ITMI20110397A1 - PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES - Google Patents

PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES Download PDF

Info

Publication number
ITMI20110397A1
ITMI20110397A1 IT000397A ITMI20110397A ITMI20110397A1 IT MI20110397 A1 ITMI20110397 A1 IT MI20110397A1 IT 000397 A IT000397 A IT 000397A IT MI20110397 A ITMI20110397 A IT MI20110397A IT MI20110397 A1 ITMI20110397 A1 IT MI20110397A1
Authority
IT
Italy
Prior art keywords
salt
formula
amino acid
acid
pitavastatin
Prior art date
Application number
IT000397A
Other languages
Italian (it)
Inventor
Emanuele Attolino
Evita Balducci
Simone Mantegazza
Maurizio Taddei
Original Assignee
Dipharma Francis Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipharma Francis Srl filed Critical Dipharma Francis Srl
Priority to IT000397A priority Critical patent/ITMI20110397A1/en
Priority to EP11162992A priority patent/EP2383260A3/en
Priority to US13/092,171 priority patent/US20110269962A1/en
Priority to JP2011100741A priority patent/JP2011236212A/en
Publication of ITMI20110397A1 publication Critical patent/ITMI20110397A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms

Description

“PROCEDIMENTO PER LA PREPARAZIONE DI PITAVASTATINA E ANALOGHI†⠀ œPROCESS FOR THE PREPARATION OF PITAVASTATIN AND ANALOGSâ €

CAMPO DELL’INVENZIONE FIELD OF INVENTION

La presente invenzione riguarda un nuovo procedimento per la preparazione di intermedi sintetici a struttura β-chetoesterea utili nella preparazione di statine, in particolare Pitavastatina. The present invention relates to a new process for the preparation of synthetic intermediates with β-ketoesterea structure useful in the preparation of statins, in particular Pitavastatin.

STATO DELLA TECNICA STATE OF THE TECHNIQUE

Le statine sono una classe di composti farmaceutici utili nel trattamento della colesterolemia. Il loro meccanismo d’azione à ̈ legato alla capacità di queste molecole di agire come inibitori dell’attività della 3-idrossi-3-metilglutarico Coenzima A reduttasi (HMG-CoA), che si traduce nella inibizione a livello epatico della biosintesi del colesterolo. La struttura molecolare delle statine à ̈ normalmente costituita da una porzione A e da una catena laterale come sotto riportato. Statins are a class of pharmaceutical compounds useful in the treatment of cholesterolemia. Their mechanism of action is linked to the ability of these molecules to act as inhibitors of the activity of the 3-hydroxy-3-methylglutaric Coenzyme A reductase (HMG-CoA), which results in the hepatic inhibition of biosynthesis cholesterol. The molecular structure of statins is normally made up of a portion A and a side chain as reported below.

OH OH O OH OH O

A(R) OH A (R) OH

dove il legame in grassetto rappresenta un legame semplice o doppio . where the link in bold represents a simple or double link.

La loro attività à ̈ attribuita proprio alla presenza della catena laterale, costituita essenzialmente da un residuo di acido 3,5-diidrossi eptanoico che mima il raggruppamento 3-idrossi-3metilglutarico del HMG-CoA. Their activity is attributed precisely to the presence of the side chain, essentially consisting of a residue of 3,5-dihydroxy heptanoic acid which mimics the 3-hydroxy-3methylglutaric grouping of HMG-CoA.

La configurazione (R) al C-3 e la configurazione relativa syn tra gli ossidrili à ̈ stata dimostrata essere essenziale per ottenere una alta attività inibitoria. In tutte le statine sviluppate e commercializzate fino ad oggi il problema chimico principale da risolvere era rappresentato proprio dalla sintesi del residuo di acido 3,5-diidrossi eptanoico otticamente attivo. Il problema à ̈ stato fino ad ora risolto impiegando le metodologie più diverse, come metodi enzimatici e microbiologici, (si veda Angew. Chem. Int. Ed. The (R) configuration at C-3 and the relative syn configuration between the hydroxyls has been shown to be essential for obtaining high inhibitory activity. In all the statins developed and marketed to date, the main chemical problem to be solved was represented precisely by the synthesis of the optically active 3,5-dihydroxy heptanoic acid residue. The problem has so far been solved by using the most diverse methodologies, such as enzymatic and microbiological methods, (see Angew. Chem. Int. Ed.

2005, 44, 362-365), ma anche sintetici (Helvetica Chimica Acta, 2007, 1069-1081). Tra i metodi sintetici attualmente disponibili ci sono sia processi che prevedono la sintesi enantioselettiva dell’acido, che quelli che portano alla formazione del racemo e successiva risoluzione. Tutte queste metodologie hanno permesso di ottenere intermedi sintetici otticamente attivi, ormai reperibili anche in commercio, che una volta inseriti nella struttura della statina portano alla sintesi della catena laterale in forma otticamente attiva. 2005, 44, 362-365), but also synthetics (Helvetica Chimica Acta, 2007, 1069-1081). Among the synthetic methods currently available there are both processes that involve the enantioselective synthesis of the acid, and those that lead to the formation of the racemic and subsequent resolution. All these methodologies have made it possible to obtain optically active synthetic intermediates, now also available on the market, which once inserted in the statin structure lead to the synthesis of the side chain in an optically active form.

Nel caso dei metodi sintetici che prevedono la risoluzione del racemo, o di quelli enzimatici che non portano a derivati di purezza ottica sufficientemente elevata per le specifiche di farmacopea, per ottenere la statina d’interesse con valori di eccesso enantiomerico superiori al 99,5% sono necessari dei trattamenti (ad esempio purificazioni su HPLC chirale o cristallizzazione di sali diastereoisomerici) in grado di innalzare sia il valore dell’eccesso enantiomerico sia la purezza chimica in generale. In the case of synthetic methods that provide for the resolution of the racemic, or enzymatic ones that do not lead to derivatives of sufficiently high optical purity for the pharmacopoeia specifications, to obtain the statin of interest with enantiomeric excess values greater than 99.5 % treatments are necessary (for example purifications on chiral HPLC or crystallization of diastereoisomeric salts) capable of raising both the value of the enantiomeric excess and the chemical purity in general.

La prima statina à ̈ stata la mevastatina, isolata dal Penicillium citrinum, e impiegata successivamente nella sintesi della statina semisintetica pravastatina. Le statine oggigiorno presenti in commercio, ad esempio sia la pravastatina semisintetica che la lovastatina, di origine completamente naturale, sono caratterizzate dall’avere la catena laterale legata al nucleo A con un legame singolo C-C o C-N (il legame in grassetto nella formula sopra riportata). Recentemente invece si sono imposte sul mercato delle statine di origine completamente sintetica come ed esempio la rosuvastatina, la fluvastatina e la pitavastatina, dotate di altissima attività biologica. Queste statine sono caratterizzate da una catena laterale legata tramite un doppio legame C=C a geometria rigorosamente (E) (legame in grassetto della formula sopra riportata) al nucleo A della statina, normalmente avente una complessa struttura aromatica. Anche in questo caso gli approcci alla risoluzione del problema della configurazione assoluta del doppio legame sono stati i più vari e le sintesi proposte sono state sia consecutive che convergenti. In particolare però sono stati sviluppati ed ottimizzati i metodi per ottenere in maniera convergente la formazione della statina col doppio legame a geometria (E). Questi metodi si basano sulle metodologie classiche della formazione dei doppi legami (E) mediante reazioni di olefinazione su opportune aldeidi, presenti indifferentemente o sulla porzione aromatica o sulla catena laterale della statina, attraverso reazioni di Wittig, Horner-Emmons o Julia, come ben riassunto in Organic Process Research & Development 2001, 5, 519-527 per la fluvastatina. The first statin was mevastatin, isolated from Penicillium citrinum, and subsequently used in the synthesis of the semisynthetic statin pravastatin. The statins present on the market today, for example both semi-synthetic pravastatin and lovastatin, of completely natural origin, are characterized by having the side chain linked to nucleus A with a single C-C or C-N bond (the link in bold in the formula above reported). Recently, however, statins of completely synthetic origin such as rosuvastatin, fluvastatin and pitavastatin, with very high biological activity, have established themselves on the market. These statins are characterized by a side chain linked by a C = C double bond with a strictly (E) geometry (link in bold of the above formula) to the A nucleus of the statin, normally having a complex aromatic structure. Also in this case the approaches to solving the problem of the absolute configuration of the double bond have been the most varied and the proposed syntheses have been both consecutive and convergent. In particular, however, methods have been developed and optimized to obtain in a convergent way the formation of the statin with the double bond with geometry (E). These methods are based on the classical methodologies of the formation of double bonds (E) by means of olefination reactions on suitable aldehydes, present indifferently or on the aromatic portion or on the side chain of the statin, through reactions of Wittig, Horner-Emmons or Julia, as well summarized. in Organic Process Research & Development 2001, 5, 519-527 for fluvastatin.

