ITRE20100008A1 - BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB. - Google Patents

BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB. Download PDF

Info

Publication number
ITRE20100008A1
ITRE20100008A1 IT000008A ITRE20100008A ITRE20100008A1 IT RE20100008 A1 ITRE20100008 A1 IT RE20100008A1 IT 000008 A IT000008 A IT 000008A IT RE20100008 A ITRE20100008 A IT RE20100008A IT RE20100008 A1 ITRE20100008 A1 IT RE20100008A1
Authority
IT
Italy
Prior art keywords
blades
deflectors
fact
wind
vertical axis
Prior art date
Application number
IT000008A
Other languages
Italian (it)
Inventor
Ernesto Franceschini
Original Assignee
Ernesto Franceschini
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ernesto Franceschini filed Critical Ernesto Franceschini
Priority to IT000008A priority Critical patent/ITRE20100008A1/en
Publication of ITRE20100008A1 publication Critical patent/ITRE20100008A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

DESCRIZIONE di invenzione industriale avente per titolo: DESCRIPTION of industrial invention having as title:

“ PALE PER LA CONVERSIONE DELL’ENERGIA CINETICA DEL VENTO IN ENERGIA MOTRICE FISSATE A UN MOZZO AD ASSE VERTICALE” "BLADES FOR THE CONVERSION OF THE KINETIC ENERGY OF THE WIND INTO MOTOR ENERGY FIXED TO A VERTICAL AXIS HUB"

CAMPO DI APPLICAZIONE FIELD OF APPLICATION

La presente invenzione è stata concepita per aumentare il rendimento di trasformazione dell’energia cinetica del vento in energia motrice che può essere sfruttata direttamente per il pompaggio di liquidi oppure essere convertita in energia elettrica attraverso un aerogeneratore. The present invention was conceived to increase the efficiency of transforming the kinetic energy of the wind into motive energy that can be used directly for pumping liquids or be converted into electrical energy through a wind generator.

La particolare geometria aerodinamica delle pale si presta a essere integrata anche nei nuovi mezzi di locomozione elettrici per ricaricare le batterie durante la marcia contribuendo ad allungare la percorrenza. The particular aerodynamic geometry of the blades lends itself to being integrated also in the new electric means of locomotion to recharge the batteries while driving, helping to lengthen the distance.

STATO DELLA TECNICA STATE OF THE TECHNIQUE

Nel campo dello sfruttamento dell’energia del vento, oggi sono noti diversi sistemi ad asse verticale con svariate soluzioni aerodinamiche. In the field of the exploitation of wind energy, several vertical axis systems with various aerodynamic solutions are known today.

Si può vedere per esempio in “http://it.Wikipedia.org “Turbina a vento Savonius/ e “http://en.wikipedia.org/wiki/Darrieus_wind_turbine” You can see for example in "http://it.Wikipedia.org" Savonius wind turbine / and "http://en.wikipedia.org/wiki/Darrieus_wind_turbine"

oppure “http://www.energoclub.it/doceboCms/page/104/Ad_asse_verticale.htmr o “http://peswiki.eom/index.php/Directory:Vertical_Axis_Wind_Turbines”. or “http://www.energoclub.it/doceboCms/page/104/Ad_asse_verticale.htmr or“ http: //peswiki.eom/index.php/Directory: Vertical_Axis_Wind_Turbines ”.

Alcuni sistemi iniziano la rotazione solo quando la velocità del vento è maggiore di 2-3 m/s, mentre altri hanno scarsi rendimenti e coppie incostanti. Some systems only start spinning when the wind speed is greater than 2-3 m / s, while others have poor yields and erratic torques.

Per ultimo vi sono soluzioni tecniche che comportano un elevato costo di costruzione e manutenzione. Finally, there are technical solutions that involve a high cost of construction and maintenance.

Scopo del trovato è migliorare i suddetti inconvenienti sfruttando al massimo i venti deboli e inoltre consenta realizzazioni assai semplici. The object of the invention is to improve the aforementioned drawbacks by making the most of the weak winds and also to allow very simple embodiments.

ESPOSIZIONE DEL TROVATO EXPOSURE OF THE FOUND

La presente invenzione è esposta più in dettaglio nel seguito con l'ausilio dei disegni che ne rappresentano un esempio schematico di esecuzione. The present invention is set out in more detail below with the aid of the drawings which represent a schematic example of its execution.

