ITPI20110135A1 - Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato - Google Patents

Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato Download PDF

Info

Publication number
ITPI20110135A1
ITPI20110135A1 IT000135A ITPI20110135A ITPI20110135A1 IT PI20110135 A1 ITPI20110135 A1 IT PI20110135A1 IT 000135 A IT000135 A IT 000135A IT PI20110135 A ITPI20110135 A IT PI20110135A IT PI20110135 A1 ITPI20110135 A1 IT PI20110135A1
Authority
IT
Italy
Prior art keywords
channel
domains
graphene
hbcn
field effect
Prior art date
Application number
IT000135A
Other languages
English (en)
Inventor
Gianluca Fiori
Giuseppe Iannaccone
Original Assignee
Gianluca Fiori
Giuseppe Iannaccone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gianluca Fiori, Giuseppe Iannaccone filed Critical Gianluca Fiori
Priority to IT000135A priority Critical patent/ITPI20110135A1/it
Priority to PCT/IT2012/000363 priority patent/WO2013080237A1/en
Priority to EP12815848.2A priority patent/EP2786416B1/en
Priority to US14/362,269 priority patent/US9620634B2/en
Publication of ITPI20110135A1 publication Critical patent/ITPI20110135A1/it

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Description

TITOLO: "TRANSISTORI AD EFFETTO DI CAMPO CON CANALE BIDIMENSIONALE REALIZZATO CON ETEROSTRUTTURE LATERALI BASATE SU GRAFENE IBRIDIZZATO"
DESCRIZIONE
Il grafene ha interessanti proprietà elettroniche, quali l'elevata mobilità e la relazione di dispersione simmetrica per elettroni e lacune. Ha però un gap di energìa nullo, e quindi non è direttamente utilizzabile come canale di transistori ad effetto di campo. Infatti, il gap nullo non costituisce una barriera efficace al transito di elettroni e lacune, e quindi non è possibile condurre il transistore in interdizione. [Lemme, M.; Echtermeyer, T.; Baus, M.; Kurz, H. A graphene field-effect device. IEEE Electr. Dev. Lett. 2007, 28, 282-284 .][Avouris, P.; Chen, Z.; Perebeinos, V. Carbonbased electronics. Nat. Nanotech. 2007, 2, 605- 615.] Recenti esperimenti hanno dimostrato la possibilità di realizzare strutture ibride bidimensionali formate da domini intercalati di carbonio ed hBCN [hexagonal boron, carbon, nitrogen (boro, carbonio, azoto esagonale)]. Le proprietà di tali domini possono essere modificate variando le frazioni relative dei tre elementi. Il grafene ha gap di energia nullo, ma i domini hBCN possono avere un gap tra 1 e 5 electronVolt , come mostrato in [Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D. ; Li, Y.; Srivastava, A.; Wang, Z. F. ; Storr, K.; L. Balicas, P. M. A., F. Liu Nat. Mater. 2001, 9, 430.]
Sulla base di questi valori, descriviamo l'invenzione dì una nuova serie di dispositivi con canale perfettamente bidimensionale, basati sull 'ingegnerizzazione di grafene ibridizzato .
Tale approccio potrà aprire nuove strade per la nanoelettronica in grafene, poiché le strutture ibride hBCN consentono di sopprimere il comportamento ambipolare, bloccando il flusso di uno dei due tipi di portatori, e quindi modulare completamente la corrente usando portatori dell'altro tipo.
[Prima realizzazione]
Un prima realizzazione del transistore a effetto di campo (FET) proposto è illustrata in Figura 1 (la sua sezione longitudinale nel riquadro di Figura 1). Il canale è rappresentato dal piano con reticolo esagonale, e si estende dal contatto di source (S) al contatto di drain (D). Nel canale è presente uno dominio di lunghezza tB di tipo hBCN. Sopra e sotto il canale sono presenti due strati dì materiale dielettrico (dielectric) di spessore tox e due gate (gate) di lunghezza L. Le regioni del canale coperte dal gate non sono drogate, mentre le estensioni di source e drain sono drogate con frazione molare f.
La barriera nel canale è formata da composti di nitruro di boro esagonale (hBCN), quali ad esempio nitruro di boro (BN), diverse coniigurazonì con una concentrazione di carbonio del 50% (BC2N), una concentrazione di carbonio dell'75% (BC6N), oppure altri materiali bidimensionali con reticolo compatibile con il grafene.