Sebbene queste metodiche abbiano portato all’ottenimento di diverse statine di grande successo commerciale, queste sintesi soffrono ancora in molti casi di problemi di regioselettività, legate alla formazione della statina impurezza col doppio legame a configurazione (Z), di problemi di costi legati all’uso di basi organiche e reattivi costosi, delicati o da preparare in situ in condizioni sofisticate di reazione, e nel caso di fosforani e fosfonati, impiegati per la Wittig, pure del problema dello smaltimento dei reflui contenenti fosforo organico. Although these methods have led to the obtaining of several highly commercially successful statins, these syntheses still suffer in many cases from regioselectivity problems, linked to the formation of the statin impurity with the double bond configuration (Z), problems of costs related to the € ™ use of expensive, delicate or reactive organic bases and reactives to be prepared in situ under sophisticated reaction conditions, and in the case of phosphoranes and phosphonates, used for Wittig, also the problem of disposing of waste containing organic phosphorus.

Esiste quindi la necessità di un metodo alternativo più vantaggioso per preparare le statine, in particolare quelle di formula (I), qui riportate, contenenti un doppio legame -C=C- a configurazione (E) tra la catena laterale ed in nucleo A, ed intermedi utili per la loro sintesi. Tale nuovo metodo dovrebbe in particolare essere più semplicemente scalabile industrialmente, prevedere l’impiego di reagenti possibilmente più stabili ed economici, allo stesso tempo fornire alte rese e reflui di processo più ecocompatibili e facilmente smaltibili. There is therefore a need for a more advantageous alternative method to prepare statins, in particular those of formula (I), reported here, containing a double bond -C = C- with configuration (E) between the side chain and in nucleus A, and intermediates useful for their synthesis. In particular, this new method should be more simply industrially scalable, foresee the use of possibly more stable and economical reagents, at the same time providing high yields and more environmentally friendly and easily disposable process wastewater.

SOMMARIO DELL’INVENZIONE SUMMARY OF THE INVENTION

Si à ̈ ora sorprendentemente trovato che à ̈ possibile preparare statine di formula (I) contenenti un doppio legame -C=C- a configurazione (E), da intermedi di formula (II), ottenuti mediante condensazione di Knoevenagel. Gli intermedi di formula (II) così ottenuti presentano un contenuto di isomero a configurazione (Z) inferiore all’1%, valutato mediante HPLC. It has now surprisingly been found that it is possible to prepare statins of formula (I) containing a double bond -C = C- with configuration (E), from intermediates of formula (II), obtained by Knoevenagel condensation. The intermediates of formula (II) thus obtained have a content of isomer with configuration (Z) lower than 1%, evaluated by HPLC.

DESCRIZIONE DETTAGLIATA DELL’INVENZIONE DETAILED DESCRIPTION OF THE INVENTION

Oggetto della presente invenzione à ̈ un procedimento per la preparazione di un composto di formula (II), o un suo sale, The object of the present invention is a process for the preparation of a compound of formula (II), or a salt thereof,

O OP O O OP O

R1 R1

A O A O

(II) (II)

dove A Ã ̈ il gruppo residuo di una statina, P Ã ̈ un gruppo protettivo, e R1Ã ̈ idrogeno, un gruppo C1-C12alchile opzionalmente sostituito, cicloalchile, arile, oppure un gruppo arile-C1-C12alchile opzionalmente sostituito; comprendente la condensazione di una aldeide di formula (III) where A is the residual group of a statin, P is a protecting group, and R1 is hydrogen, an optionally substituted C1-C12alkyl group, cycloalkyl, aryl, or an optionally substituted aryl-C1-C12alkyl group; comprising the condensation of an aldehyde of formula (III)

<A CHO>(III) <A CHO> (III)

dove A à ̈ come prima definito, con un composto β-chetoacido di formula (IV), o un suo sale, where A is as defined above, with a β-ketoacid compound of formula (IV), or a salt thereof,

O OOP O O OOP O

R1 R1

H O<O>(IV) H O <O> (IV)

dove P e R1sono come prima definiti, in presenza di un catalizzatore, e se necessario in un solvente, e successiva spontanea decarbossilazione. where P and R1 are defined as before, in the presence of a catalyst, and if necessary in a solvent, and subsequent spontaneous decarboxylation.

Ad esempio A può essere il gruppo residuo di una statina scelta tra Pitavastatina, Fluvastatina, Glenvastatina, Rosuvastatina, Cerivastatina e Bervastatina. Tale residuo può essere rappresentato da una delle strutture cicliche riportate di seguito. For example A may be the residual group of a statin chosen from among Pitavastatin, Fluvastatin, Glenvastatin, Rosuvastatin, Cerivastatin and Bervastatin. This residue can be represented by one of the cyclical structures shown below.

F F F F

N No.

N N N N

Pitavastatina Fluvastatina Glenvastatina Pitavastatin Fluvastatin Glenvastatin

F F F F F F

O O N O S O O N O S

N N N O N N N O

Rosuvastatina Cerivastatina Bervastatina Rosuvastatin Cerivastatin Bervastatin

dove la linea tratteggiata indica il punto d’aggancio della catena laterale sul residuo della statina. Preferibilmente il gruppo residuo A à ̈ il nucleo della pitavastatina, della fluvastatina o della rosuvastatina. where the dotted line indicates where the side chain attaches to the statin residue. Preferably the residual group A is the nucleus of pitavastatin, fluvastatin or rosuvastatin.

P Ã ̈ uno dei gruppi protettivi utilizzati nella chimica degli zuccheri, preferibilmente il gruppo tert-butil dimetilsilile. P is one of the protective groups used in sugar chemistry, preferably the tert-butyl dimethylsilyl group.

Un gruppo C1-C12alchile può essere lineare o ramificato, non sostituito o sostituito da uno o due sostituenti scelti indipendentemente tra idrossi, acetossi e C1-C4alcossi, preferibilmente un gruppo C1-C4alchile, più preferibilmente metile o tert-butile. A C1-C12alkyl group can be linear or branched, unsubstituted or substituted by one or two substituents independently selected from hydroxy, acetoxy and C1-C4alkoxy, preferably a C1-C4alkyl group, more preferably methyl or tert-butyl.

Un gruppo cicloalchile può essere ad esempio un gruppo C3-C8cicloalchilico, ad esempio cicloesile. A cycloalkyl group can be for example a C3-C8cycloalkyl group, for example cyclohexyl.

Un gruppo arile à ̈ ad esempio un gruppo C6-C12arile, preferibilmente fenile o naftile, in particolare fenile. An aryl group is for example a C6-C12aryl group, preferably phenyl or naphthyl, in particular phenyl.

Un gruppo arile-C6-C12alchile, dove l’alchile à ̈ non sostituito o sostituito da uno o due sostituenti scelti indipendentemente tra idrossi, acetossi e C1-C4alcossi, à ̈ ad esempio benzile o feniletile, preferibilmente benzile. An aryl-C6-C12alkyl group, where the alkyl is unsubstituted or substituted by one or two substituents independently selected from hydroxy, acetoxy and C1-C4alkoxy, is for example benzyl or phenylethyl, preferably benzyl.

La condensazione di Knoevenagel tra un composto di formula (III) ed uno di formula (IV) può essere condotta in accordo a metodi noti, in particolare in presenza di un catalizzatore. Knoevenagel condensation between a compound of formula (III) and one of formula (IV) can be carried out according to known methods, in particular in the presence of a catalyst.

In particolare il catalizzatore può essere un catalizzatore basico o acido, organico o inorganico o un amminoacido. In particular, the catalyst can be a basic or acidic, organic or inorganic catalyst or an amino acid.

Un catalizzatore basico organico può essere scelto tra una ammina secondaria ed una ammina terziaria, sia debole che forte, ciclica o aciclica, o un suo sale, ad esempio piperidina o un suo sale, tipicamente sale acetato. An organic basic catalyst can be chosen between a secondary amine and a tertiary amine, either weak or strong, cyclic or acyclic, or one of its salt, for example piperidine or one of its salt, typically acetate salt.

Un catalizzatore basico inorganico può essere scelto ad esempio tra un carbonato di un metallo alcalino ed un idrossido di un metallo alcalino, preferibilmente sodio o potassio. An inorganic basic catalyst can be selected for example between a carbonate of an alkali metal and a hydroxide of an alkali metal, preferably sodium or potassium.

