ITMI20131135A1 - PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL - Google Patents

PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL

Info

Publication number
ITMI20131135A1
ITMI20131135A1 IT001135A ITMI20131135A ITMI20131135A1 IT MI20131135 A1 ITMI20131135 A1 IT MI20131135A1 IT 001135 A IT001135 A IT 001135A IT MI20131135 A ITMI20131135 A IT MI20131135A IT MI20131135 A1 ITMI20131135 A1 IT MI20131135A1
Authority
IT
Italy
Prior art keywords
nadh
reduction
tio2
nad
methanol
Prior art date
Application number
IT001135A
Other languages
Italian (it)
Inventor
Antonella Angelini
Michele Aresta
Tomasz Baran
Angela Dibenedetto
Woiciech Macyk
Original Assignee
Catalisi Innovativa Per Il Riciclo Del Carbonio E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalisi Innovativa Per Il Riciclo Del Carbonio E filed Critical Catalisi Innovativa Per Il Riciclo Del Carbonio E
Priority to IT001135A priority Critical patent/ITMI20131135A1/en
Publication of ITMI20131135A1 publication Critical patent/ITMI20131135A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05006Formate dehydrogenase-N (1.1.5.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01001Formaldehyde dehydrogenase (glutathione) (1.2.1.1)

Description

“FOTOCATALIZZATORE PER LA RIDUZIONE NEL VISIBILE DI NAD<+>A NADH IN UN PROCESSO IBRIDO CHEMO-ENZIMATICO DI RIDUZIONE DI CO2A METANOLO” "PHOTOCATALYZER FOR THE REDUCTION IN THE VISIBLE OF NAD <+> A NADH IN A CHEMO-ENZYMATIC HYBRID PROCESS OF REDUCTION OF CO2A METHANOL"

L’invenzione riguarda un processo di rigenerazione fotocatalitica di NADH da NAD<+>. The invention concerns a photocatalytic regeneration process of NADH from NAD <+>.

Stato della tecnica State of the art

Gli enzimi redox hanno un interesse industriale poiché possono catalizzare reazioni in cui catalizzatori chimici convenzionali falliscono [1]. Sfortunatamente la loro applicazione è limitata a causa dell’elevato costo dei cofattori. Uno sforzo di ricerca molto grande si sta facendo nella direzione della rigenerazione dei cofattori utilizzando o enzimi secondari o tecniche elettrochimiche o cellule viventi. Molto spesso la rigenerazione dei cofattori può portare alla produzione di dimeri o isomeri non attivi in catalisi. Redox enzymes are of industrial interest as they can catalyze reactions in which conventional chemical catalysts fail [1]. Unfortunately, their application is limited due to the high cost of the cofactors. A very large research effort is being made in the direction of the regeneration of cofactors using either secondary enzymes or electrochemical techniques or living cells. Very often the regeneration of the cofactors can lead to the production of dimers or isomers that are not active in catalysis.

Uno dei cofattori più interessanti è il Nicotinamide Adenina Dinucleotide-NAD<+>assieme alla la sua forma ridotta 1,4-NADH. Questo cofattore gioca un ruolo primario in molti processi enzimatici e sintetici e la conversione di NAD<+>in NADH è un problema aperto [2]. One of the most interesting cofactors is Nicotinamide Adenine Dinucleotide-NAD <+> together with its reduced form 1,4-NADH. This cofactor plays a primary role in many enzymatic and synthetic processes and the conversion of NAD <+> to NADH is an open problem [2].