Nell'allegate tavole di disegni la Fig. 1 rappresenta le pale in vista prospettica; la Fig. 2 mostra il profilo delle pale in sezione longitudinale; la Fig. 3 e 4 ci aiutano a costruire il profilo della pala, mentre le Fig. 5, 6, 7 e 8 riportano il ciclo rotatorio delle pale evidenziando come si distribuiscono le forze aerodinamiche nel trovato. Come si vede dalla Fig. 1 la struttura di ogni pala è costituita (1) da due tubolari paralleli collegati al mozzo (2), tra questi verranno fissati perpendicolarmente i deflettori (3), (4), (5) dal lato bordo d'uscita (6), che è la parte finale del deflettore piano-convesso, con distanze definite dal profilo desiderato Fig. 3 e 4. In the attached drawing tables, Fig. 1 represents the blades in a perspective view; Fig. 2 shows the profile of the blades in longitudinal section; Fig. 3 and 4 help us to construct the profile of the blade, while Figs. 5, 6, 7 and 8 show the rotational cycle of the blades, highlighting how the aerodynamic forces are distributed in the invention. As can be seen from Fig. 1 the structure of each blade consists (1) of two parallel tubes connected to the hub (2), between these the deflectors (3), (4), (5) will be fixed perpendicularly from the edge side d outlet (6), which is the final part of the plano-convex deflector, with distances defined from the desired profile Fig. 3 and 4.

La distanza dei due tubolari è data dalla superficie alare che si vuole ottenere, quindi variabile da un rapporto 1/1 a 1/100 della lunghezza pala. The distance of the two tubes is given by the wing surface to be obtained, therefore variable from a ratio 1/1 to 1/100 of the blade length.

La parte importante è disegnare il profilo pala in sezione longitudinale Fig. 3. Si cerca un profilo alare di riferimento Fig. 4 della serie NACA o altri, si estrapola il profilo partendo dal bordo d'entrata fino alla curva massima del dorso, e poi riportiamo il tutto con relativa tabella dimensionale sul foglio. The important part is to draw the blade profile in longitudinal section Fig. 3. We search for a reference airfoil Fig. 4 of the NACA series or others, we extrapolate the profile starting from the leading edge up to the maximum curve of the back, and then we report everything with its dimensional table on the sheet.

La tabella è composta da tre serie di numeri contraddistinti rispettivamente con x, ys e yi. The table consists of three series of numbers marked respectively with x, ys and yi.

La prima “x” indica i valori in percentuale della corda, da 0 a 100, presa sulla linea di riferimento del nostro profilo. The first "x" indicates the percentage values of the chord, from 0 to 100, taken on the reference line of our profile.

Il punto di partenza della scala delle x (origine), c costituiscono le ascisse del grafico è nel nostro caso il bordo d'entrata del prc prelevato. The starting point of the x scale (origin), c constitute the abscissas of the graph is in our case the leading edge of the prc taken.

Le altre due serie di numeri, ys e yi, costituiscono le ordinate sempre in percentuale della corda da prendersi sulla alla corda passante per il corrispondente punto x, e partendo da tale punt The other two series of numbers, ys and yi, constitute the ordinates always as a percentage of the chord to be taken on the chord passing through the corresponding point x, and starting from this point

La “ys” identifica il punto della curva superiore 'yi” il punto inferiore del piano. Ora riportiamo i punti sul disegno etracciamo le rette dal punto ys1 a yi1 dal punto ys2 a yi2 e dal punto ys3 a yi3, così tte la larghezza e la posizione dei nostri deflettori piano-convessi. The “ys” identifies the point of the upper curve 'yi ”the lower point of the plane. Now we bring the points back to the drawing and draw the lines from point ys1 to yi1 from point ys2 to yi2 and from point ys3 to yi3, thus tte the width and position of our plano-convex deflectors.

Il profilo dei deflettori piano convessi è da ricercai come per la pala nella serie profili alari NACA o altri, la scelta del profilo è sen stato uno dei problemi principali dei progettisti, in questo caso abbiamo come riferimento il profilo alare “Clark Y". The profile of the flat convex deflectors is to be researched as for the blade in the NACA or other airfoil series, the choice of the profile has been one of the main problems of the designers, in this case we refer to the “Clark Y” airfoil.

