ITTO20110394A1 - CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES - Google Patents
CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES Download PDFInfo
- Publication number
- ITTO20110394A1 ITTO20110394A1 IT000394A ITTO20110394A ITTO20110394A1 IT TO20110394 A1 ITTO20110394 A1 IT TO20110394A1 IT 000394 A IT000394 A IT 000394A IT TO20110394 A ITTO20110394 A IT TO20110394A IT TO20110394 A1 ITTO20110394 A1 IT TO20110394A1
- Authority
- IT
- Italy
- Prior art keywords
- catheter
- guide wire
- electromagnetic
- longitudinal axis
- sensor
- Prior art date
Links
- 230000004807 localization Effects 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims 1
- 238000001356 surgical procedure Methods 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 3
- 239000005441 aurora Substances 0.000 description 3
- 238000012282 endovascular technique Methods 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 208000007474 aortic aneurysm Diseases 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004191 axillary artery Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002697 interventional radiology Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000003924 mental process Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003589 nefrotoxic effect Effects 0.000 description 1
- 231100000381 nephrotoxic Toxicity 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with a guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Description
"Catetere munito di sensori elettromagnetici di posizione, e sistema di localizzazione per cateteri e fili guida" "Catheter equipped with electromagnetic position sensors, and localization system for catheters and guide wires"
DESCRIZIONE DESCRIPTION
La presente invenzione si riferisce ad un catetere comprendente The present invention relates to a catheter comprising
un corpo tubolare atto ad essere introdotto in una cavità corporea, detto corpo tubolare avendo una parte distale includente almeno una porzione curva o curvabile, e rispettivi segmenti di catetere ai capi di detta porzione curva o curvabile; e a tubular body adapted to be introduced into a body cavity, said tubular body having a distal part including at least one curved or curvable portion, and respective catheter segments at the ends of said curved or curvable portion; And
una pluralità di sensori elettromagnetici di posizione, ciascuno di questi essendo disposto su un rispettivo di detti segmenti di catetere, ed essendo predisposto per rendere disponibile, in risposta ad un campo magnetico generato esternamente, un segnale elettrico indicativo della posizione e dell’orientamento del rispettivo segmento di catetere. a plurality of electromagnetic position sensors, each of these being arranged on a respective of said catheter segments, and being arranged to make available, in response to an externally generated magnetic field, an electrical signal indicative of the position and orientation of the respective catheter segment.
La tecnica endovascolare à ̈ una branca miniinvasiva della chirurgia vascolare e non solo, in quanto negli anni à ̈ stata adottata da altre specialità , quali la radiologia interventistica, la cardiologia, la cardiochirurgia, la chirurgia toracica, chirurgia digestiva e neurochirurgia. The endovascular technique is a minimally invasive branch of vascular surgery and more, as over the years it has been adopted by other specialties, such as interventional radiology, cardiology, cardiac surgery, thoracic surgery, digestive surgery and neurosurgery.
La procedura endovascolare si basa sul cateterismo trans-arterioso o venoso attraverso il quale i dispositivi navigano su guide metalliche fino al sito del vaso da trattare. The endovascular procedure is based on trans-arterial or venous catheterization through which the devices navigate on metal guides to the site of the vessel to be treated.
L’accesso vascolare più utilizzato à ̈ quello retrogrado transfemorale (dall’arteria femorale comune), previa anestesia locoregionale con cateterizzazione secondo Seldinger. Se questo non fosse possibile, per l’occlusione dell’arteria femorale comune o iliaca, viene praticato un accesso brachiale o radiale. La guida viene inserita nell’ago, che poi verrà estratto, e viene inserito un introduttore standard ed eseguita un’arteriografia diagnostica, previo posizionamento di catetere tipo pig tail. L’angiografia evidenzia l’anatomia del vaso mediante l’iniezione di contrasto (un colorante radio-opaco) che viene proiettato live sul monitor dell’angiografo per mezzo di raggi X. The most used vascular access is the transfemoral retrograde one (from the common femoral artery), after locoregional anesthesia with catheterization according to Seldinger. If this is not possible, a brachial or radial approach is performed for occlusion of the common or iliac femoral artery. The guide is inserted into the needle, which will then be extracted, and a standard introducer is inserted and a diagnostic arteriography is performed, after placing a pig tail type catheter. Angiography highlights the anatomy of the vessel through the injection of contrast (a radio-opaque dye) which is projected live on the angiograph monitor by means of X-rays.
Lo sviluppo delle tecniche endovascolari ha permesso il miglioramento dei risultati per quanto concerne morbilità e mortalità , allargando il numero di pazienti trattabili. Nonostante ciò la tecnica endovascolare non à ̈ priva di complicanze e seppur mini-invasiva, i rischi associati all’iniezione di mezzo di contrasto (che à ̈ un farmaco nefrotossico) [1] e l’uso di radiazioni ionizzanti (13.4 /-8.6 mSv per la riparazione endovascolare di aneurismi, EVAR [2]), rende questa metodica non ancora completa. The development of endovascular techniques has allowed the improvement of the results as regards morbidity and mortality, increasing the number of treatable patients. Despite this, the endovascular technique is not without complications and although minimally invasive, the risks associated with the injection of contrast medium (which is a nephrotoxic drug) [1] and the use of ionizing radiation (13.4 / -8.6 mSv for endovascular repair of aneurysms, EVAR [2]), makes this method not yet complete.
