ITPA20090027A1 - CONTROL SYSTEM FOR SUBMARINE VEHICLES. - Google Patents

CONTROL SYSTEM FOR SUBMARINE VEHICLES. Download PDF

Info

Publication number
ITPA20090027A1
ITPA20090027A1 IT000027A ITPA20090027A ITPA20090027A1 IT PA20090027 A1 ITPA20090027 A1 IT PA20090027A1 IT 000027 A IT000027 A IT 000027A IT PA20090027 A ITPA20090027 A IT PA20090027A IT PA20090027 A1 ITPA20090027 A1 IT PA20090027A1
Authority
IT
Italy
Prior art keywords
pressure
vehicle
submarine
compressed air
submarine vehicles
Prior art date
Application number
IT000027A
Other languages
Italian (it)
Inventor
Salvatore Pennacchio
Original Assignee
Forus S R L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forus S R L filed Critical Forus S R L
Priority to IT000027A priority Critical patent/ITPA20090027A1/en
Publication of ITPA20090027A1 publication Critical patent/ITPA20090027A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)

Description

DESCRIZIONE del'invenzione industriale dal titolo; DESCRIPTION of the industrial invention entitled;

Sistema di controllo per veicoli sottomarini. Control system for submarine vehicles.

Nell'ambito dei veicoli sottomarini quali ad esempio ROV (remotely Operated Vehlcle) e AUV (Autonomous Underwater Vehicie) riveste particolare importanza la possibilit? di fare arrivare ali stessi velcol? ad elevate profondit? sotto il livello del mare. In the field of submarine vehicles such as ROV (remotely Operated Vehlcle) and AUV (Autonomous Underwater Vehicie), the possibility is of particular importance? to get the same velcol? at high depths? below sea level.

La pressione idrostatica che viene esercitata su di un corpo (nel nostro caso un veicolo sottomarino)sottacqua dipend e unicamente dalla profondit? e non dalla superficie del veicolo stesso. Inoltre per la legge di Pascal la pressione idrostatica ? identica In tutte le direzioni The hydrostatic pressure that is exerted on a body (in our case a submarine vehicle) under water depends and solely on the depth? and not from the surface of the vehicle itself. Furthermore, according to Pascal's law, the hydrostatic pressure? identical in all directions

La pressione idrostatica esercitata dai mare ? di circa 1 ATM per ogni 10 metri di profondit?. Questo significa ette un corno immerso nel mare a 10 metri di profondit? ricever? una forza di 1 Kg su ogni centimetro quadrato. A 1000 metri di profondit? avremo una pressione di 100 ATM il che equivale ad una forza di 100 kg su cani centimetro quadrato del corpo immerso in acqua. The hydrostatic pressure exerted by the sea? of about 1 ATM for every 10 meters of depth. This means ette a horn immersed in the sea 10 meters deep? receive? a force of 1 kg on each square centimeter. At 1000 meters deep? we will have a pressure of 100 ATM which is equivalent to a force of 100 kg on dogs square centimeter of the body immersed in water.

La pressione ? una Grandezza scalare e non vettoriale ma possiamo considerarla come un insieme di vettori di forza che agiscono su ogni centimetro quadrato del veicolo sottomarino. The pressure ? a scalar and not a vector quantity but we can consider it as a set of force vectors acting on every square centimeter of the underwater vehicle.

dali'utilizzo di materiali (come ad esempio l'acciaio ad elevato spessore) ctie possono resistere a forti pressioni. from the use of materials (such as high thickness steel) they can withstand strong pressures.

L?idea che sta alia base della presente invenzione ? quella di compensare la pressione esterna creando uria pressione interna tale che ogni singolo vettore che agisce su un centimetro quadrato dall'esterlo verso ['interno trover? un vettore uguale e contrario che va dal'intemo verso l?esterno? in tal modo sar? possibile fare arrivare a profondit? elevate dei veicoli sottomarini anche senza utilizzo d? materiali resistenti come faccialo, Con ia presente invenzione ad esemplo sar? ora possibile utilizzare una struttura a sfera con clastica trasparente Der effettuare delle riprese video subacaue. The idea behind the present invention? that of compensating the external pressure by creating an internal pressure such that every single vector acting on a square centimeter from the outside towards the inside will find? an equal and opposite vector that goes from the inside to the outside? in this way it will be? possible to get to depth? high of submarine vehicles even without the use of d? resistant materials how to make it, with the present invention for example it will be? now it is possible to use a sphere structure with transparent clastic to make underwater video recordings.