Vediamo un ciclo rotatorio delle pale in sezione le il flusso d'aria (V) Fig. 5 genera un effetto di pressione (P) sul ventri dei deflettori della pala (A) mentre sul dorso dei medesimi si ha un effetto di (D), la risultante forza aerodinamica genera una spinta alla pala (A) in senso orario, nel contempo sul dorso dei deflettori della pala (B) si ha un effe sempre di pressione (Q), ma minore grazie al profilo, quindi la pala (B) non si alla rotazione. We see a rotational cycle of the blades in section and the air flow (V) Fig. 5 generates a pressure effect (P) on the belly of the blade deflectors (A) while on the back of the same there is an effect of (D) , the resulting aerodynamic force generates a thrust to the blade (A) in a clockwise direction, at the same time on the back of the blade deflectors (B) there is always a pressure effect (Q), but less thanks to the profile, therefore the blade (B ) not to rotation.

In Fig. 6 il flusso d’aria genera ai deflettori delle pale (A) e (B) l’effetto di maggiore forza aerodinamica, cosi facendo la rotazione può continuare in Fig. 7 dove : la migliore condizione sia sui deflettori che sul profilo delle due pale, per poi passare alla Fig. 8 e ultimare il ciclo in Fig. 5. In Fig. 6 the air flow generates the effect of greater aerodynamic force on the deflectors of the blades (A) and (B), in this way the rotation can continue in Fig. 7 where: the best condition both on the deflectors and on the profile of the two blades, then move on to Fig. 8 and complete the cycle in Fig. 5.

Nel ciclo di rotazione, si hanno dei passaggi come da Fig. 6 a Fig. 7 e da Fig. 7 a Fig. 8 dove il profilo creato dalle pale Fig. 3, consente di ottenere un moto uniforme e stabile. In the rotation cycle, there are passages as from Fig. 6 to Fig. 7 and from Fig. 7 to Fig. 8 where the profile created by the blades Fig. 3, allows to obtain a uniform and stable motion.

Claims (6)

RIVENDICAZIONI 1. Pale per la conversione di flussi d’aria in energia motrice, fissate ad un mozzo ad asse verticale, caratterizzate dal fatto di avere una particolare geometria aerodinamica, data da un numero di deflettori con profilo piano-convesso uguale o maggiore di due per pala, dalla loro disposizione a scalare e dalle differenti superfici a contatto con l’aria, generando un moto rotatorio uniforme. CLAIMS 1. Blades for the conversion of air flows into motive energy, fixed to a hub with a vertical axis, characterized by the fact of having a particular aerodynamic geometry, given by a number of deflectors with a plane-convex profile equal to or greater than two for blade, by their arrangement to climb and by the different surfaces in contact with the air, generating a uniform rotary motion. 2. Pale come in 1. caratterizzate dal fatto che i deflettori siano con profilo concavo-convesso 2. Blades as in 1. characterized by the fact that the deflectors have a concave-convex profile 3. Pale come in 1 . caratterizzate dal fatto che i deflettori siano incernierati per cambiare li loro angolo di apertura e chiusura, sia manualmente che automaticamente. 3. Shovels as in 1. characterized by the fact that the deflectors are hinged to change their opening and closing angle, both manually and automatically. 4. Pale come in 1. caratterizzate dal fatto che i deflettori creano un profilo alla pala con discrete analogie ad un profilo alare. 4. Blades as in 1. characterized by the fact that the deflectors create a profile to the blade with discrete analogies to an airfoil. 5. Pale come in 1. caratterizzate dal fatto che ruotando le pale sull’asse longitudinale di 180°, il moto rotatorio cambia da senso orario in senso antiorario. 5. Blades as in 1. characterized by the fact that by rotating the blades on the longitudinal axis by 180 °, the rotary motion changes from clockwise to counterclockwise. 6. Pale come in 1 . caratterizzate dal fatto che le pale del trovato fissate al mozzo possano essere in numero maggiore di due.6. Shovels as in 1. characterized in that the blades of the invention fixed to the hub may be greater than two in number.
IT000008A 2010-02-12 2010-02-12 BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB. ITRE20100008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT000008A ITRE20100008A1 (en) 2010-02-12 2010-02-12 BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000008A ITRE20100008A1 (en) 2010-02-12 2010-02-12 BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB.