Sono inoltre numerose le difficoltà tecniche per il chirurgo. I fluoroscopi tradizionali infatti forniscono immagini bidimensionali proiettive che richiedono all'operatore un’innaturale ricostruzione mentale della struttura tridimensionale dei vasi. Tale processo mentale, per essere eseguito correttamente, necessita di una notevole esperienza da parte dell’operatore che, prima di operare autonomamente, deve aver svolto un lungo periodo di addestramento sotto la supervisione di un chirurgo esperto. La navigazione all'interno delle strutture vascolari, basata esclusivamente su serie di proiezioni 2D delle stesse, richiede un continuo riaggiustamento del punto di vista del fluoroscopio e l'acquisizione di nuove serie di immagini. Un erra to posizionamento del fluoroscopio può inoltre comportare problemi come l’oscuramento dei vasi di interesse a causa delle strutture sovrastanti o l’erronea percezione della lunghezza dei vasi. There are also numerous technical difficulties for the surgeon. Traditional fluoroscopes in fact provide two-dimensional projective images that require the operator an unnatural mental reconstruction of the three-dimensional structure of the vessels. This mental process, to be carried out correctly, requires considerable experience on the part of the operator who, before operating independently, must have undergone a long period of training under the supervision of an expert surgeon. The navigation inside the vascular structures, based exclusively on series of 2D projections of the same, requires a continuous readjustment of the fluoroscope point of view and the acquisition of new series of images. Incorrect positioning of the fluoroscope can also lead to problems such as the darkening of the vessels of interest due to the overlying structures or the erroneous perception of the length of the vessels.
I recenti sviluppi nell’ambito della computer graphics, della realtà virtuale e del processing delle immagini hanno prodotto i primi lavori nell’ambito dei sistemi di assistenza computerizzata per la chirurgia endovascolare [3-10] e soluzioni commerciali sono oggi a disposizione per il mapping cardiaco e per l’interventistica cardiaca [11-13]. Recent developments in the field of computer graphics, virtual reality and image processing have produced the first works in the field of computerized assistance systems for endovascular surgery [3-10] and commercial solutions are now available for cardiac mapping and cardiac interventional mapping [11-13].
Tra i lavori di letteratura, S. Pujol [3, 10] ha sviluppato un sistema per il trattamento dell’aneurisma aortico addominale (AAA) basato sulla localizzazione elettromagnetica dell’endoprotesi e sulla registrazione di modelli 3D dell’anatomia del paziente acquisiti in sede pre-operatoria con un procedura di scansione di tomografia computerizzata (TC). Among the works of literature, S. Pujol [3, 10] has developed a system for the treatment of abdominal aortic aneurysm (AAA) based on the electromagnetic localization of the endoprosthesis and on the recording of 3D models of the patient's anatomy acquired preoperatively with a computed tomography (CT) scan procedure.
Il sistema proposto da S. Pujol si basa sull’impiego di un unico sensore elettromagnetico alloggiato all’interno di un’endoprotesi opportunamente modificata. I primi test [3] di validazione del sistema sono stati svolti utilizzando un catetere vascolare (diametro 3F, lunghezza 260 cm) equipaggiato con un sensore elettromagnetico Aurora® a cinque gradi di libertà (diametro 0.8 mm, lunghezza 10 mm), prodotto da Northern Digital Inc. The system proposed by S. Pujol is based on the use of a single electromagnetic sensor housed inside a suitably modified endoprosthesis. The first validation tests [3] of the system were carried out using a vascular catheter (diameter 3F, length 260 cm) equipped with an Aurora® five degrees of freedom electromagnetic sensor (diameter 0.8 mm, length 10 mm), manufactured by Northern Digital Inc.
Sempre S. Pujol ha descritto in [5] l’impiego di un sistema di navigazione elettromagnetico per la neurointerventistica. Anche in questo caso, à ̈ stato realizzato un catetere sensorizzato con un solo sensore elettromagnetico Aurora®. S. Pujol also described in [5] the use of an electromagnetic navigation system for neurointervention. Also in this case, a sensorized catheter was created with a single Aurora® electromagnetic sensor.
Un catetere del tipo definito all’inizio, munito di una pluralità di sensori elettromagnetici di posizione, à ̈ descritto in EP 2 238 901. Tale catetere noto presenta una pluralità di sensori costituiti da singole bobine distribuite lungo la parte distale del catetere, e disposte concentricamente con l’asse longitudinale di questo. A catheter of the type defined at the beginning, equipped with a plurality of electromagnetic position sensors, is described in EP 2 238 901. This known catheter has a plurality of sensors constituted by single coils distributed along the distal part of the catheter, and arranged concentrically with the longitudinal axis of this.
Come à ̈ noto, l’applicazione di sensori può comportare degli inconvenienti legati alla creazione indesiderata di ostacoli all’interno del lume del catetere, all’aumento delle dimensioni trasversali dello strumento, e/o alla riduzione della sua flessibilità . As is well known, the application of sensors can lead to drawbacks linked to the undesired creation of obstacles inside the catheter lumen, to the increase in the transversal dimensions of the instrument, and / or to the reduction of its flexibility.
Uno scopo della presente invenzione à ̈ quello di fornire una nuova disposizione di sensori che semplifichi la sensoristica a bordo del catetere, in modo da ridurre al minimo ogni influenza negativa sullo strumento, e che permetta al contempo di poter ottenere i dati necessari per ricavare la posizione ed il decorso del catetere, e del suo filo guida, durante l’utilizzo. An object of the present invention is to provide a new arrangement of sensors which simplifies the sensors on board the catheter, in order to minimize any negative influence on the instrument, and which at the same time allows to obtain the data necessary to obtain the position and course of the catheter, and its guide wire, during use.
Tale scopo à ̈ raggiunto secondo l’invenzione da un catetere del tipo definito all’inizio, in cui ciascuno di detti sensori elettromagnetici di posizione presenta un corpo sostanzialmente aghiforme, avente asse longitudinale disposto parallelamente all’asse longitudinale del rispettivo segmento di catetere, ed à ̈ posizionato in corrispondenza della parete del rispettivo segmento di catetere, eccentricamente rispetto all’asse longitudinale di questo. This object is achieved according to the invention by a catheter of the type defined at the beginning, in which each of said electromagnetic position sensors has a substantially needle-like body, having a longitudinal axis arranged parallel to the longitudinal axis of the respective segment of catheter, and is positioned in correspondence with the wall of the respective segment of the catheter, eccentrically with respect to the longitudinal axis of this.