La riduzione fotocatalitica diretta o indiretta del CO2può essere una via alla produzione di fuels ed al riciclo di quantità molto grandi di carbonio [3]. Un’applicazione specifica è la riduzione in acqua del CO2utilizzando tre enzimi in cascata, specificatamente Formatodeidrogenasi-FateDH, Formaldeidedeidrogenasi-FaldDH, e Alcoholdeidrogenasi-ADH che, rispettivamente, promuovono la riduzione di CO2ad acido formico, di quest’ultimo in formaldeide e, infine, della formaldeide in metanolo. La riduzione del cofattore NAD<+>in NADH viene oggi perseguita utilizzando strategie chimiche, elettrochimiche ed enzimatiche[4,5]. Per applicazioni industriali, tale riduzione deve essere condotta utilizzando la strategia meno costosa e di più ampia applicazione. The direct or indirect photocatalytic reduction of CO2 can be a way to the production of fuels and the recycling of very large quantities of carbon [3]. A specific application is the reduction of CO2 in water using three enzymes in cascade, specifically Formaldehydrogenase-FateDH, Formaldehydehydrogenase-FaldDH, and Alcoholdehydrogenase-ADH which, respectively, promote the reduction of CO2 to formic acid, of the latter to formaldehyde and, finally , formaldehyde in methanol. The reduction of the cofactor NAD <+> in NADH is nowadays pursued using chemical, electrochemical and enzymatic strategies [4,5]. For industrial applications, this reduction must be conducted using the least expensive and most widely applied strategy.

Metodi di rigenerazione di NADH da NAD<+>sono descritti in EP 1534849, EP 0667397, WO2013050760, WO2012001305, EP 1925674, US 5498542, EP 2333101 ed EP 0359649. NADH regeneration methods from NAD <+> are described in EP 1534849, EP 0667397, WO2013050760, WO2012001305, EP 1925674, US 5498542, EP 2333101 and EP 0359649.

L’unico metodo di rigenerazione fotocatalitico è descritto in CN1597940 che impiega TiO2ricoperto di carbone. Il TiO2è uno dei catalizzatori più utilizzati in applicazioni fotochimiche pratiche [6-12]. Il TiO2ha tuttavia un band gap pari a 3.2 eV ed è più adatto ad applicazioni in luce UV e molto meno in luce visibile. Solo modificando tale catalizzatore è possibile renderlo attivo in luce visibile [13]. The only photocatalytic regeneration method is described in CN1597940 which uses TiO2 coated with carbon. TiO2 is one of the most widely used catalysts in practical photochemical applications [6-12]. However, TiO2 has a band gap of 3.2 eV and is more suitable for applications in UV light and much less in visible light. Only by modifying this catalyst is it possible to make it active in visible light [13].

Recentemente gli inventori della presente domanda hanno descritto la produzione di forme stabili di enzimi incapsulati per la riduzione di CO2a metanolo utilizzando luce nel vicino UV [14] ed hanno descritto la sintesi di nuovi foto catalizzatori basati su TiO2[15]. Recently the inventors of the present application have described the production of stable forms of encapsulated enzymes for the reduction of CO2 to methanol using light in the near UV [14] and have described the synthesis of new photo catalysts based on TiO2 [15].

Descrizione dell’invenzione Description of the invention

Si è ora trovato un processo conveniente e vantaggioso per la riduzione selettiva di NAD<+>in NADH per via fotochimica, utilizzando luce solare, con fotocatalizzatori che sono operativi in luce visibile. A convenient and advantageous process has now been found for the selective reduction of NAD <+> to NADH photochemically, using sunlight, with photocatalysts which are operative in visible light.

Il processo dell’invenzione rende possibile la applicazione della tecnologia enzimatica attraverso una riconversione fotochimica di NAD<+>in NADH utilizzando fotocatalizzatori attivi nel visibile. The process of the invention makes it possible to apply enzymatic technology through a photochemical conversion of NAD <+> into NADH using visible active photocatalysts.

Si è trovato in particolare che utilizzando come catalizzatori Cu2O, rutin/TiO2, InVO4/TiO2, [CrFx(H2O)]<y->/TiO2(x = 5, 4; y = 2,1) e/o Fe<2+>/ZnS in presenza di acqua e glicerolo come fonte di idrogeno si ottiene una riduzione selettiva (>99%) di NAD<+>in NADH utilizzando luce di lunghezza d’onda nel visibile, ad esempio luce bianca. In particular, it has been found that using as catalysts Cu2O, rutin / TiO2, InVO4 / TiO2, [CrFx (H2O)] <y-> / TiO2 (x = 5, 4; y = 2.1) and / or Fe <2 +> / ZnS in the presence of water and glycerol as a source of hydrogen, a selective reduction (> 99%) of NAD <+> in NADH is obtained using visible wavelength light, for example white light.