Se si considera come potenziale di riferimento il livello di Fermi intrinseco del grafene, e yG = 4.248 eV è l'affinità elettronica del grafene, le altezze delle barriere di energia viste da elettroni e lacune nel canale sono rispettivamente BC = XG - x , and BV =IχΘ-χ-Egap!, come mostrato in Fig. 2.
In Figura 3 mostriamo le caratteristiche di trasferimento calcolate con il pacchetto di simulazione di dispositivi NANOTCAD VIDES di un FET di tipo P con una barriera di BC2N (avente un gap di energia di circa 1.6 eV) per diversi valori della posizione ym del punto centrale della barriera lungo la direzione longitudinale, ed una tensione di 0.6 V applicata tra drain e source.
Nella stessa figura, mostriamo come riferimento la caratteristica di trasferimento di un transistore con la stressa struttura ma con il canale solo in grafene, cioè senza la barriera. Il cosidetto "rapporto Ion/Ioff", cioè il rapporto tra corrente di drain massima e minima per una variazione della tensione di gate pari alla tensione applicata tra drain e source (0.6 V nel nostro caso) è minore di 10 per il transistore in grafene, mentre è superiore a diecimila per un FET con canale BC2N, ed è poco dipendente rispetto alla posizione ym della barriera. I gate metallici consentono di controllare bene la barriera nel canale, come si vede anche dalla pendenza sottoglia di circa 80 mV/decade.
Come indicato, nonostante la struttura a doppio gate, la pendenza sottosoglia è peggiore del valore ideale ottenibile a temperatura ambiente (60 mV/dec) . L'effetto può essere spiegato dalla presenza di un'alta densità locale di stati nelle regioni di overlap tra strato di grafene e gate, che induce una significativa capacità quantistica del canale. D'altra parte, se si avesse un underlap, cioè se fosse L < tB, si osserverebbe un deterioramento della pendenza sottosoglia per la presenza di interfacce di tipo Schottky tra la barriera e le estensioni di source e drain, che ridurrebbero il grado controllo del gate sul potenziale nel canale.
[Seconda realizzazione]
Una seconda realizzazione è un FET tunnel risonante (RTFET), dove due domini di hBCN di lunghezza tB sono presenti nel canale e sotto il gate, separate da una regione di grafene di lunghezza w, come mostrato in Figura 4.
In questo caso le due barriere formano un risonatore Fabry-Perot per i portatori di carica, che può essere modulato in energia variando la tensione applicata al gate (gate). In questo modo si può ottenere una caratteristica dì trasferimento con una regione di transconduttanza negativa , che è uno dei caratteri distintivi di un RTFET. Più 1'ossido e sottile, migliore è il controllo del potenziale del canale da parte del gate, più pronunciata è la regione a transconduttanza differenziale negativa.
L'RTFET qui descritto consente un controllo elettrostatico del canale da parte del gate molto migliore dì altre precedenti proposte di transistori tunnel risonanti presenti in letteratura tecnica, e tipicamente basati su materiali del sistema III-V [Capasso, F. ; Sen, S.; Gossard, A. ; Hutchinson, A.; English, J. Quantum well resonant tunneling bipolar transistor operating at room temperature. Proc. of Intern. Electr. Dev. Meet. 1986, 282-285].
Il grafene ibridizzato con domini intercalati di carbonio e hBCN rappresenta una piattaforma eccezionale per esplorare dispositivi elettronici veramente bidimensionali. La possibilità di ingegneri zzare le proprietà elettroniche del canale con hBCN consente di ottenere un'ottima modulazione della corrente in transistori ad effetto di campo basati su grafene. Ulteriori funzionalità possono essere raggiunte introducendo strutture bidimensionali di domìni differenti, come abbiamo visto nel caso del RTFET. Esperti nel settore potranno facilmente esplorare ulteriori vantaggi e modifiche. Per questo motivo, l'invenzione nei suoi aspetti più ampi non è limitata ai dettagli specifici e alle realizzazioni rappresentative mostrate qui. Di conseguenza, varie modificazioni possono essere fatte senza che ci si allontani dallo spirito e dalla portata del concetto generale, definito dalle successive rivendicazioni.