Alternativamente la condensazione di Knoevenagel può essere effettuata con un catalizzatore acido di Lewis. Un acido di Lewis può essere ad esempio scelto tra ZnCl2, FeCl3, TiCl4, Ti tetraisopropossido, AlCl3, BF3eterato, un alogenuro, ad esempio un cloruro o un trifluorometansolfonato di un metallo di transizione della serie dei lantanidi, preferibilmente lantanio trifluorometansolfonato in forma sia anidra che idrata. Alternatively, Knoevenagel condensation can be carried out with a Lewis acid catalyst. A Lewis acid can for example be chosen from among ZnCl2, FeCl3, TiCl4, Ti tetraisopropoxide, AlCl3, BF3eterate, a halide, for example a chloride or a trifluoromethanesulfonate of a transition metal of the lanthanide series, preferably lanthanum trifluoromethanesulfonate in both anhydrous form that hydrates.

Un amminoacido può essere, ad esempio, un α-amminoacido, β-amminoacido, γ-amminoacido, Î ́−amminoacido, oppure un ε-amminoacido; nel caso questo sia un α-amminoacido esso può avere in catena laterale un residuo di origine naturale o sintetica. Tale amminoacido può essere scelto ad esempio nel gruppo comprendente glicina, α-alanina, valina, leucina, isoleucina, serina, treonina, fenilalanina, tirosina, prolina, acido aspartico, asparagina, acido glutammico, acido L,α-amminoadipico, β-alanina, acido γ-amminobutirrico, l’acido Î ́-amminovalerico, l’acido ε-amminocapronico, taurina e L-fenilserina. Esso à ̈ preferibilmente scelto nel gruppo comprendente glicina, α-alanina, β-alanina, acido Î ́-amminovalerico e acido ε-amminocapronico; più preferibilmente β-alanina. An amino acid can be, for example, an Î ± -amino acid, β-amino acid, γ-amino acid, Î ́∠amino acid, or a ε-amino acid; if this is an Î ± -amino acid it may have a residue of natural or synthetic origin in the side chain. This amino acid can be selected for example from the group comprising glycine, Î ± -alanine, valine, leucine, isoleucine, serine, threonine, phenylalanine, tyrosine, proline, aspartic acid, asparagine, glutamic acid, L, Î ± -aminoadipic acid, Î -alanine, γ-aminobutyric acid, Î ́-aminovaleric acid, ε-aminocapronic acid, taurine and L-phenylserine. It is preferably selected from the group comprising glycine, Î ± -alanine, β-alanine, Î ́-aminovaleric acid and ε-aminocapronic acid; more preferably β-alanine.

La condensazione di Knoevenagel, se necessario, può essere condotta in un solvente, ad esempio un solvente polare aprotico, tipicamente un’ammide, ad esempio dimetilformammide, dimetilacetammide o N-metilpirrolidone, preferibilmente dimetilacetammide; acetonitrile; dimetilsolfossido; oppure in un solvente scelto tra un etere, ad esempio tetraidrofurano o diossano; un solvente clorurato, ad esempio, diclorometano, dicloroetano, cloroformio o clorobenzene; un estere, ad esempio acetato di etile o di metile; un solvente apolare aprotico tipicamente toluene; oppure un solvente polare protico, ad esempio acqua o un C1-C5alcanolo, preferibilmente metanolo; od una miscela di due o più, preferibilmente di due o tre, di detti solventi. The condensation of Knoevenagel, if necessary, can be carried out in a solvent, for example an aprotic polar solvent, typically an amide, for example dimethylformamide, dimethylacetamide or N-methylpyrrolidone, preferably dimethylacetamide; acetonitrile; dimethyl sulfoxide; or in a solvent selected from an ether, for example tetrahydrofuran or dioxane; a chlorinated solvent, for example, dichloromethane, dichloroethane, chloroform or chlorobenzene; an ester, for example ethyl or methyl acetate; a non-polar aprotic solvent typically toluene; or a polar protic solvent, for example water or a C1-C5alkanol, preferably methanol; or a mixture of two or more, preferably two or three, of said solvents.

La reazione può essere condotta ad una temperatura compresa tra circa 0°C e la temperatura di riflusso del solvente, preferibilmente tra circa 25°C e 85°C, più preferibilmente tra 35°C e 45°C. The reaction can be carried out at a temperature comprised between about 0 ° C and the reflux temperature of the solvent, preferably between about 25 ° C and 85 ° C, more preferably between 35 ° C and 45 ° C.

Il composto di formula (II) grezzo così ottenuto presenta il doppio legame in configurazione (E) ed un contenuto di isomero a configurazione (Z) inferiore all’1%, valutato mediante HPLC. The crude compound of formula (II) thus obtained has the double bond in configuration (E) and an isomer content in configuration (Z) lower than 1%, evaluated by HPLC.

Un ulteriore oggetto dell’invenzione à ̈ una statina di formula (I), o un suo sale, con un contenuto di isomero a configurazione (Z) inferiore all’1%, preferibilmente compreso tra circa 0,01 e 0,1%, valutato mediante HPLC. A further object of the invention is a statin of formula (I), or a salt thereof, with a content of configuration isomer (Z) lower than 1%, preferably between about 0.01 and 0.1 %, evaluated by HPLC.

Un composto di formula (II), o un suo sale, così ottenuto, può essere convertito in una statina di formula (I), o un solo sale, in accordo a metodiche note, ad esempio secondo il seguente schema riportato in WO 03064392. A compound of formula (II), or a salt thereof, thus obtained, can be converted into a statin of formula (I), or a single salt, according to known methods, for example according to the following scheme reported in WO 03064392 .

OOP O 1) deprotezioneOHOH<O>R1 2) riduzione diastereoselettiva A OH A O 3) saponificazione OOP O 1) deprotection OHOH <O> R1 2) diastereoselective reduction A OH A O 3) saponification

(II) (I) (II) (I)

dove A, P e R1sono come prima definiti. where A, P and R1 are as defined above.

Pertanto l’invenzione fornisce inoltre un procedimento comprendente la conversione di un composto di formula (II), o un suo sale, ottenuto a partire da un composto di formula (IV), in una statina di formula (I), o un suo sale, Therefore, the invention also provides a process comprising the conversion of a compound of formula (II), or a salt thereof, obtained starting from a compound of formula (IV), into a statin of formula (I), or one of its salt,

OHOH<O>OHOH <O>

A OH A OH

(I) (THE)

dove A Ã ̈ il gruppo residuo di una statina. where A is the residual group of a statin.

In un aspetto preferito dell’invenzione un sale di un composto di formula (I), dove A à ̈ il residuo della Pitavastatina, à ̈ un sale con (R)-naftiletilammina [(R)-NEA], avente la seguente formula (IX) In a preferred aspect of the invention a salt of a compound of formula (I), where A is the residue of Pitavastatin, is a salt with (R) -naphthylethylamine [(R) -NEA], having the following formula (IX)