Forme di realizzazione preferite dell’invenzione sono definite nelle rivendicazioni dipendenti, che sono da intendersi come parte integrante della presente descrizione. Preferred embodiments of the invention are defined in the dependent claims, which are to be understood as an integral part of the present description.
Forma inoltre oggetto dell’invenzione un sistema di localizzazione per cateteri e fili guida, includente The invention also relates to a localization system for catheters and guide wires, including
mezzi generatori di un campo magnetico; means generating a magnetic field;
un catetere comprendente a catheter comprising
- un corpo tubolare atto ad essere introdotto in una cavità corporea, detto corpo tubolare avendo una parte distale includente almeno una porzione curva o curvabile, ed ai capi di detta porzione curva o curvabile rispettivi segmenti di catetere; e - a tubular body adapted to be introduced into a body cavity, said tubular body having a distal part including at least one curved or curvable portion, and at the ends of said curved or curvable portion respective catheter segments; And
- una pluralità di sensori elettromagnetici di posizione, ciascuno di questi essendo disposto su un rispettivo di detti segmenti di catetere, ed essendo predisposto per rendere disponibile, in risposta al campo magnetico generato, un segnale elettrico indicativo della posizione e dell’orientamento del rispettivo segmento di catetere; - a plurality of electromagnetic position sensors, each of these being arranged on a respective of said catheter segments, and being arranged to make available, in response to the generated magnetic field, an electrical signal indicative of the position and orientation of the respective catheter segment;
mezzi elaboratori, atti ad elaborare i segnali elettrici di detti sensori elettromagnetici di posizione per rendere disponibili dati relativi alla posizione ed all’orientamento di detta parte distale del corpo tubolare; processing means, adapted to process the electrical signals of said electromagnetic position sensors to make available data relating to the position and orientation of said distal part of the tubular body;
in cui ciascuno di detti sensori elettromagnetici di posizione presenta un corpo sostanzialmente aghiforme, avente asse longitudinale disposto parallelamente all’asse longitudinale del rispettivo segmento di catetere, ed à ̈ posizionato in corrispondenza della parete del rispettivo segmento di catetere, eccentricamente rispetto all’asse longitudinale di questo. in which each of said electromagnetic position sensors has a substantially needle-like body, having a longitudinal axis arranged parallel to the longitudinal axis of the respective catheter segment, and is positioned in correspondence with the wall of the respective catheter segment, eccentrically with respect to the longitudinal axis of this.
Ulteriori caratteristiche e vantaggi del catetere secondo l’invenzione diverranno più chiari con la seguente descrizione dettagliata di una forma di realizzazione del trovato, fatta con riferimento ai disegni allegati, forniti a titolo puramente illustrativo e non limitativo, in cui: Further characteristics and advantages of the catheter according to the invention will become clearer with the following detailed description of an embodiment of the invention, made with reference to the attached drawings, provided purely for illustrative and non-limiting purposes, in which:
- la figura 1 à ̈ una vista schematica in prospettiva di un catetere secondo l’invenzione; - figure 1 is a schematic perspective view of a catheter according to the invention;
- la figura 2 Ã ̈ una vista in sezione longitudinale del catetere di figura 1; - figure 2 is a longitudinal sectional view of the catheter of figure 1;
- la figura 3 rappresenta alcuni esemplari di catetere di foggia differente; - figure 3 represents some examples of catheter of different shape;
- la figura 4 rappresenta schematicamente una catetere secondo l’invenzione del tipo azionabile, in due differenti posizioni operative; e - figure 4 schematically represents a catheter according to the invention of the operable type, in two different operating positions; And
- la figura 5 à ̈ una vista schematica in prospettiva di un filo guida secondo l’invenzione. - figure 5 is a schematic perspective view of a guide wire according to the invention.
Con riferimento alle figure 1 e 2, con 1 à ̈ indicato complessivamente un catetere, o più precisamente una parte distale di esso. With reference to Figures 1 and 2, 1 indicates a catheter as a whole, or more precisely a distal part of it.
Il catetere 1 comprende un corpo tubolare 3 atto ad essere introdotto in una cavità corporea. Tale corpo tubolare 3, o meglio la parte distale di essa, include almeno una porzione curva o curvabile 5, e rispettivi segmenti di catetere 7, 9 ai capi della porzione curva o curvabile 5. The catheter 1 comprises a tubular body 3 adapted to be introduced into a body cavity. Said tubular body 3, or rather the distal part thereof, includes at least a curved or curvable portion 5, and respective segments of catheter 7, 9 at the ends of the curved or curvable portion 5.
Il catetere 1 comprende inoltre una pluralità di sensori elettromagnetici di posizione 17, 19. Ciascuno di tali sensori à ̈ disposto su un rispettivo segmento di catetere 7, 9, ed à ̈ predisposto per rendere disponibile, in risposta ad un campo magnetico generato esternamente, un segnale elettrico indicativo della posizione e dell’orientamento del rispettivo segmento di catetere. The catheter 1 further comprises a plurality of electromagnetic position sensors 17, 19. Each of these sensors is arranged on a respective segment of the catheter 7, 9, and is arranged to make available, in response to an externally generated magnetic field, an electrical signal indicative of the position and orientation of the respective catheter segment.
