principles and in some practical examples of embodiment, but it is understood that executive variations may in practice be applied to it without however departing from the scope of protection of the present patent for industrial invention.

Claims (19)

R I V E N D I C A Z I 0 N I 1. Sensore chimico per gas comprendente uno strato di materiale semiconduttore, uno strato di molecole organiche legate covalentemente alla superficie dello strato semiconduttore con un legame diretto carbonio-atomo della superficie del semiconduttore, ed uno strato di metallo poroso, caratterizzato dal fatto che lo strato di molecole organiche comprende derivati di ciclodestrine. R I V E N D I C A Z I 0 N I 1. Chemical sensor for gas comprising a layer of semiconductor material, a layer of organic molecules covalently bonded to the surface of the semiconductor layer with a direct carbon-atom bond of the semiconductor surface, and a porous metal layer, characterized in that the layer of organic molecules includes derivatives of cyclodextrins. 2. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che il materiale semiconduttore è costituito da silicio. 2. Sensor according to claim 1 characterized in that the semiconductor material consists of silicon. 3. Sensore secondo la rivendicazione 2 caratterizzato dal fatto che il materiale semiconduttore è costituito da silicio monocristallino. 3. Sensor according to claim 2 characterized in that the semiconductor material consists of monocrystalline silicon. 4. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che le ciclodestrine dello strato di molecole organiche è legato allo strato di materiale semiconduttore mediante triazoli. 4. Sensor according to claim 1 characterized in that the cyclodextrins of the organic molecule layer is bound to the semiconductor material layer by means of triazoles. 5. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che le ciclodestrine dello strato di molecole organiche è legato allo strato di materiale semiconduttore mediante ammidi aromatiche autosostenentisi. 5. Sensor according to claim 1 characterized in that the cyclodextrins of the organic molecule layer is bound to the semiconductor material layer by self-sustaining aromatic amides. 6. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che i gruppi ossidrilici dei derivati di ciclodestrine sono almeno in parte funzionalizzati come eteri. 6. Sensor according to claim 1 characterized in that the hydroxyl groups of the cyclodextrin derivatives are at least partially functionalized as ethers. 7. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che i gruppi ossidridici dei derivati di ciclodestrine sono almeno in parte funzionalizzati come esteri. 7. Sensor according to claim 1 characterized in that the hydroxyl groups of the cyclodextrin derivatives are at least partially functionalized as esters. 8. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che i gruppi ossidridici dei derivati di ciclodestrine sono almeno in parte sostituiti da gruppi amminici. 8. Sensor according to claim 1 characterized in that the hydroxy groups of the cyclodextrin derivatives are at least partially replaced by amino groups. 9. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che i gruppi ossidridici dei derivati di ciclodestrine sono almeno in parte sostituiti da nitrogruppi. 9. Sensor according to claim 1 characterized in that the hydroxy groups of the cyclodextrin derivatives are at least partially replaced by nitro groups. 10. Sensore secondo la rivendicazione 1 caratterizzato dal fatto che le ciclodestrine sono costituite da β-ciclodestrine. 10. Sensor according to claim 1 characterized in that the cyclodextrins consist of β-cyclodextrins. 11. Metodo di realizzazione di un sensore chimico per gas secondo una o più delle rivendicazioni da 1 a 10 caratterizzato dal fatto che si attiva la superficie del semiconduttore mediante aggancio, con legame covalente carbonio-atomo della superficie del semiconduttore, di molecole destinate a reagire con derivati di ciclodestrine. 11. Method for manufacturing a chemical sensor for gas according to one or more of claims 1 to 10, characterized in that the surface of the semiconductor is activated by coupling, with a carbon-atom covalent bond of the surface of the semiconductor, of molecules intended to react with cyclodextrin derivatives. 12. Metodo secondo la rivendicazione 11 caratterizzato dal fatto che si attiva la superficie del semiconduttore con molecole aromatiche autosostenentisi contenenti gruppi carbossilici. 12. Method according to claim 11 characterized in that the surface of the semiconductor is activated with self-sustaining aromatic molecules containing carboxylic groups. 13. Metodo secondo la rivendicazione 11 caratterizzato dal fatto che si attiva la superficie del semiconduttore con molecole autosostenentisi contenenti gruppi carbossilici in posizione para rispetto ad un gruppo vinilico direttamente legato ad un atomo della superficie del semiconduttore. 13. Method according to claim 11 characterized in that the surface of the semiconductor is activated with self-sustaining molecules containing carboxylic groups in a para position with respect to a vinyl group directly bonded to an atom of the surface of the semiconductor. 14. Metodo secondo la rivendicazione 11 caratterizzato dal fatto che si attiva la superficie del semiconduttore con acetilene direttamente legato ad un atomo della superficie del semiconduttore. 14. Method according to claim 11 characterized in that the surface of the semiconductor is activated with acetylene directly bonded to an atom of the surface of the semiconductor. 15. Metodo secondo le rivendicazioni 12 e 13 caratterizzato dal fatto che si effettua l'ammidazione di almeno un gruppo carbossilico con una ammina della ciclodestrina o di suoi derivati. 15. Method according to claims 12 and 13 characterized in that the amidation of at least one carboxylic group is carried out with an amine of the cyclodextrin or its derivatives. 16. Metodo secondo la rivendicazione 15 caratterizzato dal fatto che si usa la monoammina della ciclodestrina o di suoi derivati. 16. Method according to claim 15 characterized in that the monoamine of the cyclodextrin or its derivatives is used. 17. Metodo secondo la rivendicazione 14 caratterizzato dal fatto che si effettua la sintesi di triazolo mediante cicloaddizione dell'acetilene con un'azide della ciclodestrina o di suoi derivati. 17. Method according to claim 14 characterized in that the synthesis of triazole is carried out by cycloaddition of acetylene with an azide of cyclodextrin or its derivatives. 18. Metodo secondo la rivendicazione 17 caratterizzato dal fatto che si effettua la sintesi di triazolo mediante cicloaddizione dell'acetilene con la monoazide della ciclodestrina o di suoi derivati. 18. Method according to claim 17 characterized in that the synthesis of triazole is carried out by cycloaddition of acetylene with the monoazide of cyclodextrin or its derivatives. 19. Sensore chimico per gas secondo le rivendicazioni da 1 a 10 e metodo per la sua realizzazione secondo le rivendicazioni da 11 a 18 e sostanzialmente come illustrati e descritti.19. Chemical sensor for gas according to claims 1 to 10 and method for its realization according to claims 11 to 18 and substantially as illustrated and described.
IT000041A 2007-06-27 2007-06-27 CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION. ITVE20070041A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT000041A ITVE20070041A1 (en) 2007-06-27 2007-06-27 CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION.
PCT/EP2008/057381 WO2009000661A1 (en) 2007-06-27 2008-06-12 Gas sensor comprising a gas sensitive cyclodextrin layer covalently bonded to a semiconducting substrate and method for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000041A ITVE20070041A1 (en) 2007-06-27 2007-06-27 CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION.