I catalizzatori utilizzati sono ottenuti utilizzando direttamente Cu2O ovvero mediante ricopertura di TiO2con specie quali InVO4, rutin, [CrFx(H2O)]<y->o ZnS dopato con Fe(II). Tutte queste specie assorbono nel visibile, nell’intervallo 400-680 nm. The catalysts used are obtained using Cu2O directly or by coating TiO2 with species such as InVO4, rutin, [CrFx (H2O)] <y-> or ZnS doped with Fe (II). All these species absorb in the visible, in the range of 400-680 nm.

Queste specie hanno diversi meccanismi di attivazione-riduzione che prevedono: These species have different activation-reduction mechanisms which include:

i. Eccitazione di elettroni nella conduction band dalla valence band: Cu2O; ii. Iniezione di elettroni nella conduction band: rutina@TiO2; the. Excitation of electrons in the conduction band from the valence band: Cu2O; ii. Injection of electrons into the conduction band: rutin @ TiO2;

iii. Iniezione di un hole nella valence band: Fe/ZnS; iii. Injection of a hole in the valence band: Fe / ZnS;

iv. Iniezione di un elettrone nella conduction band e di un hole nella valence band di TiO2: (CrF5(H2O)<2->@TiO2. iv. Injection of an electron in the conduction band and of a hole in the valence band of TiO2: (CrF5 (H2O) <2-> @ TiO2.

La applicazione di questi fotocatalizzatori porta alla riduzione di NAD<+>in NADH con selettività del >99%, come dimostrato da analisi HPLC ed NMR delle soluzioni di reazione. The application of these photocatalysts leads to the reduction of NAD <+> in NADH with selectivity of> 99%, as demonstrated by HPLC and NMR analysis of the reaction solutions.

La utilizzazione di un mediatore come un complesso metallorganico di Rh(III) o Ir(III) o Co(III) idruro come mediatore di trasferimento di idruri migliora le prestazioni del fotocatalizzatore, come mostrato nella figura annessa. The use of a mediator such as a metallorganic complex of Rh (III) or Ir (III) or Co (III) hydride as a hydride transfer mediator improves the performance of the photocatalyst, as shown in the accompanying figure.

Preferibilmente, il complesso metallo-organico è un composto di formula [Cp*(N-N)M(H2O)]<2+>dove Cp* è un gruppo pentametileciclopentadiene, N-N è dipiridile o fenantrolina o etilene diammina e M è Rh, Ir o Co. Preferably, the metal-organic complex is a compound of formula [Cp * (N-N) M (H2O)] <2+> where Cp * is a pentamethylecyclopentadiene group, N-N is dipyridyl or phenanthroline or ethylene diamine and M is Rh, Ir or Co.

L’NADH rigenerato dal processo dell’invenzione può anche essere usato come riducente in applicazioni sintetiche di fine chemicals. NADH regenerated by the process of the invention can also be used as a reducing agent in synthetic applications of fine chemicals.

Un ulteriore oggetto dell’invenzione è un processo per la produzione di metanolo da CO2per mezzo di un sistema enzimatico costituito da Formato deidrogenasi, Formaldeide deidrogenasi e Alcol Deidrogenasi e di NADH rigenerato secondo il processo sopra descritto. A further object of the invention is a process for the production of methanol from CO2 by means of an enzymatic system consisting of Formaldehyde dehydrogenase, Formaldehyde dehydrogenase and Alcohol Dehydrogenase and of NADH regenerated according to the process described above.

Descrizione della Figura Description of the Figure

Figura: (A) Attività dei vari fotocatalizzatori nella riduzione di NAD<+>a NADH; (B) Effetto della utilizzatore di un mediatore nella fotoriduzione nel visibile di NAD<+>in NADH. Figure: (A) Activity of the various photocatalysts in reducing NAD <+> to NADH; (B) User effect of a mediator in visible photoreduction of NAD <+> in NADH.