La pressione all?Interno del veicolo sottomarino viene creata tramite dell?aria compressa, che non ? altro che un aas caratterizzato datla leooe d? Bovie: ?a temperatura costante la pressione e il volume di un aas sono Inversamente proporzionali?. La legge di Boyle ? spesso espressa anche tramite la formula PV= costante dove P ? la pressione del gas e VII volume. In pratica iniettando l'aria di urte bombola nel veicolo sottomarino aumentiamo fa pressione interna dello stesso veicolo diminuendo allo stesso tempo la oressione delia bombola dato che i due volumi delta bombola e dei veicolo sono costanti Come gi? detto per la legge di Pasca! la pressione idrostatica ? identica In tutte ie direzioni ed ? bene sottolineare che anche la pressione cenerata internamente dall'aria compressa sar? uguale in tutte le direzioni. Pertanto se la pressione idrostatica ? uguale alla pressione generata dall'araia compressa si genera uno stato di equl?bno che ? l'obietivo della presente Invenzione. The pressure inside the underwater vehicle is created by compressed air, which is not? other than a characterized aas datla leooe d? Bovie:? At constant temperature the pressure and volume of an aas are inversely proportional ?. Boyle's law? often also expressed through the formula PV = constant where P? the gas pressure and VII volume. In practice, by injecting the collision air into the submarine vehicle, we increase the internal pressure of the same vehicle while at the same time decreasing the oression of the cylinder since the two volumes of the cylinder and the vehicle are constant. How already? said for the law of Pasca! hydrostatic pressure? identical in all directions and d? well to underline that also the pressure internally ashes from the compressed air will be? the same in all directions. So if the hydrostatic pressure? equal to the pressure generated by the compressed air, a state of equl? bno what? the purpose of the present invention.

Il sistema oggetto della presente invenzione ? rappresentato nella figura 1 delta tavola 1, The system object of the present invention? represented in Figure 1 of table 1,

li sistema :? composto da; he arranges them:? composed of;

T) due sensori digressione (uno Interno e uno esterno al veicola sottomarino), 2) una bombola ad aria compressa da 18 Wri e 220 ATM, T) two digression sensors (one internal and one external to the submarine vehicle), 2) an 18 Wri and 220 ATM compressed air cylinder,

due valvole una collegata alla bombola di aria compressa e una collegata verso l'esterno per espellere dal veicolo aria compressa durante la risalita del veicolo allo scopo li diminuire la pressione interna; two valves, one connected to the compressed air cylinder and one connected to the outside to expel compressed air from the vehicle during the ascent of the vehicle in order to decrease the internal pressure;

4) un microprocessore che riceve in input I dati provenienti dai due sensori d? cui al punto t e fornisce in output i dati necessari per ?? controllo dell?apertura delle valvole di cut al punto 3. 4) a microprocessor that receives in input the data coming from the two sensors d? referred to in point t and outputs the data necessary for ?? check the opening of the cut valves in point 3.

Come ? facile intuire la prof?ndit?? alla quale il veicolo sottomarino pu? arrivare ? Inversamente proporzionale al volume interno dal veicolo stesso In condizioni di temperatura costante. How ? easy to guess the prof? ndit ?? to which the underwater vehicle can? arrive ? Inversely proportional to the internal volume of the vehicle itself in conditions of constant temperature.

ESEMPIO n.1 EXAMPLE 1

Consideriamo un veicolo sottomarino del volume di circa 40 litri Con 11 sistema eccetto deila presente invenzione possiamo ottenere una pressione dall'interno verso l'esterno di circa 99 atmosfere e portare Quindi il veicolo a 1000 metri di profondit?. Infatti la legge di Boyie afferma che a temperatura costante la pressione e il volume di un oas sono inversamente proporzionall quindi ii prodoto PV ? una costante. dalle teooe di Bovle possiamo derivare la formula P1 * V1 = P2 * V2 dove P1 e Vi sono rispettivamente la pressione e ii volume della bombola ad aria compressa mentre P2 e V2 sono rispettivamente II volume e la pressione all'interno del veicolo sottomarino. ' ESEMPIO n.2 Let us consider a submarine vehicle with a volume of about 40 liters. With the system except for the present invention we can obtain a pressure from the inside to the outside of about 99 atmospheres and thus bring the vehicle to a depth of 1000 meters. In fact, Boyie's law states that at constant temperature the pressure and the volume of an oas are inversely proportional to therefore the product PV? a constant. from Bovle's teooe we can derive the formula P1 * V1 = P2 * V2 where P1 and Vi are respectively the pressure and the volume of the compressed air cylinder while P2 and V2 are respectively the volume and the pressure inside the submarine vehicle. EXAMPLE 2

Consideriamo uh veicolo di soli 10 litri di volume. In base alla formula che deriva dalla legge di Boyle lo stesso veicolo pu? arrivare a circa 4000 metri di profondit?. infatti sempre dalla legge di Boyle abbiamo FI * VI - P2 * V2 dove Pi e V1 sono rispettivamente la pressione e it volume dalla bombola ad aria compressa mentre P2 e Ve sono rispettivamente la pressione e il volume all'interno dei _ veicolo sottomarino. Let's consider a vehicle of only 10 liters in volume. According to the formula that derives from Boyle's law, the same vehicle can? reach about 4000 meters deep. in fact always from Boyle's law we have FI * VI - P2 * V2 where Pi and V1 are respectively the pressure and the volume of the compressed air cylinder while P2 and Ve are respectively the pressure and the volume inside the submarine vehicle.