NH2OH OH O NH2OH OH O

A OH * ;;;(IX) ;E’ stato infatti sorprendentemente trovato che il sale di Pitavastatina con (R)-naftiletil ammina, di formula (IX), può essere isolato mediante cristallizzazione, ad esempio da un solvente organico, preferibilmente un chetone, tipicamente acetone, un alcanolo, tipicamente isopropanolo, oppure una loro miscela o una miscela di uno o due di loro con acqua, ad ottenere un prodotto con un elevato grado di purezza sia chimica che ottica, in entrambi i casi, uguale o superiore al 99%, tipicamente uguale o superiore al 99,5%. ;In particolare il sale di Pitavastatina con (R)-naftiletil ammina di formula (IX) avente tale grado di purezza può essere convertito in un altro sale di Pitavastatina, ad esempio nel sale di calcio, con metodiche note. ;Un sale di Pitavastatina così ottenuto utilizzando un sale di formula (IX) con tale purezza presenta analogamente un elevato grado di purezza sia chimica che ottica, in entrambi i casi, uguale o superiore al 99%, tipicamente uguale o superiore al 99,5%. ;Tale conversione può essere effettuata, ad esempio, per trattamento di una soluzione acquosa del sale di formula (IX) con un acido, ad ottenere per estrazione con un solvente organico, ad esempio un estere alchilico di un acido carbossilico, in particolare acetato di etile, un etere, in particolare t-butil metiletere, una soluzione di Pitavastatina, che può essere opzionalmente convertita in un altro sale farmaceuticamente accettabile, ad esempio il sale di calcio. ;Un acido può essere ad esempio una soluzione acquosa di un acido organico o minerale, preferibilmente una soluzione acquosa di HCl. ;Un ulteriore oggetto dell’invenzione à ̈ quindi un procedimento di purificazione di Pitavastatina, o un suo sale, comprendente la conversione di Pitavastatina o un suo sale, in un sale di Pitavastatina con (R)-naftiletil ammina, l’isolamento in forma cristallina, e la successiva conversione in Pitavastatina o in un altro suo sale. ;Il sale di Pitavastatina con (R)-naftiletil ammina di formula (IX), in particolare in forma solida, preferibilmente in forma cristallina, à ̈ un nuovo composto e costituisce un ulteriore oggetto dell’invenzione. ;I composti di formula (III) possono essere preparati come descritto ad esempio in Organic Process Research & Development 2001, 5, 519-527, per il caso della fluvastatina e sono commercialmente disponibili. ;Un composto di formula (IV), o un suo sale, può essere preparato a partire da un composto di formula (V), o un suo sale, per rimozione selettiva del gruppo estereo R2, ;O OOP OO OOP O ;;R2 R1 R1 ;OO H O<O>;;(V) (IV) ;dove P à ̈ come sopra definito; R2à ̈ un gruppo C1-C12alchile, cicloalchile, arile, oppure arile-C1-C12alchile; ed R1à ̈ come prima definito. In un composto di formula (V), quando R1à ̈ diverso da idrogeno, R1e R2possono essere uguali o diversi. Preferibilmente R2à ̈ benzile e R1à ̈ metile. ;Preferibilmente R2può essere rimosso a dare l’acido carbossilico libero di formula (IV) in maniera selettiva rispetto alla protezione P ed eventualmente al gruppo R1quando questo à ̈ diverso da idrogeno. Ad esempio, in accordo ad un aspetto preferito dell’invenzione, quando in un composto di formula (V) R1à ̈ metile, R2à ̈ benzile, la rimozione del gruppo benzile può essere effettuata mediante idrogenazione catalitica con i metodi noti alla persona esperta dell’arte. ;I composti di formula (IV) e (V), o un loro sale, sono nuovi e costituiscono un ulteriore oggetto della presente invenzione. ;Un ulteriore oggetto dell’invenzione à ̈ l’uso di un composto di formula (IV) in un procedimento per la preparazione di una statina di formula (I). ;Un composto di formula (V), o un suo sale, può essere preparato per reazione tra un composto di formula (VI), o un suo sale, ed un composto di formula (VII), o un suo sale, in presenza di un solvente ;;;O O O OP OOO<OP O>;R2 R1 R2 R1 ;O OHXOO O;;(VI) (VII) (V) ;dove P, R1ed R2sono come sopra definiti ed X à ̈ un gruppo uscente, preferibilmente un alogeno, in particolare cloro, o imidazolo. Il solvente à ̈ preferibilmente un solvente etereo ad esempio tetraidrofurano oppure aprotico apolare, tipicamente toluene. ;L’acido malonico monoestere (VI) dove R2, essendo come prima definito, à ̈ preferibilmente benzile può essere prima convertito nel suo sale di magnesio per trattamento con almeno 2 equivalenti di un reattivo di Grignard, ad esempio isopropilmagnesio cloruro, e poi fatto reagire con un composto di formula (VII), a fornire, dopo spontanea decarbossilazione, il composto di formula (V). ;Un composto di formula (VI) à ̈ commercialmente disponibile o può essere preparato con metodologie note per mono esterificazione dell’acido malonico. ;Un composto di formula (VII), o un suo sale, a sua volta può essere preparato per attivazione della funzione carbossilica di un composto di formula (VIII), o un suo sale, ;;;O OP O O OP O ;R1 R1 ;;H OOX O ;;(VIII) (VII) ;dove P, R1ed X sono come sopra definiti. ;Quando X à ̈ cloro, l’attivazione dell’acido carbossilico di formula (VIII) può essere effettuata impiegando ad esempio cloruro di tionile, quando X à ̈ imidazolo, si può ad esempio impiegare il carbonildiimidazolo. ;Un composto di formula (VIII) à ̈ commercialmente disponibile o può essere preparato ad esempio mediante desimmetrizzazione chimica dell’anidride idrossiglutarica protetta con il gruppo protettivo P, definito precedentemente, come riportato ad esempio in J. Org. Chem. 1994, 59, 7849-7854, o desimmetrizzazione enzimatica, come riportato in Angew. Chem. Int. Ed. 2005, 44, 362-365. ;Un sale di un composto di formula (II), (IV), (V), (VI), (VII) o (VIII) à ̈ ad esempio un sale farmaceuticamente accettabile. ;Se desiderato, un composto di formula (I), (II), (IV), (V), (VI), (VII) o (VIII) può essere convertito in un suo sale, oppure un sale di un composto di formula (I), (II), (IV), (V), (VI), (VII) o (VIII) può essere convertito nell’acido libero, in accordo a metodi noti. ;I seguenti esempi illustrano l’invenzione. ;Esempio 1. Sintesi di un composto di formula (VII): (R)-metil 3-(ter-butildimetilsililossi)-5-(1H-imidazol-1-il)-5-ossopentanoato ;Una soluzione di (S)-benzil mandelato (6 g, 24,79 mmol) in THF anidro (100 mL) in atmosfera di N2viene portata a -78°C ed una soluzione di BuLi 2.5 M in esano (10,9 mL, 27,27 mmol) viene aggiunta goccia a goccia. La miscela à ̈ tenuta sotto agitazione a -78°C per 20 minuti, poi viene aggiunta una soluzione di anidride 3-[(ter-butildimetilsilil)ossi]pentandioica (6,05 g, 24,79 mmol) in THF anidro (25 mL) e la miscela risultante à ̈ mantenuta sotto agitazione magnetica a -78°C per 2 ore. La reazione viene acidificata con HCl 1 N ed estratta con AcOEt. La fase organica à ̈ lavata con HCl 1 N e salamoia, anidrificata su Na2SO4, filtrata ed evaporata a pressione ridotta. Il grezzo di reazione à ̈ purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 4:1) ed il prodotto ottenuto à ̈ disciolto in THF anidro (150 ml) e trattato con dimetil dicarbonato (2,47 mL, 23,04 mmol) e DMAP (201 mg, 1,65 mmol). La miscela viene mantenuta in agitazione a 25°C per 20 minuti, quindi il solvente à ̈ evaporato a pressione ridotta ed il residuo purificato tramite cromatografia flash (eluente: EtPet/AcOEt 9:1). L’olio incolore ottenuto à ̈ disciolto in etile acetato (90 mL) e la soluzione ottenuta viene mantenuta sotto agitazione in atmosfera di H2in presenza di Pd(OH)2/C 20% (652 mg, 0,93 mmol) a 20°C per 10 ore. La miscela à ̈ filtrata su perlite ed il solvente viene evaporato a pressione ridotta. Il grezzo di reazione (contenente acido fenilacetico come impurezza) à ̈ solubilizzato in THF anidro in atmosfera di N2e trattato con 1,1’-carbonildiimidazolo (3,02 g, 18,68 mmol). La miscela viene lasciata sotto agitazione a 20°C per 3 ore. Il solvente à ̈ evaporato a pressione ridotta ed il residuo à ̈ purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 30:70). Si ottengono 2,85 g di un olio giallo chiaro (Resa 41,6% su 4 passaggi). ;;<1>H NMR (400 MHz, CDCl3) Î ́: 8.06 (s, 1H); 7.37 (s, 1H), 6.92 (s, 1H); 4.54-5.52 (m, 1H); 3.53 (s, 3H); 3.04-2.96 (s, 2H); 2.50-2.40 (m, 2H); 0.62 (s, 9H); -0.1 (s, 3H), -0.21 (s, 3H).