Publications (1)

Publication Number Publication Date
ITRE20100008A1 true ITRE20100008A1 (en) 2011-08-13

Family

ID=42711839

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000008A ITRE20100008A1 (en) 2010-02-12 2010-02-12 BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB.

Country Status (1)

Country Link
IT (1) ITRE20100008A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR613455A (en) * 1926-03-31 1926-11-18 Water wheel
WO1988009873A1 (en) * 1987-06-10 1988-12-15 Alfred Wilhelm Wind power engine
GB2241747A (en) * 1990-02-24 1991-09-11 John Jason Paul Goodden Turbine or impeller rotor
US5256034A (en) * 1991-04-19 1993-10-26 Sultzbaugh John S Variable pitch propeller for use in conjunction with a vertical axis wind turbine
WO2006102719A1 (en) * 2005-04-01 2006-10-05 Edo Dol A vertical axis windmill
WO2010008206A2 (en) * 2008-07-16 2010-01-21 Han Joo-Hak Vertical axis, floating wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR613455A (en) * 1926-03-31 1926-11-18 Water wheel
WO1988009873A1 (en) * 1987-06-10 1988-12-15 Alfred Wilhelm Wind power engine
GB2241747A (en) * 1990-02-24 1991-09-11 John Jason Paul Goodden Turbine or impeller rotor
US5256034A (en) * 1991-04-19 1993-10-26 Sultzbaugh John S Variable pitch propeller for use in conjunction with a vertical axis wind turbine
WO2006102719A1 (en) * 2005-04-01 2006-10-05 Edo Dol A vertical axis windmill
WO2010008206A2 (en) * 2008-07-16 2010-01-21 Han Joo-Hak Vertical axis, floating wind turbine

Similar Documents

Publication Publication Date Title
RU132140U1 (en) Cone Hollow Spiral Turbine for Energy Conversion
Rahamathullah Experimental investigations on the performance characteristics of a modified four bladed Savonius hydro-kinetic turbine
Marten et al. Development and application of a simulation tool for vertical and horizontal axis wind turbines
KR101216252B1 (en) Aerogenerator blade of tip airfoil
ITBS20130041U1 (en) WIND ROTOR CAR STARTING WITH VERTICAL AXIS, WORKING WITH A PULL EFFECT WITH NUMEROUS BLADES CONSISTED EACH BY THREE AERODYNAMIC PROFILES
Kumar et al. Hybrid kinetic turbine rotors: A review
Ahmed et al. Numerical study of two and three bladed Savonius wind turbine
Roy et al. Design of an offshore three-bladed vertical axis wind turbine for wind tunnel experiments
ITRE20100008A1 (en) BLADES FOR THE CONVERSION OF KINETIC ENERGY OF THE WIND IN MOTOR POWER FIXED TO A VERTICAL AXIS HUB.
Fazlizan et al. Double multiple stream tube analysis of non-uniform wind stream of exhaust air energy recovery turbine generator
ITPG20090008U1 (en) STATIC AERODYNAMIC FLOW DIVERTER FOR VERTICAL WIND ROTOR BLADES.
Zhao et al. Study on approach of performance improvement of VAWT employing double multiple stream tubes model
Menet Aerodynamic behaviour of a new type of slow-running VAWT
Bah et al. Investigation on the Use of Multi-Element Airfoils for Improving Vertical Axis Wind Turbine Performance.
Dumitrescu et al. Wind tunnel experiments on vertical-axis wind turbines with straight blades
Al-Kayiem et al. Experimental investigation of S-rotors in open and bounded flows
Gupta et al. Comparative study of the performances of twisted two-bladed and three-bladed airfoil shaped H-Darrieus turbines by computational and experimental methods
RU2521902C1 (en) Pair-blade turbine
ES2393332B2 (en) Aerodynamic profile with hybrid lift for a wind turbine blade
WO2015163779A1 (en) Twin-blade turbine
Stoilov et al. Evolution of the Advancements in Cross Axis Wind Electric Machines
Soni et al. Review on aerodynamic performance evaluation of straight blade vertical axis wind turbine
CN102852711B (en) Laminar rotating-wing wind turbine
RU120725U1 (en) WIND POWER PLANT
CY1124839T1 (en) WIND TURBINES WITH VERTICAL ROTOR AND INLET SURFACE CONSTRUCTION