ITNA20080071A1 - ENERGY GENERATION SYSTEM FROM SOLAR THERMAL. - Google Patents

ENERGY GENERATION SYSTEM FROM SOLAR THERMAL. Download PDF

Info

Publication number
ITNA20080071A1
ITNA20080071A1 IT000071A ITNA20080071A ITNA20080071A1 IT NA20080071 A1 ITNA20080071 A1 IT NA20080071A1 IT 000071 A IT000071 A IT 000071A IT NA20080071 A ITNA20080071 A IT NA20080071A IT NA20080071 A1 ITNA20080071 A1 IT NA20080071A1
Authority
IT
Italy
Prior art keywords
volume
fluid
sun
points
exposed
Prior art date
Application number
IT000071A
Other languages
Italian (it)
Inventor
Concetta Fusco
Original Assignee
Connecta S R L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Connecta S R L filed Critical Connecta S R L
Priority to IT000071A priority Critical patent/ITNA20080071A1/en
Publication of ITNA20080071A1 publication Critical patent/ITNA20080071A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Description

DESCRIZIONE DESCRIPTION

Descrizione dell’invenzione industriale dal titolo “Sistema di generazione di energia da solare termico” Description of the industrial invention entitled "Solar thermal energy generation system"

Premessa: Premise:

Il campo tecnico dell’invenzione è quello dell’energia alternativa e, più precisamente, riguarda lo sfruttamento dell’ irraggiamento solare. Attualmente il solare termico è quasi esclusivamente utilizzato per il riscaldamento di liquidi con successivo impiego del liquido riscaldato. Altra importante metodologia consiste nel concentrare i raggi solari in un punto mediante parabole così da ottenere una zona in cui si sviluppa una temperatura molto alta da poter poi essere impiegata in differenti modi. The technical field of the invention is that of alternative energy and, more precisely, it concerns the exploitation of solar radiation. Currently solar thermal is almost exclusively used for heating liquids with subsequent use of the heated liquid. Another important methodology consists in concentrating the solar rays in a point by means of parabolas so as to obtain an area in which a very high temperature develops which can then be used in different ways.

Il trovato si fonda sul principio della forza del gradiente di pressione per il quale i fluidi in ambiente con pressione non omogenea tendono a muoversi in modo da ristabilire l’equilibrio. The invention is based on the principle of the force of the pressure gradient for which the fluids in the environment with non-homogeneous pressure tend to move in order to restore equilibrium.

Un fluido riscaldato tende ad aumentare di volume; se è mantenuto in un ambiente chiuso, la pressione interna cresce in funzione della temperatura. A heated fluid tends to increase in volume; if it is kept in a closed environment, the internal pressure increases as a function of the temperature.

Il trovato: The found:

Il sistema è costituito da un volume chiuso con due aperture (1 e 5 in figura) , all’ interno è presente un fluido, nel caso più semplice si tratta di aria. Il volume è costituito da due camere adiacenti e comunicanti esposte ai raggi solari. Ad una delle apertura è collegata ima tubazione che finisce in una zona protetta dal sole (zona B) e, quindi, ad una temperatura naturalmente inferiore di almeno 15°C rispetto alla zona soleggiata (zona A). Nella zona in ombra è disposta una serpentina il cui volume interno è all’incirca pari a quello delle due camere esposte al sole. Per esaltare la differenza di temperatura le due camere sono verniciate di nero e la zona protetta è coperta da pannelli bianchi. In tali condizioni il fluido contenuto nelle due camere si surriscalda, la pressione interna delle due camere aumenta. Quando la differenza di pressione tra le camere esposte al sole e quella in ombra raggiunge un valore prestabilito si apre la valvola di sovrappressione indicata in figura ed il fluido espandendosi fuoriesce attraverso la tubazione (7). All’estremità della tubazione è installata una turbina (3) collegata ad una dinamo (4). Il fluido in pressione passa nella serpentina e quello nella serpentina viene spinto attraverso una valvola nelle due camere comunicanti. Quando si raggiungono le condizioni di equilibrio del sistema si chiude la valvola di sovrappressione. The system consists of a closed volume with two openings (1 and 5 in the figure), inside there is a fluid, in the simplest case it is air. The volume consists of two adjacent and communicating rooms exposed to the sun's rays. A pipe is connected to one of the openings and ends in an area protected from the sun (area B) and, therefore, at a naturally lower temperature of at least 15 ° C than the sunny area (area A). In the shaded area there is a serpentine whose internal volume is approximately equal to that of the two rooms exposed to the sun. To enhance the temperature difference, the two chambers are painted black and the protected area is covered with white panels. In these conditions the fluid contained in the two chambers overheats, the internal pressure of the two chambers increases. When the pressure difference between the chambers exposed to the sun and the one in the shade reaches a predetermined value, the overpressure valve shown in the figure opens and the fluid, expanding, escapes through the pipe (7). A turbine (3) connected to a dynamo (4) is installed at the end of the pipe. The pressurized fluid passes into the coil and the fluid in the coil is pushed through a valve into the two communicating chambers. When the equilibrium conditions of the system are reached, the overpressure valve closes.