Claims (1)

RIVENDICAZIONI dell'invenzione industriate dal titolo; Sistema di controllo per veicoli sottomarini Rivendicazioni: 1) Sistema ad aria compressa per veicoli sottomarini per la generazione di una pressione interna uguale e contraria alla pressione idrostatica; 2) Sistema ad aria compressa per veicoli sottomarini per il raggiungimento d? un equilibrio tra la pressione esterna idrostatica e la pressione interna; 3) Sistema ad aria compressa per veicoli sottomarini ad elevate profondit?. CLAIMS of the industrial invention entitled; Control system for submarine vehicles Claims: 1) Compressed air system for submarine vehicles for the generation of an internal pressure equal to and opposite to the hydrostatic pressure; 2) Compressed air system for submarine vehicles to achieve d? a balance between the external hydrostatic pressure and the internal pressure; 3) Compressed air system for high depth submarine vehicles.
IT000027A 2009-10-28 2009-10-28 CONTROL SYSTEM FOR SUBMARINE VEHICLES. ITPA20090027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT000027A ITPA20090027A1 (en) 2009-10-28 2009-10-28 CONTROL SYSTEM FOR SUBMARINE VEHICLES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000027A ITPA20090027A1 (en) 2009-10-28 2009-10-28 CONTROL SYSTEM FOR SUBMARINE VEHICLES.

Publications (1)

Publication Number Publication Date
ITPA20090027A1 true ITPA20090027A1 (en) 2011-04-28

Family

ID=42666290

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000027A ITPA20090027A1 (en) 2009-10-28 2009-10-28 CONTROL SYSTEM FOR SUBMARINE VEHICLES.

Country Status (1)

Country Link
IT (1) ITPA20090027A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191303421A (en) * 1913-02-10 1914-06-08 Marcell Klein Improvements in Light-projecting and other Apparatus such as Photographic Cameras and Thermometers for use under Water.
WO2009008880A1 (en) * 2007-07-06 2009-01-15 Marion Hyper-Submersible Poweboat Design Llc General purpose submarine having high speed surface capability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191303421A (en) * 1913-02-10 1914-06-08 Marcell Klein Improvements in Light-projecting and other Apparatus such as Photographic Cameras and Thermometers for use under Water.
WO2009008880A1 (en) * 2007-07-06 2009-01-15 Marion Hyper-Submersible Poweboat Design Llc General purpose submarine having high speed surface capability

Similar Documents

Publication Publication Date Title
MX349430B (en) Method and underwater node for seismic survey.
ES472231A1 (en) Buoyancy systems
WO2009121336A3 (en) Device for damping and scattering hydrosound in a liquid
WO2009051357A3 (en) Block for submarine tunnel
CN106828833A (en) A kind of hidden indirect communication device in deep-sea
WO2008060259A3 (en) Motion compensation system for underwater sonar systems
PL413003A1 (en) Underwater vehicle with the variable-geometry hull
CN102442411B (en) Safety buoyancy device
ITPA20090027A1 (en) CONTROL SYSTEM FOR SUBMARINE VEHICLES.
CN205720202U (en) A kind of underwater observation instrument
BRPI0906893A2 (en) '' weapons and submarine storage device ''
WO2015110710A3 (en) Platform system and arrangement for underwater activities
CN210268395U (en) Underwater blasting shock wave protection device
ATE400493T1 (en) SUBMARINES
CN204694254U (en) Three cartridge type unmanned turbulent flow profile survey devices
WO2015128221A1 (en) A flexible float for a marine seismic source
CN203806111U (en) Air pressure sinking and floating tank used for engineer operation in water
AU2017267504A1 (en) Subsea buoyancy systems
CN202454290U (en) Water pressure resistant control device of underwater working container
US20160107736A1 (en) Systems and methods for remote buoyancy control
WO2016001574A3 (en) Installation for the recovery of energy from sea swell and/or the active attenuation of said swell
RU2013102428A (en) METHOD FOR REGULATING THE FLOATABILITY OF A SUBMARINE
JP2016211959A (en) Vertical displacement measurement device
CN108909992A (en) A kind of autonomous underwater missing lifesaving robot
PL408600A1 (en) Środek pływający o zwiększonej odporności na wybuchy