Claims (1)

  1. TITOLO: "TRANSISTORI AD EFFETTO DI CAMPO CON CANALE BIDIMENSIONALE REALIZZATO CON ETEROSTRUTTURE LATERALI BASATE SU GRAFENE IBRIDIZZATO" a nome di Giuseppe Iannaccone, di nazionalità italiana, residente in Via Giunta Pisano 22, 56126 Pisa, e Gianluca Fiori, di nazionalità italiana, residente in Viale Puccini 674C, 55100 Lucca, Lucca. Inventori designati:GIUSEPPE IANNACCONE, GIANLUCA FIORI RIVENDICAZIONI 1.Un transistore a effetto di campo con un canale bidimensionale comprendente un 'eterostruttura laterale formata dall'intercalare di domini di grafene mono o multistrato atomico e domini di boro-carbonio-azoto esagonale (hBCN), e con uno o multipli gate. 2.Un dispositivo secondo la rivendicazione 1, in cui il canale è un mono o multi-strato atomico di grafene contenente un singolo dominio di hBCN sotto il gate che svolge la funzione di barriera per portatori di carica nel canale. 3.Un dispositivo secondo la rivendicazione 1, in cui il canale è un mono o multi-strato atomico di grafene contenente due domini di hBCN sotto il gate, separati a una sottile regione di grafene, funzionante come un transistore ad effetto di campo tunnel risonante. 4.Un dispositivo secondo la rivendicazione 1 in cui nel canale è presente un'eterostruttura laterale formata da domini di materiali differenti rispetto a quelli menzionati nella rivendicazione 1. 5.Un dispositivo secondo la rivendicazione 1 in cui i domini di hBCN sono sostituiti da domini di vacanze (assenza di atomi di carbonio) e quindi le barriere ai portatori di carica sono costituite dal vuoto o da materiale dielettrico
IT000135A 2011-12-02 2011-12-02 Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato ITPI20110135A1 (it)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IT000135A ITPI20110135A1 (it) 2011-12-02 2011-12-02 Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato
PCT/IT2012/000363 WO2013080237A1 (en) 2011-12-02 2012-11-30 Field-effect transistor with two-dimensional channel realized with lateral heterostructures based on hybridized graphene
EP12815848.2A EP2786416B1 (en) 2011-12-02 2012-11-30 Field-effect transistor with two-dimensional channel realized with lateral heterostructures based on hybridized graphene
US14/362,269 US9620634B2 (en) 2011-12-02 2012-11-30 Field-effect transistor with two-dimensional channel realized with lateral heterostructures based on hybridized graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000135A ITPI20110135A1 (it) 2011-12-02 2011-12-02 Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato

Publications (1)

Publication Number Publication Date
ITPI20110135A1 true ITPI20110135A1 (it) 2013-06-03

Family

ID=45540993

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000135A ITPI20110135A1 (it) 2011-12-02 2011-12-02 Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato

Country Status (4)