Un tale catetere à ̈ applicabile nell’ambito della chirurgia endovascolare, metodica “miniinvasiva†che consente la riparazione di vasi senza isolamento chirurgico dell’arteria interessata. Tale procedura chirurgica viene condotta per via endoluminale, utilizzando per l’accesso alle lesioni il lume stesso dell’arteria, raggiunto attraverso l’incannulamento di un’arteria periferica, accessibile in anestesia locale con una puntura transcutanea o con una mini-incisione (arteria femorale o ascellare), attraverso la quale vengono inseriti i fili guida, i cateteri e le protesi (endoprotesi) che vengono guidati sotto controllo fluoroscopico fino a raggiungere la lesione bersaglio. Such a catheter is applicable in the field of endovascular surgery, a â € œmini-invasiveâ € method that allows the repair of vessels without surgical isolation of the affected artery. This surgical procedure is carried out intraluminally, using the lumen of the artery itself for access to the lesions, reached through the cannulation of a peripheral artery, accessible under local anesthesia with a transcutaneous puncture or with a mini -incision (femoral or axillary artery), through which guide wires, catheters and prostheses (endoprostheses) are inserted and guided under fluoroscopic control until reaching the target lesion.
Più precisamente, il catetere secondo l’invenzione trova applicazione nella realizzazione di un sistema di assistenza intraoperatoria computerizzata per la chirurgia endovascolare ed in particolare di un navigatore basato sulla localizzazione elettromagnetica dello strumentario chirurgico. More precisely, the catheter according to the invention finds application in the realization of a computerized intraoperative assistance system for endovascular surgery and in particular of a navigator based on the electromagnetic localization of surgical instruments.
Il principio di localizzazione elettromagnetica si basa sull’impiego di bobine elettromagnetiche che, accoppiate ad un generatore di campo, forniscono informazioni riguardo alla loro posizione ed al loro orientamento nello spazio. The principle of electromagnetic localization is based on the use of electromagnetic coils which, coupled to a field generator, provide information about their position and orientation in space.
Ciascuno dei sensori elettromagnetici di posizione 17, 19 del catetere 1 à ̈ preferibilmente un sensore a cinque gradi di libertà , comprendente una singola bobina a solenoide. Tali sensori permettono di ricavare con precisione la loro posizione nello spazio (nello specifico la posizione del centro della bobina) e la direzione del loro asse longitudinale. Il loro orientamento à ̈ pertanto definito a meno della rotazione attorno a tale asse. Secondo una realizzazione alternativa, ciascuno dei sensori elettromagnetici di posizione del catetere potrebbe essere un sensore a sei gradi di libertà , comprendente due o più bobine accoppiate. Tali sensori forniscono tutte le informazioni necessarie ad individuare sia la loro posizione che il loro orientamento nello spazio: tre gradi di traslazione e tre gradi di rotazione. Each of the electromagnetic position sensors 17, 19 of the catheter 1 is preferably a five degrees of freedom sensor comprising a single solenoid coil. These sensors allow to accurately determine their position in space (specifically the position of the coil center) and the direction of their longitudinal axis. Their orientation is therefore defined except for rotation around this axis. According to an alternative embodiment, each of the catheter position electromagnetic sensors could be a six degrees of freedom sensor, comprising two or more coupled coils. These sensors provide all the information necessary to identify both their position and their orientation in space: three degrees of translation and three degrees of rotation.
Ciascuno dei sensori 17, 19 del catetere 1 presenta un corpo sostanzialmente aghiforme, ovvero di forma stretta ed allungata, ed ha asse longitudinale disposto parallelamente all’asse longitudinale del rispettivo segmento di catetere. Each of the sensors 17, 19 of the catheter 1 has a substantially needle-like body, that is, of a narrow and elongated shape, and has a longitudinal axis arranged parallel to the longitudinal axis of the respective catheter segment.
Un esempio di sensore elettromagnetico commerciale applicabile nella presente invenzione, à ̈ il sensore a cinque gradi di libertà NDI Aurora®, prodotto da Northern Digital Inc., avente dimensioni estremamente compatte (0,5 mm diametro x 8 mm lunghezza). Un sensore a sei gradi di libertà NDI Aurora® presenta dimensioni pari a 1,8 mm diametro x 9 mm lunghezza. An example of a commercial electromagnetic sensor applicable in the present invention is the NDI Aurora® five degrees of freedom sensor, produced by Northern Digital Inc., having extremely compact dimensions (0.5 mm diameter x 8 mm length). An Aurora® NDI six degrees of freedom sensor has dimensions of 1.8mm diameter x 9mm length.
La scelta delle bobine a cinque gradi di libertà permette pertanto di ridurre al minimo gli ingombri dei sensori. Tali sensori hanno dimensioni minori rispetto ai sensori a sei gradi di libertà e sono quindi preferibili per realizzare cateteri e fili guida sensorizzati mini-invasivi, rispettando i limiti dimensionali dello strumentario endovascolare standard. The choice of coils with five degrees of freedom therefore allows to reduce the overall dimensions of the sensors to a minimum. These sensors have smaller dimensions than the six degrees of freedom sensors and are therefore preferable for making minimally invasive sensorized catheters and guide wires, respecting the dimensional limits of standard endovascular instruments.
Ciascun sensore 17, 19 à ̈ posizionato in corrispondenza della parete del rispettivo segmento di catetere, eccentricamente rispetto all’asse longitudinale di questo. Il sensore può essere posizionato sulla superficie radialmente esterna di tale parete, come nell’esempio illustrato, oppure all’interno dello spessore della parete. Each sensor 17, 19 is positioned in correspondence with the wall of the respective catheter segment, eccentrically with respect to its longitudinal axis. The sensor can be positioned on the radially external surface of this wall, as in the example shown, or inside the thickness of the wall.
Di preferenza, i sensori elettromagnetici di posizione 17, 19 sono complessivamente disposti complanarmente gli uni rispetto agli altri. Preferably, the electromagnetic position sensors 17, 19 are generally arranged coplanar with each other.