ESEMPI EXAMPLES

Esempio 1: Preparazione dei catalizzatori Example 1: Preparation of the catalysts

Come base è stato usato sia TiO2commerciale da 25 nm che TiO27-10 nm appositamente preparato. Both commercial 25 nm TiO2 and specially prepared TiO27-10 nm were used as the basis.

[CrF5(H2O)]<2->@TiO2é stato preparato per la prima volta mediante impregnazione di TiO2con una soluzione di (NH4)2[CrF5(H2O)] sotto agitazione ultrasonica. La sospensione fu sonicata per 15 min, lasciata per 24 h, lavata tre volte con acqua bidistillata e la polvere seccata sottovuoto a 30°C. [CrF5 (H2O)] <2-> @ TiO2 was first prepared by impregnating TiO2 with a solution of (NH4) 2 [CrF5 (H2O)] under ultrasonic stirring. The suspension was sonicated for 15 min, left for 24 h, washed three times with double distilled water and the vacuum dried powder at 30 ° C.

Cu2O é stato preparato mediante trattamento di una soluzione di CuSO4in acqua con glucosio in presenza di polivinilpirrolidone K-30 a 80°C. Dopo 1 h il precipitato rosso è stato isolato per decantazione del liquido, lavato con acqua e seccato sotto vuoto. I composti di Rh e Ir sono stati preparati secondo metodi noti [16]. Cu2O was prepared by treating a solution of CuSO4 in water with glucose in the presence of polyvinylpyrrolidone K-30 at 80 ° C. After 1 h the red precipitate was isolated by decanting the liquid, washed with water and dried under vacuum. The Rh and Ir compounds were prepared according to known methods [16].

I catalizzatori InVO4, rutin@TiO2, Fe(II)/ZnS sono stati preparati come riportato in letteratura [14, 15] InVO4, rutin @ TiO2, Fe (II) / ZnS catalysts were prepared as reported in the literature [14, 15]

Esempio 2: Test fotocatalitici per la rigenerazione di NADH da NAD<+>I tests fotocatalitici sono stati condotti in un reattore cilindrico in borosilicato (V = 10 mL). Il fotocatalizzatore (1 gL<-1>) é stato sospeso in un tampone di fosfato deossigenato (pH = 7). NAD<+>(0.8mM). Glicerolo è stato usato come fonte di idrogeno e donatore di elettroni. Il complesso[Cp*Rh(bpy)H2O]Cl2o l’analogo di Ir é stato usato come mediatore di e-transfer. La sospensione è stata irradiata nel reattore chiuso sotto azoto con una lampada 50 W LED (λ>400 nm). Campioni sono stati prelevati ed analizzati mediante HPLC (colonna Zorbax SB-Aq) e NMR. Example 2: Photocatalytic tests for the regeneration of NADH from NAD <+> The photocatalytic tests were carried out in a cylindrical borosilicate reactor (V = 10 mL). The photocatalyst (1 gL <-1>) was suspended in a deoxygenated phosphate buffer (pH = 7). NAD <+> (0.8mM). Glycerol has been used as a source of hydrogen and an electron donor. The complex [Cp * Rh (bpy) H2O] Cl2o the analogue of Ir was used as an e-transfer mediator. The suspension was irradiated in the closed reactor under nitrogen with a 50 W LED lamp (λ> 400 nm). Samples were collected and analyzed by HPLC (Zorbax SB-Aq column) and NMR.