<13>C NMR (100 MHz, CDCl3) Î ́: 170.36; 167.19; 136.06; 130.47; 115.68; 65.69; 51.11; 42.35; 41.41; 24.95; 17.17; -5.58; -5.79. MS(ES<+>): m/z 349 [M+Na]<+>. ;Esempio 2 Sintesi di un composto di formula (V): (R)-1-benzil 7-metil 5-(ter-butildimetilsililossi)-3-ossoeptandioato ;Isopropil magnesio cloruro (2 M in THF, 15,10 mL, 30,20 mmol) viene aggiunto goccia a goccia ad una soluzione di monobenzil malonato (2,93 g, 15,10 mmol) in THF anidro (28 mL) mantenuta a 0°C in atmosfera di N2. Dopo 30 minuti a 0°C la soluzione viene scaldata a 50°C per 30 minuti, poi raffreddata di nuovo a 0°C e si aggiunge lentamente una soluzione di (VII) preparato come in Esempio 1 (4,1 g, 12,58 mmol) in THF anidro (28 mL). La miscela viene lasciata sotto agitazione a 20°C per 12 ore, poi si aggiunge HCl 1 M e si estrae con Et2O. La fase organica viene lavata con HCl 1 M e salamoia, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il grezzo di reazione viene purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 9:1). Si ottengono 3,74 g di un olio giallo con una resa del 73%. ;;<1>H NMR (400 MHz, CDCl3) Î ́: 7.32-7.28 (m, 5H); 5.12 (s, 2H); 4.57-4.52 (m, 1H); 3.60 (s, 3H); 3.47 (s, 2H); 2.75 (d, J = 6, 2H); 2.51-2.37 (m, 2H); 0.81 (s, 9H); 0.03 (d, J = 10, 3H).<13>C NMR (100 MHz, CDCl3) Î ́: 200.23; 170.76; 166.24; 134.93; 128.14; 127.95; 127.83; 127.66; 66.61; 65.06; 51.04; 49.89; 49.54; 41.65; 25.26; 17.42; -5.29; -5.45. MS(ES<+>): m/z 431 [M+Na]<+>. ;Esempio 3. Sintesi di un composto di formula (VII): (R)-metil 3-(ter-butildimetilsililossi)-5-(1H-imidazol-1-il)-5-ossopentanoato ;Una soluzione di (R)-benzil mandelato (49,4 g, 204 mmol) in THF anidro (500 mL) in atmosfera di N2viene portata a -78°C ed una soluzione di Esillitio 2.3 M in THF (97 mL, 224 mmol, 1,1 equivalenti) viene aggiunta goccia a goccia. La miscela à ̈ tenuta sotto agitazione a -78°C per 30 minuti, poi viene aggiunta una soluzione di anidride 3-[(ter-butildimetilsilil)ossi] pentandioica (50,0 g, 204 mmol) in THF anidro (100 mL) e la miscela risultante à ̈ mantenuta sotto agitazione magnetica a -78°C per 2 ore. La reazione riscaldata a –15°C, viene acidificata con HCl 1 N ed estratta con AcOEt. La fase organica à ̈ lavata con HCl 1 N e salamoia, anidrificata su Na2SO4, filtrata ed evaporata a pressione ridotta. Il grezzo di reazione à ̈ sciolto in cicloesano (250 ml) e mantenuto in agitazione a 20°C per 16h. Il solido precipitato à ̈ filtrato, lavato con cicloesano (50 ml) e la soluzione organica à ̈ evaporata a pressione ridotta. L’olio ottenuto à ̈ disciolto in MeOH (150 mL) e la soluzione viene aggiunta ad una soluzione di MeONa 25% in MeOH (370 ml) mantenuta a 7°C sotto agitazione in atmosfera di N2. Completata l’aggiunta si lascia reagire per 1 ora a 7°C, si versa la miscela di reazione in una soluzione di HCl 6,5% (1000ml) e si lascia reagire per 10 minuti. Si estrae con AcOEt, la fase organica à ̈ lavata con salamoia, anidrificata su Na2SO4, filtrata ed evaporata a pressione ridotta. L’olio risultante à ̈ sciolto in toluene, estratto con una soluzione di K2CO35% in acqua e la fase acquosa à ̈ lavata con toluene e trattata con HCl 37%. Si separano le fasi e la fase acquosa à ̈ estratta con AcOEt, lavata con salamoia, anidrificata su Na2SO4ed evaporata a pressione ridotta. Il grezzo di reazione à ̈ solubilizzato in toluene in atmosfera di N2e trattato con 1,1’-carbonildiimidazolo (18,8 g, 115,6 mmol, 1,1 equivalenti). La miscela viene lasciata sotto agitazione a 20°C per 2 ore e poi a 5°C per 1 ora. Si filtra il solido in sospensione e la soluzione toluenica così ottenuta viene utilizzata direttamente nel passaggio successivo come descritto in Esempio 2. ;Esempio 4. Sintesi di un composto di formula (IV): Acido (R)-5-(terbutildimetilsililossi)-7-metossi-3,7-diossoeptanoico. ;Una soluzione del composto (V) preparato come in esempio 2 (1,1 g, 2,70 mmol) in AcOEt (30 mL) viene tenuta sotto agitazione in atmosfera di H2in presenza di Pd/C 10% (287 mg, 0,27 mmol) a temperatura ambiente per 2 ore. La miscela à ̈ filtrata su perlite ed il solvente viene evaporato a pressione ridotta a 30°C. Il grezzo di reazione (885 mg) viene utilizzato senza ulteriore purificazione nella preparazione successiva. ;MS(ES<+>): m/z 341 [M+Na]<+>. ;Esempio 5. Sintesi di un composto di formula (II): (R,E)-metil 3-(ter-butildimetilsililossi)-7-(2-ciclopropil-4-(-4-fluorofenil)chinolin-3-il)-5-ossoept-6-enoato ;Il composto (IV) ottenuto come in Esempio 4 (885 mg, 2,78 mmol) viene solubilizzato in DMF (4 mL) in atmosfera di N2e si aggiungono 2-ciclopropil-4-(4-fluorofenil)chinolina-3-carbaldeide (271 mg, 0,93 mmol) e piperidina (46 µL, 0,46 mmol). La miscela viene lasciata sotto agitazione magnetica a temperatura ambiente per 15 minuti, poi à ̈ scaldata a 40°C per 10 ore. La soluzione viene diluita con AcOEt e lavata con HCl 1 N e salamoia, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il grezzo di reazione à ̈ purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 9:1). Si ottengono 280 mg di un olio giallo chiaro con una resa del 55%. ;;<1>H NMR (400 MHz, CDCl3) Î ́: 7.93 (d, J = 8, 1H); 7.63-7.57 (m, 2H); 7.36-7.29 (m, 2H); 7.19-7.16 (m, 4H); 6.31 (d, J = 16, 1H); 4.57-4.54 (m, 1H); 3.63 (s, 3H); 2.74-2.62 (m, 2H); 2.50-2.38 (m, 2H); 2.34-2.30 (m, 1H); 1.38-1.36 (m, 2H); 1.05-1.03 (m, 2H); 0.79 (s, 9H); 0.03 (s, 3H); -0.02 (s, 3H).<13>C NMR (100 MHz, CDCl3) Î ́: 196.80; 170.89; 163.40; 160.93; 159.51; 146.96; 145.57; 139.70; 133.72; 131.86; 131.27; 131.21; 129.35; 128.57; 126.63; 125.80; 125.46; 125.25; 115.39; 115.18; 65.47; 51.03; 47.61; 41.95; 25.23; 17.43; 15.89; 10.23; 10.16; -5.20; -5.42. MS(ES<+>): m/z 570 [M+Na]<+>. ;Esempio 6. Sintesi di un composto di formula (I): (3R,5S,E)-7-(2ciclopropil-4-(4-fluorofenil)chinolin-3-il)-3,5-diidrossiept-6-enoico sale di calcio (Pitavastatina sale di calcio) ;Una soluzione di (II) preparato come in Esempio 5 (735 mg, 1,34 mmol) in MeOH (12 mL) viene portata a 0°C e si aggiunge HCl 2 M (1 mL, 2,01 mmol) goccia a goccia. La miscela viene lasciata sotto agitazione a 20°C per 4 ore. La soluzione viene diluita con AcOEt e lavata con una soluzione satura di NaHCO3, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il grezzo di reazione à ̈ purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 3:2). Si ottiene un solido che à ̈ disciolto in THF anidro (1,5 mL) e MeOH (1,5 mL). La soluzione à ̈ quindi aggiunta goccia a goccia ad una sospensione di NaBH4(55 mg, 1,45 mmol) e dietilmetossiborano 1 M in THF (1,04 mL, 1,04 mmol) in THF anidro (6 mL) mantenuta -78°C. La miscela di reazione à ̈ mantenuta in agitazione a -78°C e dopo 30 min à ̈ trattata con una soluzione satura di NaHCO3ed estratta con AcOEt. La fase organica à ̈ lavata con acqua, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il residuo ottenuto à ̈ disciolto in AcOEt (6 mL) e la soluzione à ̈ scaldata a 50°C. Si aggiunge una soluzione acquosa al 35% di H2O2(286 µL, 3,33 mmol) e la miscela à ̈ lasciata sotto agitazione magnetica a 50°C per 1 ora. Poi si aggiunge salamoia (6 mL) e si lascia a 50°C per 20 minuti; infine si aggiunge una soluzione acquosa di Na2SO3(223 mg in 6 mL di H2O) e la miscela à ̈ tenuta sotto agitazione a 50°C per ulteriori 5 minuti. La fase organica à ̈ lavata con acqua, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il grezzo di reazione à ̈ purificato tramite cromatografia flash su gel di silice (eluente: EtPet/AcOEt 3:2). Si ottiene un solido giallo che à ̈ disciolto in MeOH (7 mL) e trattato con NaOH 1 M. La miscela à ̈ mantenuta sotto agitazione a 20°C per 2 ore, poi il solvente viene evaporato a pressione ridotta a 40°C. Il residuo à ̈ disciolto in H2O e trattato goccia a goccia una soluzione acquosa di CaCl2(103 mg, 0,93 mmol). Si forma istantaneamente un solido bianco, che à ̈ mantenuto sotto agitazione a 20°C per 10 ore. Il precipitato viene filtrato, lavato con H2O ed asciugato a pressione ridotta a 40°C per 4 ore. Si ottengono 348 mg di pitavastatina sale di calcio come solido bianco. ;;<1>H NMR (400 MHz, DMSO) Î ́: 7.80 (d, J = 8, 1H); 7.58 (t, J = 8, 1H); 7.36-7.20 (m, 6H); 6.44 (d, J = 16, 1H); 6.03 (bs, 1H); 5.56 (dd, J1= 5, J2= 16, 1H); 4.86 (bs, 1H); 4.11-4.07 (m, 1H); 3.58-3.56 (s, 1H); 2.04-2.00 (m, 1H); 1.89-1.83 (m, 1H); 1.38-1.33 (m, 1H); 1.19-1.04 (m, 2H); 1.00-0.97 (m, 2H); 0.83-0.77 (m, 2H).<13>C NMR (100 MHz, DMSO) Î ́: 178.13; 163.04; 160.59; 160.50; 145.94; 143.68; 142.28; 133.12; 132.19; 131.89; 129.67; 128.81; 128.39; 125.71; 123.10; 115.36; 115.15; 68.85; 65.67; 44.50; 43.79; 15.38; 10.75. MS(ES<+>): m/z 444 [M+Na]<+>. ;Esempio 7. Sintesi di un composto di formula (IV): Acido (R)-5-(terbutildimetilsililossi)-7-metossi-3,7-diossoeptanoico ;Una soluzione del composto (V) preparato come in Esempio 2 (46,8 g, 115 mmol) in AcOEt (1,3 L) viene tenuta sotto agitazione in atmosfera di H2in presenza di Pd/C 10% (12,2 g, 5,75 mmol) a temperatura ambiente per 3 ore. La miscela à ̈ filtrata su perlite ed il solvente viene evaporato a pressione ridotta a 30°C. Il grezzo di reazione (36,6 g) viene utilizzato senza ulteriore purificazione nella preparazione successiva. ;MS(ES<+>): m/z 341 [M+Na]<+>. ;Esempio 8. Sintesi di un composto di formula (II): (R,E)-metil 3(ter-butildimetilsililossi)-7-(2-ciclopropil-4-(-4-fluorofenil)chinolin-3-il)-5-ossoept-6-enoato ;Il composto (IV) ottenuto come in Esempio 7 (36,6 g, 115 mmol) viene solubilizzato in toluene (550 mL) in atmosfera di N2e si aggiungono 2-ciclopropil-4-(4-fluorofenil)chinolina-3-carbaldeide (100,5 g, 345 mmol, 3 equivalenti), setacci molecolari da 4 Ã… (70 g) e β-alanina (30,7 g, 345 mmoli, 3 equivalenti). La miscela viene lasciata sotto agitazione meccanica a 40°C per 16 ore. La soluzione viene filtrata su perlite e concentrata a pressione ridotta. L’olio ottenuto à ̈ disciolto in AcOEt, lavato con HCl 1 N e con salamoia, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Al grezzo di reazione à ̈ aggiunto esano (430 ml) e la sospensione à ̈ scaldata a 40°C per 3 ore e poi lasciata raffreddare a temperatura ambiente nell’arco di 16 ore. Il solido à ̈ filtrato, lavato con esano e la soluzione organica à ̈ evaporata a pressione ridotta. L’olio ottenuto viene utilizzato senza ulteriore purificazione nella preparazione successiva. ;Esempio 9. Sintesi di un composto di formula (IX): Acido (3R,5S,E)-7-(2-ciclopropil-4-(4-fluorofenil)chinolin-3-il)-3,5-diidrossiept-6-enoico sale di (R)-NEA ;Una soluzione di (II) preparato come in Esempio 8 (27,9 g, 50,9 mmol) in MeOH (470 mL) viene portata a 0°C e si aggiunge HCl 2 M (65 mL, 127,3 mmol, 2,5 equivalenti) goccia a goccia. La miscela viene lasciata sotto agitazione a 20°C per 16 ore. Il solvente organico viene evaporato a pressione ridotta, si aggiunge AcOEt (500 ml) e la fase organica à ̈ lavata con una soluzione satura di NaHCO3, con salamoia, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il grezzo di reazione à ̈ purificato tramite cromatografia flash su gel di silice (eluente: toluene/AcOEt 8:2). Si ottiene un solido (16, 3 g, 37,6 mmoli) che à ̈ disciolto in THF anidro (55 mL) e MeOH (55 mL). La soluzione à ̈ quindi aggiunta goccia a goccia ad una sospensione di NaBH4(2,0 g, 52,6 mmol, 1,4 equivalenti) e dietilmetossiborano 1 M in THF (38 mL, 37,6 mmol, 1 equivalente) in THF anidro (215 mL) mantenuta -78°C. La miscela di reazione à ̈ mantenuta in agitazione a -78°C e dopo 1 ora à ̈ trattata con una soluzione satura di NaHCO3ed estratta con AcOEt. La fase organica à ̈ lavata con acqua, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il residuo ottenuto à ̈ disciolto in AcOEt (230 mL) e la soluzione à ̈ scaldata a 50°C. Si aggiunge una soluzione acquosa al 35% di H2O2(10,5 ml, 115,8 mmol, 3,08 equivalenti) e la miscela à ̈ lasciata sotto agitazione magnetica a 50°C per 1 ora. Poi si aggiunge salamoia (230 mL) e si lascia a 50°C per 30 minuti; infine si aggiunge una soluzione acquosa di Na2S2O5(6,6 g in 120 mL di H2O) e la miscela à ̈ tenuta sotto agitazione a 50°C per ulteriori 10 minuti. La fase organica à ̈ lavata con salamoia, anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta. Il solido ottenuto à ̈ disciolto in MeOH (315 mL) e trattato con NaOH 1 M (45 ml, 45 mmoli, 1,2 equivalenti). La miscela à ̈ mantenuta sotto agitazione a 20°C per 2 ore, poi il solvente organico viene evaporato a pressione ridotta a 40°C. La fase acquosa risultante à ̈ lavata con metil t-butil etere e AcOEt, trattata con HCl 1N fino a pH = 4,5 ed estratta con diclorometano. La soluzione organica à ̈ anidrificata su Na2SO4, filtrata e concentrata a pressione ridotta; il residuo à ̈ sciolto in acetone (40 mL) e a questa soluzione si aggiunge una soluzione ottenuta sciogliendo (R)-NEA (6,5 mL,40,5 mmoli, 1,1 equivalenti) in acetone (18 mL). A fine aggiunta si osserva la precipitazione di un solido bianco, si aggiunge goccia a goccia esano (50 mL) e la sospensione viene lasciata sotto agitazione a 20°C per 16 ore. Si filtra e il solido viene successivamente ricristallizzato più volte da acetone e da isopropanolo/acqua. Si ottengono 7,1 g del composto in titolo, come un solido bianco cristallino, avente un grado di purezza sia chimica che ottica, in entrambi i casi, uguale al 99,5%. ;;<1>H NMR (300 MHz, CDCl3) Î ́: 7.97 (d, 1H); 7.95 (d, 1H); 7.82 (d, 1H); 7.76 (d, 1H); 7.64 (d, 1H); 7.61-7.43 (m, 5H); 7.33-7.29 (m, 2H); 7.19-7.08 (m, 4H); 6.55 (d, 1H); 5.54-5.47 (m, 4H); 5.11 (dd, 1H); 4.24-4.14 (m, 1H); 3.82-3.68 (m, 1H); 2.47-2.36 (m, 1H); 1.96 (d, 2H);1.66 (d, 3H); 1.38-1.19 (m, 3H); 1.15-0.97 (m, 3H). ;Esempio 10. Sintesi di un composto di formula (I): (3R,5S,E)-7-(2-ciclopropil-4-(4-fluorofenil)chinolin-3-il)-3,5-diidrossiept-6-enoico sale di calcio (Pitavastatina sale di calcio) ;Si sospende il composto di formula (IX) ottenuto come in Esempio 9 (7,1 g, 12 mmol) in una miscela bifasica acqua/AcOEt (30ml/90 ml). Si aggiunge HCl 1 N fino a pH = 4.1. Si separano le fasi e la fase acquosa viene estratta con AcOEt; alle fasi organiche riunite si aggiunge acqua (150 ml) e NaOH 30% fino a pH = 10. Si separano le fasi e la fase acquosa à ̈ lavata con AcOEt e metil t-butil etere. Alla soluzione acquosa à ̈ aggiunta per lento gocciolamento una soluzione acquosa di CaCl2*2H2O (530 mg, 3,6 mmol, 0,6 equivalenti). Si forma istantaneamente un solido bianco, che à ̈ mantenuto sotto agitazione a 20°C per 