La particolare disposizione dei sensori sopra descritta permette da una parte di ridurre al minimo l’ingombro, e dall’altra permette di rilevare la posizione e l’orientamento di “segmenti†diversi del catetere, in corrispondenza delle sedi di ciascun sensore. Ai fini della presente invenzione, con “segmento†si identifica genericamente ogni porzione di catetere avente una propria direzione della tangente all’asse longitudinale del catetere, che differisce o può essere fatta differire da quella di un’altra porzione del catetere. The particular arrangement of the sensors described above allows on the one hand to reduce the overall dimensions to a minimum, and on the other it allows to detect the position and orientation of different `` segments '' of the catheter, in correspondence with the seats of each sensor. For the purposes of the present invention, the term "segment" generically identifies each portion of the catheter having its own direction of the tangent to the longitudinal axis of the catheter, which differs or can be made to differ from that of another portion of the catheter.
L’impiego di almeno due sensori a cinque gradi di libertà à ̈ necessario per ottenere il sesto grado di libertà e quindi calibrare il catetere, e per ricostruire la curvatura ed il decorso della porzione curva 5 interposta fra due segmenti di catetere 7, 9. The use of at least two sensors with five degrees of freedom is necessary to obtain the sixth degree of freedom and therefore to calibrate the catheter, and to reconstruct the curvature and the course of the curved portion 5 interposed between two segments of the catheter 7, 9 .
La procedura di calibrazione permette di calcolare posizione ed orientamento del centro del lume del catetere in corrispondenza delle sedi di ciascun sensore, conoscendo la posizione dei sensori e l’orientamento del loro asse longitudinale (forniti dal sistema di localizzazione). The calibration procedure allows to calculate the position and orientation of the catheter lumen center at the locations of each sensor, knowing the position of the sensors and the orientation of their longitudinal axis (provided by the localization system).
Più in particolare, tale procedura permette di determinare le traslazioni che allineano gli assi delle bobine con l’asse del catetere in corrispondenza delle sedi di ciascun sensore. More specifically, this procedure makes it possible to determine the translations that align the axes of the coils with the axis of the catheter in correspondence with the seats of each sensor.
Le suddette traslazioni possono essere definite una volta individuati i versori ortogonali all’asse di ciascuna bobina e diretti verso il centro del lume del catetere (indicati con ed in figura 1). Questi ultimi possono essere identificati adoperando almeno una coppia di bobine, posizionate come mostrato in figura 2. I versori ed giacenti sul piano dei due sensori e perpendicolari rispettivamente a e (gli assi della prima e della seconda bobina), sono infatti ricavabili con semplici operazioni geometriche conoscendo la posizione e l’orientamento dell’asse delle due bobine. The aforementioned translations can be defined once the vector units orthogonal to the axis of each coil have been identified and directed towards the center of the catheter lumen (indicated with and in figure 1). The latter can be identified using at least one pair of coils, positioned as shown in figure 2. The vector units and lying on the plane of the two sensors and perpendicular to and respectively (the axes of the first and second coil), can in fact be obtained with simple geometric operations knowing the position and orientation of the axis of the two coils.
La curvatura della porzione curva 5 compresa tra i due sensori à ̈ infine stimabile attraverso tecniche di interpolazione, e di conseguenza à ̈ determinabile il decorso dell’intera porzione distale del catetere. Finally, the curvature of the curved portion 5 between the two sensors can be estimated through interpolation techniques, and consequently the course of the entire distal portion of the catheter can be determined.
L’impiego di più di due sensori può essere utile nel caso di cateteri con forma complessa. In figura 3 sono rappresentati esemplari di cateteri di foggia differente. Il primo a sinistra à ̈ un catetere vertebrale; per ricostruire la sua curvatura sono sufficienti due sensori. I sei esemplari centrali rappresentano vari tipi di cateteri di Simmons, mentre gli ultimi due a destra rappresentano cateteri del tipo “Shepherd’s hook†. Per ricostruire la curvatura di questi sono necessari almeno tre sensori (uno per ciascun segmento di catetere fra una porzione curva e l’altra). The use of more than two sensors can be useful in the case of catheters with a complex shape. Figure 3 shows examples of catheters of different shapes. The first on the left is a vertebral catheter; two sensors are sufficient to reconstruct its curvature. The six central specimens represent various types of Simmons catheters, while the last two on the right represent â € œShepherdâ € ™ s hookâ € catheters. To reconstruct the curvature of these, at least three sensors are required (one for each segment of the catheter between a curved portion and the other).
In figura 4 à ̈ illustrata la parte distale di un catetere 1, del tipo azionabile mediante cavi per variare la curvatura della parte distale suddetta. In tale esempio di realizzazione i segmenti di catetere 7, 9 su cui sono disposti i sensori 17, 19 sono collegati da una parte curvabile 5, la cui curvatura à ̈ selettivamente modificabile (ad esempio nella configurazione indicata dalla linea a tratti) mediante azionamento di mezzi di comando manovrati da un operatore. Figure 4 illustrates the distal part of a catheter 1, of the type that can be operated by means of cables to vary the curvature of the aforesaid distal part. In this embodiment example, the catheter segments 7, 9 on which the sensors 17, 19 are arranged are connected by a bendable part 5, whose curvature can be selectively modified (for example in the configuration indicated by the dashed line) by actuating control means operated by an operator.
Fra i cateteri azionabili in commercio esistono soluzioni caratterizzate da un doppio lume interno. Vantaggiosamente, uno dei due lumi può essere impiegato per alloggiare i sensori elettromagnetici senza richiedere particolari modifiche progettuali al sistema di attuazione esistente né variazioni delle dimensioni del catetere. Among the operable catheters on the market there are solutions characterized by a double internal lumen. Advantageously, one of the two lumens can be used to house the electromagnetic sensors without requiring particular design modifications to the existing actuation system or variations in the dimensions of the catheter.
La presente invenzione si riferisce naturalmente anche a cateteri rettilinei e non attuati. Tali cateteri sono notoriamente flessibili, e quindi curvabili, per potersi adeguare all’andamento del lume corporeo nel quale sono destinati ad essere introdotti. The present invention naturally also refers to straight and unactuated catheters. These catheters are notoriously flexible, and therefore bendable, in order to adapt to the course of the body lumen into which they are intended to be introduced.