Publications (1)

Publication Number Publication Date
ITVE20070041A1 true ITVE20070041A1 (en) 2008-12-28

Family

ID=39764262

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000041A ITVE20070041A1 (en) 2007-06-27 2007-06-27 CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION.

Country Status (2)

Country Link
IT (1) ITVE20070041A1 (en)
WO (1) WO2009000661A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2537561A1 (en) * 2005-02-25 2006-08-25 Dani Instruments S.P.A. Electric device for determining aeriform substances

Also Published As

Publication number Publication date
WO2009000661A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
US8212132B2 (en) Functionalization of nanoscale articles including nanotubes and fullerenes
Sweetman et al. A practical guide to prepare and synthetically modify graphene quantum dots
US8158203B2 (en) Methods of attaching or grafting carbon nanotubes to silicon surfaces and composite structures derived therefrom
Wang et al. Photoactive graphene sheets prepared by “click” chemistry
Fu et al. Dispersion and solubilization of carbon nanotubes
JP4601086B2 (en) Functionalized nanotubes
Jonas et al. Synthesis of a Fullerene [60] Cryptate and Systematic Langmuir‐Blodgett and Thin‐Film Investigations of Amphiphilic Fullerene Derivatives
US7919046B2 (en) Method for grafting molecules of interest on inorganic surfaces, resulting surfaces and uses thereof
KR100775878B1 (en) Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof and use of derivatized nanotubes
Cipriano et al. Spatial organization of peptide nanotubes for electrochemical devices
US20220153742A1 (en) Covalent functionalization of carbon nanotubes grown on a surface
CA2621103C (en) Nanotube fabric-based sensor systems and methods of making same
KR20110050523A (en) Preparation of graphene nanoribbons from carbon nanotubes
NO20190976A1 (en) Thin film substrates including crosslinked carbon nanostructures and related methods
US9334162B2 (en) Surface modification using functional carbon nanotubes
Chopra et al. Ethylenediamine grafting on oxide-free H-, 1/3 ML F-, and Cl-terminated Si (111) surfaces
Jarzębińska et al. Modified electrode surfaces for catalytic reduction of carbon dioxide
Nijhuis et al. Redox‐controlled interaction of biferrocenyl‐terminated dendrimers with β‐cyclodextrin molecular printboards
Takada et al. Cobaltocenium‐Functionalized Poly (propylene imine) Dendrimers: Redox and Electromicrogravimetric Studies and AFM Imaging
ITVE20070041A1 (en) CHEMICAL GAS SENSOR AND METHOD FOR ITS REALIZATION.
Jiang et al. Preparation of graphene/poly (2-acryloxyethyl ferrocenecarboxylate) nanocomposite via a “grafting-onto” strategy
Contarino et al. Modular, self‐assembling peptide linkers for stable and regenerable carbon nanotube biosensor interfaces
Karousis et al. Imidazolium modified carbon nanohorns: switchable solubility and stabilization of metal nanoparticles
US10883000B1 (en) Chemically modified surfaces with self-assembled aromatic functionalities
Boujtita Chemical and biological sensing with carbon nanotubes (CNTs)