16 ore. Il precipitato viene filtrato, lavato con H2O ed asciugato a pressione ridotta a 40°C per 4 ore. Si ottengono 3,4 g (7,8 mmoli) di Pitavastatina sale di calcio come solido bianco. A OH * ;;; (IX); It has indeed been surprisingly found that the salt of Pitavastatin with (R) -naphthylethyl amine, of formula (IX), can be isolated by crystallization, for example from an organic solvent, preferably a ketone, typically acetone, an alkanol, typically isopropanol, or a mixture thereof or a mixture of one or two of them with water, to obtain a product with a high degree of chemical and optical purity, in both cases, equal to or greater than 99%, typically equal to or greater than 99.5%. In particular, the Pitavastatin salt with (R) -naphthylethyl amine of formula (IX) having this degree of purity can be converted into another Pitavastatin salt, for example in the calcium salt, with known methods. ; A Pitavastatin salt thus obtained using a salt of formula (IX) with such purity similarly presents a high degree of both chemical and optical purity, in both cases, equal to or greater than 99%, typically equal to or greater than 99, 5%. This conversion can be carried out, for example, by treating an aqueous solution of the salt of formula (IX) with an acid, to obtain by extraction with an organic solvent, for example an alkyl ester of a carboxylic acid, in particular acetate of ethyl, an ether, in particular t-butyl methyl ether, a solution of Pitavastatin, which can optionally be converted into another pharmaceutically acceptable salt, for example the calcium salt. An acid can be for example an aqueous solution of an organic or mineral acid, preferably an aqueous solution of HCl. ; A further object of the invention is therefore a purification process of Pitavastatin, or one of its salt, comprising the conversion of Pitavastatin or one of its salt, into a salt of Pitavastatin with (R) -naphthylethyl amine, the isolation in crystalline form, and the subsequent conversion into Pitavastatin or another salt thereof. The salt of Pitavastatin with (R) -naphthylethyl amine of formula (IX), in particular in solid form, preferably in crystalline form, is a new compound and constitutes a further object of the invention. The compounds of formula (III) can be prepared as described for example in Organic Process Research & Development 2001, 5, 519-527, for the case of fluvastatin and are commercially available. ; A compound of formula (IV), or a salt thereof, can be prepared starting from a compound of formula (V), or a salt thereof, by selective removal of the ester group R2,; O OOP OO OOP O ;; R2 R1 R1; OO H O <O> ;; (V) (IV); where P is as defined above; R2 is a C1-C12alkyl, cycloalkyl, aryl, or aryl-C1-C12alkyl group; and R1 is as defined above. In a compound of formula (V), when R1 is different from hydrogen, R1 and R2 can be the same or different. Preferably R2à benzyl and R1à ̈ methyl. Preferably R2 can be removed to give the free carboxylic acid of formula (IV) in a selective manner with respect to the protection P and possibly to the R1 group when this is different from hydrogen. For example, according to a preferred aspect of the invention, when in a compound of formula (V) R1à ̈ methyl, R2à benzyl, the removal of the benzyl group can be carried out by catalytic hydrogenation with the methods known to the person skilled in the art. € ™ art. The compounds of formula (IV) and (V), or a salt thereof, are new and constitute a further object of the present invention. A further object of the invention is the use of a compound of formula (IV) in a process for the preparation of a statin of formula (I). ; A compound of formula (V), or a salt thereof, can be prepared by reaction between a compound of formula (VI), or a salt thereof, and a compound of formula (VII), or a salt thereof, in the presence of a solvent ;;; O O O OP OOO <OP O>; R2 R1 R2 R1; O OHXOO O ;; (VI) (VII) (V); where P, R1 and R2 are as defined above and X is a leaving group, preferably a halogen, in particular chlorine, or imidazole. The solvent is preferably an ethereal solvent, for example tetrahydrofuran or apolar aprotic, typically toluene. ; Malonic acid monoester (VI) where R2, being defined as above, is preferably benzyl can first be converted into its magnesium salt by treatment with at least 2 equivalents of a Grignard reagent, for example isopropylmagnesium chloride, and then reacted with a compound of formula (VII), to yield, after spontaneous decarboxylation, the compound of formula (V). ; A compound of formula (VI) is commercially available or can be prepared with known methods for monoesterification of malonic acid. ; A compound of formula (VII), or a salt thereof, can in turn be prepared by activating the carboxyl function of a compound of formula (VIII), or a salt thereof, ;;; O OP O O OP O; R1 R1 ;; H OOX O ;; (VIII) (VII); where P, R1 and X are as defined above. When X is chlorine, the activation of the carboxylic acid of formula (VIII) can be carried out using for example thionyl chloride, when X is imidazole, for example carbonyldiimidazole can be used. ; A compound of formula (VIII) is commercially available or can be prepared for example by chemical desymmetrization of hydroxyglutaric anhydride protected with the protective group P, previously defined, as reported for example in J. Org. Chem. 1994, 59, 7849-7854, or enzymatic desymmetry, as reported in Angew. Chem. Int. Ed. 2005, 44, 362-365. ; A salt of a compound of formula (II), (IV), (V), (VI), (VII) or (VIII) is for example a pharmaceutically acceptable salt. ; If desired, a compound of formula (I), (II), (IV), (V), (VI), (VII) or (VIII) can be converted into a salt thereof, or a salt of a compound of formula (I), (II), (IV), (V), (VI), (VII) or (VIII) can be converted into free acid, according to known methods. ; The following examples illustrate the invention. ; Example 1. Synthesis of a compound of formula (VII): (R) -methyl 3- (tert-butyldimethylsilyloxy) -5- (1H-imidazol-1-yl) -5-oxopentanoate; A solution of (S) - benzyl mandelate (6 g, 24.79 mmol) in anhydrous THF (100 mL) in N2 atmosphere is brought to -78 ° C and a 2.5 M BuLi solution in hexane (10.9 mL, 27.27 mmol) is added drop by drop. The mixture is kept under stirring at -78 ° C for 20 minutes, then a solution of 3 - [(tert-butyldimethylsilyl) oxy] pentanedioic anhydride (6.05 g, 24.79 mmol) in anhydrous THF (25 mL) and the resulting mixture is kept under magnetic stirring at -78 ° C for 2 hours. The reaction is acidified with 1 N HCl and extracted with AcOEt. The organic phase is washed with 1 N HCl and brine, dried over Na2SO4, filtered and evaporated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 4: 1) and the product obtained is dissolved in anhydrous THF (150 ml) and treated with dimethyl dicarbonate (2.47 mL, 23 , 04 mmol) and DMAP (201 mg, 1.65 mmol). The mixture is kept stirred at 25 ° C for 20 minutes, then the solvent is evaporated under reduced pressure and the residue purified by flash chromatography (eluent: EtPet / AcOEt 9: 1). The colorless oil obtained is dissolved in ethyl acetate (90 mL) and the resulting solution is kept under stirring in an H2 atmosphere in the presence of 20% Pd (OH) 2 / C (652 mg, 0.93 mmol) at 20 ° C for 10 hours. The mixture is filtered on perlite and the solvent is evaporated under reduced pressure. The raw reaction product (containing phenylacetic acid as an impurity) is solubilized in anhydrous THF in an N2 atmosphere and treated with 1,1â € ™ -carbonyldiimidazole (3.02 g, 18.68 mmol). The mixture is left under stirring at 20 ° C for 3 hours. The solvent is evaporated under reduced pressure and the residue is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 30:70). 