Con riferimento alla figura 5, con 21 Ã ̈ indicata complessivamente la parte distale di un esempio di filo guida per guidare il catetere 1. With reference to Figure 5, 21 indicates the distal part of an example of guide wire for guiding the catheter 1 as a whole.
I fili guida sono strumenti essenziali per l’esecuzione delle procedure endovascolari: rappresentano il supporto per l’inserimento e la manovra dei cateteri, permettono l’accesso e l’attraversamento delle lesioni e forniscono supporto per i cateteri per interventistica. The guide wires are essential tools for the execution of endovascular procedures: they represent the support for the insertion and maneuvering of catheters, they allow the access and the crossing of the lesions and they provide support for the interventional catheters.
I fili guida devono avere una punta flessibile ed atraumatica ed un corpo più rigido che garantisca la manovrabilità dello strumento (“pushability†del filo guida). The guide wires must have a flexible and atraumatic tip and a more rigid body that guarantees the maneuverability of the instrument (â € œpushabilityâ € of the guide wire).
Il filo guida 21 rappresentato in figura 5 presenta un corpo tubolare 23 di materiale flessibile, ad esempio Nitinol, all’interno del quale à ̈ disposta con un’anima tubolare di rinforzo 25, ad esempio di acciaio inox medicale. In corrispondenza della sua estremità distale il filo guida 21 à ̈ privo dell’anima tubolare 25, per alloggiare un sensore elettromagnetico di posizione 27. Il cavo elettrico di uscita 29 del sensore 27 à ̈ fatto passare attraverso l’anima tubolare 25 del filo guida per collegare il sensore a mezzi elaboratori esterni (non illustrati). The guide wire 21 shown in Figure 5 has a tubular body 23 of flexible material, for example Nitinol, inside which it is arranged with a tubular reinforcing core 25, for example of medical stainless steel. At its distal end, the guide wire 21 is devoid of the tubular core 25, to house an electromagnetic position sensor 27. The electrical output cable 29 of the sensor 27 is made to pass through the tubular core 25 of the guide wire for connecting the sensor to external processing means (not shown).
Il sensore 27 à ̈ disposto sulla punta del filo guida 21, ed à ̈ predisposto per rendere disponibile, in risposta ad un campo magnetico generato esternamente, un segnale elettrico indicativo della posizione e dell’orientamento della punta del filo guida. The sensor 27 is arranged on the tip of the guide wire 21, and is designed to make available, in response to an externally generated magnetic field, an electrical signal indicative of the position and orientation of the tip of the guide wire.
In particolare, il sensore elettromagnetico di posizione 27 del filo guida 21 presenta un corpo sostanzialmente aghiforme, ovvero di forma stretta ed allungata, ed ha asse longitudinale disposto allineato con l’asse longitudinale del filo guida. Preferibilmente, il sensore elettromagnetico di posizione 27 del filo guida 21 à ̈ un sensore a cinque gradi di libertà , comprendente una singola bobina a solenoide. In particular, the electromagnetic position sensor 27 of the guide wire 21 has a substantially needle-like body, that is, of a narrow and elongated shape, and has a longitudinal axis arranged aligned with the longitudinal axis of the guide wire. Preferably, the electromagnetic position sensor 27 of the guide wire 21 is a five degrees of freedom sensor comprising a single solenoid coil.
Il filo guida sensorizzato, utilizzato congiuntamente al catetere sensorizzato sopra descritto durante la navigazione computer assistita, permette di ottenere tutte le funzionalità necessarie all’esecuzione di complete procedure endovascolari (individuazione della porzione distale del catetere e della porzione distale del filo guida). The sensorized guide wire, used in conjunction with the sensorized catheter described above during computer assisted navigation, allows to obtain all the necessary functions for the execution of complete endovascular procedures (identification of the distal portion of the catheter and of the distal portion of the guide wire).
Le informazioni fornite da un unico sensore a cinque gradi di libertà , posizionato sull’asse del filo guida come in figura 5, sono sufficienti a descrivere la posizione e l’orientamento dell’estremità distale del filo guida. The information provided by a single sensor with five degrees of freedom, positioned on the axis of the guide wire as in figure 5, is sufficient to describe the position and orientation of the distal end of the guide wire.
Al fine di determinare il decorso dell’intero tratto distale del filo guida à ̈ sufficiente ricorrere alle informazioni sulla posizione e l’orientamento della punta del catetere sensorizzato (ricavate come descritto in precedenza). Il filo guida à ̈ infatti vincolato a passare attraverso la punta del catetere. In order to determine the course of the entire distal part of the guide wire, it is sufficient to use the information on the position and orientation of the tip of the sensorized catheter (obtained as previously described). The guide wire is in fact bound to pass through the tip of the catheter.
La soluzione sopra descritta permette di ridurre il numero di sensori e di conseguenza il numero di fili elettrici da alloggiare all’interno del filo guida: pertanto ottimizza l’ingombro della sensoristica rispettando i limiti dimensionali dello strumentario endovascolare standard. Secondariamente non si compromettono le caratteristiche meccaniche del filo guida irrigidendo troppo la sua struttura a causa dei molteplici sensori ed i relativi cavi da alloggiare al suo interno, ed infine si riducono i costi. The solution described above allows to reduce the number of sensors and consequently the number of electrical wires to be housed inside the guide wire: therefore it optimizes the dimensions of the sensors respecting the dimensional limits of standard endovascular instruments. Secondly, the mechanical characteristics of the guide wire are not compromised by stiffening its structure too much due to the multiple sensors and the relative cables to be housed inside it, and finally costs are reduced.
Riferimenti References
[1] S. R. Walsh, et al., "Contrast-induced nephropathy," Journal of Endovascular Therapy, vol. 14, pp. 92-100, Feb 2007. [1] S. R. Walsh, et al., "Contrast-induced nephropathy," Journal of Endovascular Therapy, vol. 14, pp. 92-100, Feb 2007.