Country Link
US (1) US9620634B2 (it)
EP (1) EP2786416B1 (it)
IT (1) ITPI20110135A1 (it)
WO (1) WO2013080237A1 (it)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859034B2 (en) * 2015-03-23 2018-01-02 Empire Technology Development Llc Functionalized boron nitride materials and methods for their preparation and use
JP6555069B2 (ja) * 2015-10-15 2019-08-07 富士通株式会社 半導体デバイス及びその製造方法
US10781351B1 (en) * 2016-05-25 2020-09-22 Louisiana Tech Research Corporation Hexagonal boron nitride thermal conductivity enhancing materials and method of making
US11136666B2 (en) 2018-08-30 2021-10-05 University Of Kentucky Research Foundation Ordered nanotubes on a two-dimensional substrate consisting of different material properties
KR102250011B1 (ko) * 2018-10-18 2021-05-10 한양대학교 산학협력단 막 구조체, 소자 및 멀티레벨 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072590A1 (de) * 2008-12-22 2010-07-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Unipolarer hetero-junction-sperrschicht-transistor
WO2011088340A2 (en) * 2010-01-15 2011-07-21 Board Of Regents, The University Of Texas System A carbon nanotube crossbar based nano-architecture
WO2011094597A2 (en) * 2010-02-01 2011-08-04 The Regents Of The University Of California Graphene nanomesh and method of making the same
US20110313194A1 (en) * 2010-06-21 2011-12-22 Samsung Electronics Co., Ltd. Graphene substituted with boron and nitrogen , method of fabricating the same, and transistor having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781061B2 (en) * 2007-12-31 2010-08-24 Alcatel-Lucent Usa Inc. Devices with graphene layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072590A1 (de) * 2008-12-22 2010-07-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Unipolarer hetero-junction-sperrschicht-transistor
WO2011088340A2 (en) * 2010-01-15 2011-07-21 Board Of Regents, The University Of Texas System A carbon nanotube crossbar based nano-architecture
WO2011094597A2 (en) * 2010-02-01 2011-08-04 The Regents Of The University Of California Graphene nanomesh and method of making the same
US20110313194A1 (en) * 2010-06-21 2011-12-22 Samsung Electronics Co., Ltd. Graphene substituted with boron and nitrogen , method of fabricating the same, and transistor having the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIORI G ET AL: "Nanodevices in Flatland: Two-dimensional graphene-based transistors with high I on /I off ratio", ELECTRON DEVICES MEETING (IEDM), 2011 IEEE INTERNATIONAL, IEEE, 5 December 2011 (2011-12-05), pages 11.4.1 - 11.4.4, XP032095925, ISBN: 978-1-4577-0506-9, DOI: 10.1109/IEDM.2011.6131533 *
HAN WANG ET AL: "BN/Graphene/BN Transistors for RF Applications", IEEE ELECTRON DEVICE LETTERS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 32, no. 9, 1 September 2011 (2011-09-01), pages 1209 - 1211, XP011381531, ISSN: 0741-3106, DOI: 10.1109/LED.2011.2160611 *
VIANA GOMES J ET AL: "Tunneling of Dirac electrons through spatial regions of finite mass", JOURNAL OF PHYSICS: CONDENSED MATTER, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 20, no. 32, 13 August 2008 (2008-08-13), pages 325221, XP020143608, ISSN: 0953-8984, DOI: 10.1088/0953-8984/20/32/325221 *

Also Published As

Publication number Publication date
US9620634B2 (en) 2017-04-11
EP2786416B1 (en) 2018-11-07
EP2786416A1 (en) 2014-10-08
US20140319467A1 (en) 2014-10-30
WO2013080237A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
Cao et al. The future transistors
Nazir et al. Energy-efficient tunneling field-effect transistors for low-power device applications: challenges and opportunities
Pradhan et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities
Li et al. Two-dimensional heterojunction interlayer tunneling field effect transistors (thin-TFETs)
Reddy et al. Graphene field-effect transistors
US8841650B2 (en) Electronic-structure modulation transistor
Kudrynskyi et al. Giant quantum hall plateau in graphene coupled to an InSe van der Waals crystal
KR20110134420A (ko) 전계 효과 트랜지스터
Mobarakeh et al. A novel graphene tunnelling field effect transistor (GTFET) using bandgap engineering
Gao et al. Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures
Pang et al. WSe2 homojunction devices: electrostatically configurable as diodes, MOSFETs, and tunnel FETs for reconfigurable computing
Hung Nguyen et al. Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance
ITPI20110135A1 (it) Transistori ad effetto di campo con canale bidimensionale realizzato con eterostrutture laterali basate su grafene ibridizzato
Ghobadi et al. A comparative study of tunneling FETs based on graphene and GNR heterostructures
Müller et al. Gate-controlled WSe 2 transistors using a buried triple-gate structure
Wang et al. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe 2/WS 2 p–n heterojunctions
Li et al. Performance limit of ultrathin GaAs transistors
Rahmani et al. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
Zhao et al. 2D layered materials: from materials properties to device applications
Ouyang et al. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material
Giannazzo et al. Integration of 2D Materials for Electronics Applications
Tiwari et al. Impact of carrier concentration and bandgap on the performance of double gate GNR-FET
Dideban et al. Comparison of the I–V characteristics of a topological insulator quantum well resonant tunneling transistor and its conventional counterpart: A TCAD simulation study
Molenda et al. Chiral properties of graphene h-BN hybrid systems
Vanak et al. Improvements in reliability and rf performance of stacked gate jltfet using p+ pocket and heterostructure material