Esempio 3: Conversione di CO2in metanolo utilizzando FateDH, FaldDH e ADH con rigenerazione di NADH Example 3: Conversion of CO2 into methanol using FateDH, FaldDH and ADH with NADH regeneration

La conversione di CO2in metanolo è stata effettuata utilizzando i tre enzimi incapsulati in sfere (ca. 1 mm di diametro) prodotte da TEOS (tetraetossisilano), sodio alginato e CaCl2, come descritto in [14]. Utilizzando un reattore in continuo è possibile allontanare il metanolo formato per evitare la saturazione degli enzimi. Una volta che NADH è stato tutto convertito in NAD<+>, la soluzione è separata dalle sfere e trattata come descritto nell’Esempio 2. Quando NADH è riformato da NAD<+>, la soluzione è rimessa in contatto con le sfere contenenti gli enzimi e CO2è insufflato, raccogliendo il metanolo formatosi. The conversion of CO2 into methanol was carried out using the three enzymes encapsulated in spheres (approx. 1 mm in diameter) produced by TEOS (tetraethoxysilane), sodium alginate and CaCl2, as described in [14]. Using a continuous reactor it is possible to remove the methanol formed to avoid saturation of the enzymes. Once NADH has all been converted to NAD <+>, the solution is separated from the spheres and treated as described in Example 2. When NADH is reformed by NAD <+>, the solution is re-contacted with the spheres containing the enzymes and CO2 is blown, collecting the methanol formed.

In questo modo, alternando ciclicamente i due processi di riduzione di CO2e di riduzione di NAD<+>, si riesce a produrre sino a >1000 moli di CH3OH per mole di NADH. In this way, by cyclically alternating the two CO2 reduction and NAD <+> reduction processes, it is possible to produce up to> 1000 moles of CH3OH per mol of NADH.

Riferimenti bibliografici Bibliographical references

[1] D. Gamenara et al., Redox Biocatalysis: Fundamentals and Applications, 2012. [1] D. Gamenara et al., Redox Biocatalysis: Fundamentals and Applications, 2012.

[2] K. Cheikhou, T. Tzédakis, AIChE Journal 2008, 54, 1365-1376. [2] K. Cheikhou, T. Tzédakis, AIChE Journal 2008, 54, 1365-1376.

[3] M. Aresta, Ed., Carbon Dioxide as Chemical Feedstock, 2010. [3] M. Aresta, Ed., Carbon Dioxide as Chemical Feedstock, 2010.

[4] E. Siu et al., Biotechnology Progress 2007, 23, 293-296. [4] E. Siu et al., Biotechnology Progress 2007, 23, 293-296.

[5] J.J. Soldevila-Barreda et al., Organometallics 2012, 31, 5958-5967. [5] J.J. Soldevila-Barreda et al., Organometallics 2012, 31, 5958-5967.

[6] T. Baran et al., Journal of Photochemistry and Photobiology A: Chemistry 2012, 241, 8-12. [6] T. Baran et al., Journal of Photochemistry and Photobiology A: Chemistry 2012, 241, 8-12.

[7] C. Lettmann et al., Angewandte Chemie International Edition 2001, 40, 3160-3164. [7] C. Lettmann et al., Angewandte Chemie International Edition 2001, 40, 3160-3164.

[8] K. Maeda et al., J. Am. Chem. Soc. 2010, 132, 5858-5868. [8] K. Maeda et al., J. Am. Chem. Soc. 2010, 132, 5858-5868.

[9] S. Sato, et al., J. Am. Chem. Soc. 2011, 133, 15240-15243. [9] S. Sato, et al., J. Am. Chem. Soc. 2011, 133, 15240-15243.

[10] E. Bojarska et al., Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 207-213. [10] E. Bojarska et al., Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 207-213.

[11] D. Chen, et al., Ind. Eng. Chem. Res. 2006, 45, 4110-4116. [11] D. Chen, et al., Ind. Eng. Chem. Res. 2006, 45, 4110-4116.

[12] Q. Shi et al., Journal of Molecular Catalysis B: Enzymatic 2006, 43, 44-48. [12] Q. Shi et al., Journal of Molecular Catalysis B: Enzymatic 2006, 43, 44-48.

[13] K. Szaciłowski et al., Chem. Rev. 2005, 105, 2647-2694. [13] K. Szaciłowski et al., Chem. Rev. 2005, 105, 2647-2694.

[14] A. Dibenedetto, et al., ChemSusChem 2012, 5, 373-378. [14] A. Dibenedetto, et al., ChemSusChem 2012, 5, 373-378.

[15] W. Macyk et al., Coordination Chemistry. [15] W. Macyk et al., Coordination Chemistry.