[2] C. Jones, et al., "The impact of radiation dose exposure during endovascular aneurysm repair on patient safety," Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter, vol. 52, pp. 298-302, Aug 2010. [2] C. Jones, et al., "The impact of radiation dose exposure during endovascular aneurysm repair on patient safety," Journal of vascular surgery: official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter, vol. 52, pp. 298-302, Aug 2010.
[3] S. Pujol, et al., "Minimally Invasive Navigation for the Endovascular Treatment of Abdominal Aortic Aneurysm: Preclinical Validation of the Endovax System," presented at the Proceedings of the 6th International Conference on Medical Image Computing and Computer Assisted Intervention., 2003. [3] S. Pujol, et al., "Minimally Invasive Navigation for the Endovascular Treatment of Abdominal Aortic Aneurysm: Preclinical Validation of the Endovax System," presented at the Proceedings of the 6th International Conference on Medical Image Computing and Computer Assisted Intervention. , 2003.
[4] J. D. Lee, et al., "A Navigation System of Cerebral Endovascular Surgery Integrating Multiple Space-guiding Trackers," presented at the 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, 2008. [4] J. D. Lee, et al., "A Navigation System of Cerebral Endovascular Surgery Integrating Multiple Space-guiding Trackers," presented at the 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, 2008.
[5] S. Pujol, et al., "Preliminary results of nonfluoroscopy-based 3D navigation for neurointerventional procedures," J Vasc Interv Radiol, vol. 18, pp. 289-98, Feb 2007. [5] S. Pujol, et al., "Preliminary results of nonfluoroscopy-based 3D navigation for neurointerventional procedures," J Vasc Interv Radiol, vol. 18, pp. 289-98, Feb 2007.
[6] K. Dimitrov, "3-D Hall Sensor for use in Navigation Systems for Surgery Endovascular Interventions," presented at the IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Dortmund, Germany, 2007. [6] K. Dimitrov, "3-D Hall Sensor for use in Navigation Systems for Surgery Endovascular Interventions," presented at the IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Dortmund, Germany, 2007.
[7] M. Feuerstein, et al., "A novel segmentation and navigation tool for endovascular stenting of aortic aneurysms," presented at the Intl J CARS, 2006. [7] M. Feuerstein, et al., "A novel segmentation and navigation tool for endovascular stenting of aortic aneurysms," presented at the Intl J CARS, 2006.
[8] O. Kuttera, et al., "Towards an integrated planning and navigation system for aortic stent-graft placement," presented at the Int J CARS, 2007. [8] O. Kuttera, et al., "Towards an integrated planning and navigation system for aortic stent-graft placement," presented at the Int J CARS, 2007.
[9] M. Castro, et al., "Estimation of 2d/3d Rigid Transformation of Computer-Assisted Endovascular Navigation," presented at the International Conference on Information and Communication Technologies: From Theory to Applications, ICCTA Damascus, Syria, 2008. [9] M. Castro, et al., "Estimation of 2d / 3d Rigid Transformation of Computer-Assisted Endovascular Navigation," presented at the International Conference on Information and Communication Technologies: From Theory to Applications, ICCTA Damascus, Syria, 2008.
[10] S. Pujol, et al., "A virtual reality based navigation system for endovascular surgery," Stud Health Technol Inform, vol. 98, pp. 310-2, 2004. [10] S. Pujol, et al., "A virtual reality based navigation system for endovascular surgery," Stud Health Technol Inform, vol. 98, pp. 310-2, 2004.
[11] CARTO® System, Biosense Webster® Available: [11] CARTO® System, Biosense Webster® Available:
http://www.biosensewebster.com http://www.biosensewebster.com
[12] EP Navigator, Philips Electronics N.V. [12] EP Navigator, Philips Electronics N.V.
Available: http://www.healthcare.philips.com [13] EnSite Systemâ„¢ , St. Jude Medical. Available: Available: http://www.healthcare.philips.com [13] EnSite Systemâ „¢, St. Jude Medical. Available:
http://www.sjmprofessional.com http://www.sjmprofessional.com
Claims (13)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000394A ITTO20110394A1 (en) | 2011-05-05 | 2011-05-05 | CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES |
| PCT/IB2012/052219 WO2012150567A1 (en) | 2011-05-05 | 2012-05-03 | A catheter with electromagnetic position sensors and a location system catheters and guide wires |
| EP12729203.5A EP2704631A1 (en) | 2011-05-05 | 2012-05-03 | A catheter with electromagnetic position sensors and a location system for catheters and guide wires |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000394A ITTO20110394A1 (en) | 2011-05-05 | 2011-05-05 | CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ITTO20110394A1 true ITTO20110394A1 (en) | 2012-11-06 |
Family
ID=44554380
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IT000394A ITTO20110394A1 (en) | 2011-05-05 | 2011-05-05 | CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2704631A1 (en) |
| IT (1) | ITTO20110394A1 (en) |
| WO (1) | WO2012150567A1 (en) |
Families Citing this family (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10835307B2 (en) * | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
| US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US9060776B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
| US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
| US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
| US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
| JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
| US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
| US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
| US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
| US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
| US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
| US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
| US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| JP6275727B2 (en) | 2012-09-28 | 2018-02-07 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Multifunctional bipolar forceps |
| US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
| US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
| US9204841B2 (en) | 2012-12-31 | 2015-12-08 | Biosense Webster (Israel) Ltd. | Catheter with serially connected sensing structures and methods of calibration and detection |