Sulla tubazione di uscita è collocata una turbina che trascina una dinamo che a sua volta genera energia elettrica. On the outlet pipe there is a turbine that drives a dynamo which in turn generates electricity.

Il trovato offre alcuni significativi vantaggi: The invention offers some significant advantages:

- produce energia cinetica che si trasforma in energia elettrica - produces kinetic energy which is transformed into electrical energy

- fornisce un isolamento termico se installato sui solai - provides thermal insulation when installed on floors

ha una bassissima necessità di manutenzione has a very low maintenance requirement

Claims (7)

RIVENDICAZIONI Rivendicazioni dell’invenzione industriale dal titolo “Sistema di generazione di energia da solare termico 1. Sistema di generazione di energia che sfrutta Γ irraggiamento solare. CLAIMS Claims of the industrial invention entitled "Solar thermal energy generation system 1. Energy generation system that exploits Γ solar radiation. 2. Sistema come al punto 1 che utilizza Γ irraggiamento solare per ottenere l’espansione termica di un fluido. 2. System as in point 1 that uses Γ solar radiation to obtain the thermal expansion of a fluid. 3. Sistema come ai punti ai punti precedenti realizzato con un volume esposto ai raggi solari al cui interno un fluido, normalmente aria, si scalda e fa crescere la pressione interna. Il volume esposto al sole è fornito di due aperture, una di ingresso del fluido (aria) attrezzata con valvole che impediscono la fuoriuscita del fluido dal volume, l’altra collegata ad una serpentina mediante una tubazione di uscita. 3. System as in the previous points made with a volume exposed to sunlight inside which a fluid, normally air, heats up and increases the internal pressure. The volume exposed to the sun is provided with two openings, one for the inlet of the fluid (air) equipped with valves that prevent the fluid from escaping from the volume, the other connected to a coil by means of an outlet pipe. 4. Sistema come ai punti ai punti precedenti la cui tubazione di uscita è collegata alla serpentina posta in una zona protetta dai raggi solari e, quindi, più fredda dell’area in cui è situato il volume principale. La serpentina è connessa da un lato alla tubazione di uscita e dall’altro all’ingresso del volume esposto al sole in modo da avere un circuito chiuso. 4. System as in the points in the previous points whose outlet piping is connected to the coil located in an area protected from sunlight and, therefore, colder than the area where the main volume is located. The coil is connected on one side to the outlet pipe and on the other to the inlet of the volume exposed to the sun in order to have a closed circuit. 5. Sistema come ai punti ai punti precedenti in cui tra il volume esposto al sole e la tubazione di uscita è posta una valvola di sovrappressione. Quando la pressione interna del fluido all’ interno del volume raggiunge un valore prestabilito la valvola si apre ed il fluido fuoriesce dalla tubazione generando un flusso che si annulla quando la pressione del volume surriscaldato eguaglia quello del circuito non esposto al sole. 5. System as in the previous points in which an overpressure valve is placed between the volume exposed to the sun and the outlet piping. When the internal pressure of the fluid inside the volume reaches a predetermined value, the valve opens and the fluid escapes from the pipeline, generating a flow that is canceled when the pressure of the superheated volume equals that of the circuit not exposed to the sun. 6. Sistema come ai punti ai punti precedenti in cui sull’estremità della tubazione di uscita è montata una turbina a cui è collegata assialmente una dinamo. 6. System as in the points in the previous points in which a turbine is mounted on the end of the outlet pipe to which a dynamo is axially connected. 7. Sistema come ai punti ai punti precedenti in cui, per incrementare la differenza di temperatura, il volume esposto al sole è verniciato di nero mentre l’area di uscita è coperta con pannelli chiari7. System as in the points in the previous points in which, to increase the temperature difference, the volume exposed to the sun is painted black while the exit area is covered with clear panels
IT000071A 2008-12-23 2008-12-23 ENERGY GENERATION SYSTEM FROM SOLAR THERMAL. ITNA20080071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT000071A ITNA20080071A1 (en) 2008-12-23 2008-12-23 ENERGY GENERATION SYSTEM FROM SOLAR THERMAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000071A ITNA20080071A1 (en) 2008-12-23 2008-12-23 ENERGY GENERATION SYSTEM FROM SOLAR THERMAL.