[16] C. White et al., in Inorganic Syntheses (Ed.: R.N. Grimes), John Wiley & Sons, Inc., 2007, pp. 228-234. [16] C. White et al., In Inorganic Syntheses (Ed .: R.N. Grimes), John Wiley & Sons, Inc., 2007, pp. 228-234.

Claims (7)

RIVENDICAZIONI 1. Sintesi del nuovo catalizzatore [CrFx(H2O)]<y->/TiO2(x = 5, 4; y = 2,1). CLAIMS 1. Synthesis of the new catalyst [CrFx (H2O)] <y-> / TiO2 (x = 5, 4; y = 2.1). 2. Processo di rigenerazione fotocatalitica di NADH da NAD<+>caratterizzato dal fatto che il catalizzatore è scelto fra Cu2O, rutin/TiO2, InVO4/TiO2, [CrFx(H2O)]<y->/TiO2(x = 5, 4; y = 2,1) e/o Fe<2+>/ZnS in presenza di acqua e glicerolo come fonte di idrogeno. 2. Photocatalytic regeneration process of NADH from NAD <+> characterized by the fact that the catalyst is selected from Cu2O, rutin / TiO2, InVO4 / TiO2, [CrFx (H2O)] <y-> / TiO2 (x = 5, 4 ; y = 2.1) and / or Fe <2 +> / ZnS in the presence of water and glycerol as a source of hydrogen. 3. Processo secondo la rivendicazione 2 in cui si opera in presenza di un complesso metallorganico di Co(III), Rh(III) o Ir(III) come mediatore di trasferimento di idruri. 3. Process according to claim 2 in which one operates in the presence of a metallorganic complex of Co (III), Rh (III) or Ir (III) as a hydride transfer mediator. 4. Processo secondo la rivendicazione 3 in cui il complesso metalloorganico è un composto di formula [Cp*(N-N)M(H2O)]<2+>dove Cp* è un gruppo pentametileciclopentadiene, N-N è dipiridile, o fenantrolina, o etilene diammina e M è Rh, Ir o Co. 4. Process according to claim 3 wherein the organometallic complex is a compound of formula [Cp * (N-N) M (H2O)] <2+> where Cp * is a pentamethylecyclopentadiene group, N-N is dipyridyl, or phenanthroline, or ethylene diamine and M is Rh, Ir or Co. 5. Processo secondo una o più delle rivendicazioni da 2 a 4 in cui si utilizza luce bianca come fonte di energia radiante. Process according to one or more of claims 2 to 4 in which white light is used as a source of radiant energy. 6. Processo delle rivendicazioni da 2 a 5 in cui l’NADH rigenerato è usato come riducente in applicazioni sintetiche di fine chemicals. 6. Process of claims 2 to 5 in which regenerated NADH is used as a reducing agent in synthetic applications of fine chemicals. 7. Processo per la produzione di metanolo da CO2per mezzo di: - un sistema enzimatico costituito da Formato deidrogenasi, Formaldeide deidrogenasi e Alcol deidrogenasi, e - NADH rigenerato secondo il processo delle rivendicazioni da 1 a 5.7. Process for the production of methanol from CO2 by means of: - an enzyme system consisting of Formaldehyde dehydrogenase, Formaldehyde dehydrogenase and Alcohol dehydrogenase, and - NADH regenerated according to the process of claims 1 to 5.
IT001135A 2013-07-05 2013-07-05 PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL ITMI20131135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IT001135A ITMI20131135A1 (en) 2013-07-05 2013-07-05 PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001135A ITMI20131135A1 (en) 2013-07-05 2013-07-05 PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL

Publications (1)

Publication Number Publication Date
ITMI20131135A1 true ITMI20131135A1 (en) 2015-01-06

Family

ID=49085111

Family Applications (1)

Application Number Title Priority Date Filing Date
IT001135A ITMI20131135A1 (en) 2013-07-05 2013-07-05 PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL

Country Status (1)