| US9204820B2 (en) | 2012-12-31 | 2015-12-08 | Biosense Webster (Israel) Ltd. | Catheter with combined position and pressure sensing structures |
| DE102013214067A1 (en) | 2013-07-17 | 2015-01-22 | Fiagon Gmbh | Device and method for connecting a medical instrument to a position detection system |
| US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| DE102013222230A1 (en) * | 2013-10-31 | 2015-04-30 | Fiagon Gmbh | Surgical instrument |
| US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
| GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
| US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
| US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
| US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
| DE102014110457A1 (en) | 2014-07-24 | 2016-01-28 | Biotronik Ag | Catheter system for implantation of a body part replacement and method for determining the position thereof |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US20210259769A1 (en) * | 2018-08-17 | 2021-08-26 | St. Jude Medical, Cardiology Division, Inc. | Optical balloon catheters and methods for mapping and ablation |
| EP3719749A1 (en) | 2019-04-03 | 2020-10-07 | Fiagon AG Medical Technologies | Registration method and setup |
| SG11202110918UA (en) * | 2019-05-02 | 2021-10-28 | Intersect Ent Int Gmbh | Sensor carrier |
| US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US12349961B2 (en) | 2019-12-30 | 2025-07-08 | Cilag Gmbh International | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US20210196361A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with monopolar and bipolar energy capabilities |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| CN115212434B (en) * | 2021-04-15 | 2025-09-05 | 上海微创电生理医疗科技股份有限公司 | Medical catheter and three-dimensional magnetic positioning system |
| EP4193908A1 (en) | 2021-12-08 | 2023-06-14 | Koninklijke Philips N.V. | Improving mapping of an anatomical cavity and/or location tracking in the anatomical cavity |
| EP4198998A1 (en) | 2021-12-17 | 2023-06-21 | Koninklijke Philips N.V. | Aiding an analysis of an anatomical element of a subject |
| EP4202846A1 (en) | 2021-12-23 | 2023-06-28 | Koninklijke Philips N.V. | Adaptive 3d modelling of an anatomical cavity |
| CN118730174A (en) * | 2024-06-28 | 2024-10-01 | 河北铁鱼电子科技有限公司 | Axial annular six-degree-of-freedom magnetic positioning sensor and preparation method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020183809A1 (en) * | 1996-07-28 | 2002-12-05 | Uri Oron | Apparatus for providing electromagnetic biostimulation of tissue using optics and echo imaging |
| US20090138007A1 (en) * | 2007-10-08 | 2009-05-28 | Assaf Govari | High-sensitivity pressure-sensing probe |
| US20090299174A1 (en) * | 2004-01-12 | 2009-12-03 | Calypso Medical Technologies, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
| US20100204547A1 (en) * | 2007-11-29 | 2010-08-12 | Olympus Medical Systems Corp. | Endoscope bending control apparatus and endoscope system |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
-
2011
- 2011-05-05 IT IT000394A patent/ITTO20110394A1/en unknown
-
2012
- 2012-05-03 EP EP12729203.5A patent/EP2704631A1/en not_active Withdrawn
- 2012-05-03 WO PCT/IB2012/052219 patent/WO2012150567A1/en active Application Filing
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020183809A1 (en) * | 1996-07-28 | 2002-12-05 | Uri Oron | Apparatus for providing electromagnetic biostimulation of tissue using optics and echo imaging |
| US20090299174A1 (en) * | 2004-01-12 | 2009-12-03 | Calypso Medical Technologies, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
| US20090138007A1 (en) * | 2007-10-08 | 2009-05-28 | Assaf Govari | High-sensitivity pressure-sensing probe |
| US20100204547A1 (en) * | 2007-11-29 | 2010-08-12 | Olympus Medical Systems Corp. | Endoscope bending control apparatus and endoscope system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012150567A1 (en) | 2012-11-08 |
| EP2704631A1 (en) | 2014-03-12 |
| WO2012150567A8 (en) | 2013-07-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| ITTO20110394A1 (en) | CATHETER EQUIPPED WITH ELECTROMAGNETIC POSITION SENSORS, AND LOCALIZATION SYSTEM FOR CATHETER AND WIRE GUIDES | |
| JP7391926B2 (en) | Device providing image-guided navigation of anatomical structures within a patient | |
| US10582879B2 (en) | Method and apparatus for registration, verification and referencing of internal organs | |
| JP7098703B2 (en) | Device visualization by optical shape sensing of guide wires | |
| EP3236854B1 (en) | Tracking-based 3d model enhancement | |
| RU2556535C2 (en) | Assistance in selection of device size in process of surgery | |
| US7778685B2 (en) | Method and system for positioning a device in a tubular organ | |
| JP4878823B2 (en) | Catheter guidewire | |
| US20190313941A1 (en) | Methods, systems and apparatuses for displaying real-time catheter position | |
| US20210307641A1 (en) | Integrated imaging and medical device delivery apparatus and method of use | |
| US8473030B2 (en) | Vessel position and configuration imaging apparatus and methods | |
| US8942457B2 (en) | Navigating an interventional device | |
| Condino et al. | Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires | |
| US20100280363A1 (en) | Electromagnetic Navigation of Medical Instruments for Cardiothoracic Surgery | |
| ES2866163T3 (en) | System to help guide an endovascular tool in vascular structures | |
| EP2400912A1 (en) | Method, system and devices for transjugular intrahepatic portosystemic shunt (tips) procedures | |
| US20120017923A1 (en) | Removable Navigation System and Method for a Medical Device | |
| US20090259296A1 (en) | Gate Cannulation Apparatus and Methods | |
| CN110691553A (en) | OSS perspective shortening detection system, controller and method | |
| US11887236B2 (en) | Animated position display of an OSS interventional device | |
| Clogenson et al. | Catheters and guidewires for interventional MRI: are we there yet | |
| US20240016548A1 (en) | Method and system for monitoring an orientation of a medical object | |
| Kwartowitz et al. | Toward computer-assisted image-guided congenital heart defect repair: an initial phantom analysis | |
| CN118000965A (en) | Positioning method for abdominal aortic stent | |
| JP2024534556A (en) | SYSTEM AND METHOD FOR REAL-TIME IMAGE-BASED DEVICE LOCALIZATION - Patent application |