Publications (1)

Publication Number Publication Date
ITNA20080071A1 true ITNA20080071A1 (en) 2010-06-24

Family

ID=42555549

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000071A ITNA20080071A1 (en) 2008-12-23 2008-12-23 ENERGY GENERATION SYSTEM FROM SOLAR THERMAL.

Country Status (1)

Country Link
IT (1) ITNA20080071A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171617A (en) * 1976-11-09 1979-10-23 Agency Of Industrial Science & Technology Solar thermal electric systems
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
JPS57131807A (en) * 1981-02-09 1982-08-14 Tatsuzo Hayashi Generator set
CH647590A5 (en) * 1979-02-12 1985-01-31 Tchernev Dimiter I Process and equipment for producing useful energy from low-grade heat sources
WO2002075154A1 (en) * 2001-03-16 2002-09-26 Peter Bammer Device for compressing a gas by using solar energy and/or ambient heat
DE10250244A1 (en) * 2002-07-03 2004-05-13 Karl Wohllaib Thermal power plant for utilizing a temperature difference between a heat source and a heat sink circulates a medium for absorbing thermal energy
DE10329623B3 (en) * 2003-06-25 2005-01-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-thermal extraction of electrical energy involves heating medium by solar heating to above temperature working point of steam turbine, using to charge heat store connected before steam turbine.
WO2008146109A2 (en) * 2007-05-29 2008-12-04 Kloben S.A.S. Di Turco Adelino Ec. Apparatus particularly for obtaining electricity from solar energy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171617A (en) * 1976-11-09 1979-10-23 Agency Of Industrial Science & Technology Solar thermal electric systems
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
CH647590A5 (en) * 1979-02-12 1985-01-31 Tchernev Dimiter I Process and equipment for producing useful energy from low-grade heat sources
JPS57131807A (en) * 1981-02-09 1982-08-14 Tatsuzo Hayashi Generator set
WO2002075154A1 (en) * 2001-03-16 2002-09-26 Peter Bammer Device for compressing a gas by using solar energy and/or ambient heat
DE10250244A1 (en) * 2002-07-03 2004-05-13 Karl Wohllaib Thermal power plant for utilizing a temperature difference between a heat source and a heat sink circulates a medium for absorbing thermal energy
DE10329623B3 (en) * 2003-06-25 2005-01-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-thermal extraction of electrical energy involves heating medium by solar heating to above temperature working point of steam turbine, using to charge heat store connected before steam turbine.
WO2008146109A2 (en) * 2007-05-29 2008-12-04 Kloben S.A.S. Di Turco Adelino Ec. Apparatus particularly for obtaining electricity from solar energy

Similar Documents

Publication Publication Date Title
Yazdanifard et al. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime
Abo-Elfadl et al. Energy, exergy, and enviroeconomic assessment of double and single pass solar air heaters having a new design absorber
Rassamakin et al. Aluminum heat pipes applied in solar collectors
Zhou et al. Analysis of chimney height for solar chimney power plant
Li et al. Comparative study on the performance of a new solar air collector with different surface shapes
Selvakumar et al. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough
Al-Kayiem et al. Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney
ES2323931B1 (en) SOLAR THERMOELECTRIC PLATE.
Hussein et al. Optimization of a wickless heat pipe flat plate solar collector
US10976076B2 (en) Methods, apparatus and systems for generating and superheating vapor under sunlight
Roonprasang et al. Experimental studies of a new solar water heater system using a solar water pump
Şevik et al. Thermal performance of flexible air duct using a new absorber construction in a solar air collector
Liu et al. A novel all-glass evacuated tubular solar steam generator with simplified CPC
El-Said et al. Performance enhancement of a double pass solar air heater by using curved reflector: Experimental investigation
Wang et al. Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays
Gong et al. Straight-through all-glass evacuated tube solar collector for low and medium temperature applications
Razika et al. The effects of volumetric flow rate and inclination angle on the performance of a solar thermal collector
Alptekin et al. Design and experimental investigation of a thermoelectric self-powered heating system
MY160759A (en) A temperature differential engine device
Pugsley et al. Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration
Yang et al. A study on thermal performance of a novel all-glass evacuated tube solar collector manifold header with an inserted tube
Sitranon et al. Performance enhancement of solar water heater with a thermal water pump
ITNA20080071A1 (en) ENERGY GENERATION SYSTEM FROM SOLAR THERMAL.
CN202900517U (en) Power generation device based on unidirectional flow water in solar water heater
KR101341447B1 (en) Solar receiver for compressed air