Country Link
IT (1) ITMI20131135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
CN1597940A (en) * 2004-08-03 2005-03-23 天津大学 Photochemical process for regenerating coenzyme NADH
WO2007022504A2 (en) * 2005-08-18 2007-02-22 Board Of Trustees Of Southern Illinois University Conversion of carbon dioxide to methanol in silica sol-gel matrix
EP2165762A1 (en) * 2007-06-05 2010-03-24 The University of Tokyo Photocatalyst material, process for producing the photocatalyst material, and method for decomposing contaminant using the material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
CN1597940A (en) * 2004-08-03 2005-03-23 天津大学 Photochemical process for regenerating coenzyme NADH
WO2007022504A2 (en) * 2005-08-18 2007-02-22 Board Of Trustees Of Southern Illinois University Conversion of carbon dioxide to methanol in silica sol-gel matrix
EP2165762A1 (en) * 2007-06-05 2010-03-24 The University of Tokyo Photocatalyst material, process for producing the photocatalyst material, and method for decomposing contaminant using the material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU J ET AL: "Hydrothermal doping method for preparation of Cr<3+>-TiO2 photocatalysts with concentration gradient distribution of Cr<3+>", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 62, no. 3-4, 22 February 2006 (2006-02-22), pages 329 - 335, XP028000915, ISSN: 0926-3373, [retrieved on 20060222], DOI: 10.1016/J.APCATB.2005.08.013 *

Similar Documents

Publication Publication Date Title
Zeng et al. Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production
Aresta et al. An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol–water
Wu et al. g-C3N4@ α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration
Yui et al. Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2
Colmenares et al. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds
Yuan et al. Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi2WO6
Han et al. Copper–iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation
Wu et al. Synergy of electron transfer and electron utilization via metal–organic frameworks as an electron buffer tank for nicotinamide regeneration
CN107790159B (en) Photocatalyst for high-selectivity catalytic oxidation of alcohol into aldehyde and preparation and application thereof
CN111530485B (en) Carbon and nitrogen co-doped titanium dioxide nano material and preparation method and application thereof
CN103127948A (en) Polymer photocatalyst, and method of water-phase photo-catalytic selective alcohol oxidation
CN103922929B (en) A kind of preparation of supported nano-Au catalyst of gas-phase photocatalysis selective oxidation methanol-fueled CLC methyl-formiate and application thereof
Lin et al. Methane conversion over artificial photocatalysts
CN103896765A (en) Preparation and application of supported nano Ag catalyst for synthesizing methyl formate by partially oxidizing methanol under gas-phase photocatalytic conditions
Dong et al. Direct photocatalytic synthesis of acetic acid from methane and CO at ambient temperature using water as oxidant
Kumar et al. Octahedral rhenium K4 [Re6S8 (CN) 6] and Cu (OH) 2 cluster modified TiO2 for the photoreduction of CO2 under visible light irradiation
CN103263937A (en) Method for preparing tetrahedral silver phosphate photocatalyst
Tao et al. Framework Ti-rich titanium silicalite-1 zeolite nanoplates for enhanced photocatalytic H2 production from CH3OH
Zhao et al. Hierarchical ZnIn2S4 microspheres as photocatalyst for boosting the selective biohydrogenation of furfural into furfuryl alcohol under visible light irradiation
Zhao et al. Exploration of optimal reaction conditions on lactic acid production from glucose photoreforming over carbon nitride
CN113856702A (en) Cadmium sulfide nanorod/cuprous sulfide nanoshell heterostructure photocatalyst and preparation method and application thereof
Reilly et al. Photocatalytic hydrogen production in a UV-irradiated fluidized bed reactor
ITMI20131135A1 (en) PHOTOCATALIZER FOR THE REDUCTION IN THE VISIBLE OF NAD + A NADH IN A HYMOID CHEMO-ENZYMATIC COURSE OF CO2 REDUCTION IN METHANOL
Zhu et al. Visible-light-driven g-C3N4-doped Co catalyzed oxidation of benzylic hydroxylation of alkyl aromatic hydrocarbons
CN111747845A (en) Method for selectively oxidizing glucose by visible light catalysis