2.85 g of a light yellow oil are obtained (yield 41.6% over 4 passages). ;; <1> H NMR (400 MHz, CDCl3) Î ́: 8.06 (s, 1H); 7.37 (s, 1H), 6.92 (s, 1H); 4.54-5.52 (m, 1H); 3.53 (s, 3H); 3.04-2.96 (s, 2H); 2.50-2.40 (m, 2H); 0.62 (s, 9H); -0.1 (s, 3H), -0.21 (s, 3H). <13> C NMR (100 MHz, CDCl3) Î ́: 170.36; 167.19; 136.06; 130.47; 115.68; 65.69; 51.11; 42.35; 41.41; 24.95; 17.17; -5.58; -5.79. MS (ES <+>): m / z 349 [M + Na] <+>. ; Example 2 Synthesis of a compound of formula (V): (R) -1-benzyl 7-methyl 5- (tert-butyldimethylsilyloxy) -3-oxoheptanediumate; Isopropyl magnesium chloride (2 M in THF, 15.10 mL, 30 , 20 mmol) is added dropwise to a solution of monobenzyl malonate (2.93 g, 15.10 mmol) in anhydrous THF (28 mL) maintained at 0 ° C in an N2 atmosphere. After 30 minutes at 0 ° C the solution is heated to 50 ° C for 30 minutes, then cooled again to 0 ° C and a solution of (VII) prepared as in Example 1 (4.1 g, 12, 58 mmol) in anhydrous THF (28 mL). The mixture is left under stirring at 20 ° C for 12 hours, then 1 M HCl is added and extracted with Et2O. The organic phase is washed with 1 M HCl and brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 9: 1). 3.74 g of a yellow oil are obtained with a yield of 73%. ;; <1> H NMR (400 MHz, CDCl3) Î ́: 7.32-7.28 (m, 5H); 5.12 (s, 2H); 4.57-4.52 (m, 1H); 3.60 (s, 3H); 3.47 (s, 2H); 2.75 (d, J = 6.2H); 2.51-2.37 (m, 2H); 0.81 (s, 9H); 0.03 (d, J = 10, 3H). <13> C NMR (100 MHz, CDCl3) Î ́: 200.23; 170.76; 166.24; 134.93; 128.14; 127.95; 127.83; 127.66; 66.61; 65.06; 51.04; 49.89; 49.54; 41.65; 25.26; 17.42; -5.29; -5.45. MS (ES <+>): m / z 431 [M + Na] <+>. ; Example 3. Synthesis of a compound of formula (VII): (R) -methyl 3- (tert-butyldimethylsilyloxy) -5- (1H-imidazol-1-yl) -5-oxopentanoate; A solution of (R) - benzyl mandelate (49.4 g, 204 mmol) in anhydrous THF (500 mL) in an N2 atmosphere is brought to -78 ° C and a solution of Hexyllithium 2.3 M in THF (97 mL, 224 mmol, 1.1 equivalents) is drop by drop addition. The mixture is stirred at -78 ° C for 30 minutes, then a 3 - [(tert-butyldimethylsilyl) oxy] pentanedioic anhydride solution (50.0 g, 204 mmol) in anhydrous THF (100 mL) is added and the resulting mixture is kept under magnetic stirring at -78 ° C for 2 hours. The reaction heated to â € “15 ° C, is acidified with 1 N HCl and extracted with AcOEt. The organic phase is washed with 1 N HCl and brine, dried over Na2SO4, filtered and evaporated under reduced pressure. The raw reaction product is dissolved in cyclohexane (250 ml) and kept under stirring at 20 ° C for 16h. The precipitated solid is filtered, washed with cyclohexane (50 ml) and the organic solution is evaporated under reduced pressure. The oil obtained is dissolved in MeOH (150 mL) and the solution is added to a solution of MeONa 25% in MeOH (370 ml) kept at 7 ° C under stirring in an N2 atmosphere. Once the addition is complete, it is left to react for 1 hour at 7 ° C, the reaction mixture is poured into a 6.5% HCl solution (1000ml) and it is left to react for 10 minutes. It is extracted with AcOEt, the organic phase is washed with brine, anhydrified on Na2SO4, filtered and evaporated under reduced pressure. The resulting oil is dissolved in toluene, extracted with a solution of K2CO35% in water and the aqueous phase is washed with toluene and treated with HCl 37%. The phases are separated and the aqueous phase is extracted with AcOEt, washed with brine, dried over Na2SO4 and evaporated under reduced pressure. The raw reaction product is solubilized in toluene in an N2 atmosphere and treated with 1,1â € ™ -carbonyldiimidazole (18.8 g, 115.6 mmol, 1.1 equivalent). The mixture is left under stirring at 20 ° C for 2 hours and then at 5 ° C for 1 hour. The solid in suspension is filtered and the toluene solution thus obtained is used directly in the next step as described in Example 2.; Example 4. Synthesis of a compound of formula (IV): Acid (R) -5- (terbuthyldimethylsilyloxy) - 7-methoxy-3,7-dioxoheptanoic. ; A solution of compound (V) prepared as in example 2 (1.1 g, 2.70 mmol) in AcOEt (30 mL) is kept under stirring in an H2 atmosphere in the presence of 10% Pd / C (287 mg, 0 , 27 mmol) at room temperature for 2 hours. The mixture is filtered on perlite and the solvent is evaporated under reduced pressure at 30 ° C. The reaction crude (885 mg) is used without further purification in the subsequent preparation. ; MS (ES <+>): m / z 341 [M + Na] <+>. Example 5. Synthesis of a compound of formula (II): (R, E) -methyl 3- (tert-butyldimethylsilyloxy) -7- (2-cyclopropyl-4 - (- 4-fluorophenyl) quinolin-3-yl) -5-oxoept-6-enoate; The compound (IV) obtained as in Example 4 (885 mg, 2.78 mmol) is solubilized in DMF (4 mL) in an atmosphere of N2 and 2-cyclopropyl-4- (4 -fluorophenyl) quinoline-3-carbaldehyde (271 mg, 0.93 mmol) and piperidine (46 µL, 0.46 mmol). The mixture is left under magnetic stirring at room temperature for 15 minutes, then it is heated to 40 ° C for 10 hours. The solution is diluted with AcOEt and washed with 1 N HCl and brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 9: 1). 280 mg of a light yellow oil are obtained with a yield of 55%. ;; <1> H NMR (400 MHz, CDCl3) Î ́: 7.93 (d, J = 8, 1H); 7.63-7.57 (m, 2H); 7.36-7.29 (m, 2H); 7.19-7.16 (m, 4H); 6.31 (d, J = 16.1H); 4.57-4.54 (m, 1H); 3.63 (s, 3H); 2.74-2.62 (m, 2H); 2.50-2.38 (m, 2H); 2.34-2.30 (m, 1H); 1.38-1.36 (m, 2H); 1.05-1.03 (m, 2H); 0.79 (s, 9H); 0.03 (s, 3H); -0.02 (s, 3H). <13> C NMR (100 MHz, CDCl3) Î ́: 196.80; 170.89; 163.40; 160.93; 159.51; 146.96; 145.57; 139.70; 133.72; 131.86; 131.27; 131.21; 129.35; 128.57; 126.63; 125.80; 125.46; 125.25; 115.39; 115.18; 65.47; 51.03; 47.61; 41.95; 25.23; 17.43; 15.89; 10.23; 10.16; -5.20; -5.42. MS (ES <+>): m / z 570 [M + Na] <+>. Example 6. Synthesis of a compound of formula (I): (3R, 5S, E) -7- (2cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl) -3,5-dihydroxyept-6-enoic calcium salt (Pitavastatin calcium salt); A solution of (II) prepared as in Example 5 (735 mg, 1.34 mmol) in MeOH (12 mL) is brought to 0 ° C and HCl 2 M (1 mL, 2.01 mmol) drop by drop. The mixture is left under stirring at 20 ° C for 4 hours. The solution is diluted with AcOEt and washed with a saturated solution of NaHCO3, dried over Na2SO4, filtered and concentrated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 3: 2). A solid is obtained which is dissolved in anhydrous THF (1.5 mL) and MeOH (1.5 mL). The solution is then added dropwise to a suspension of NaBH4 (55 mg, 1.45 mmol) and 1 M diethylmethoxyborane in THF (1.04 mL, 1.04 mmol) in anhydrous THF (6 mL) maintained at -78 ° C. The reaction mixture is kept stirred at -78 ° C and after 30 min it is treated with a saturated solution of NaHCO3 and extracted with AcOEt. The organic phase is washed with water, anhydrified on Na2SO4, filtered and concentrated under reduced pressure. The residue obtained is dissolved in AcOEt (6 mL) and the solution is heated to 50 ° C. A 35% aqueous solution of H2O2 (286 µL, 3.33 mmol) is added and the mixture is left under magnetic stirring at 50 ° C for 1 hour. Then brine (6 mL) is added and left at 50 ° C for 20 minutes; finally an aqueous solution of Na2SO3 (223 mg in 6 mL of H2O) is added and the mixture is kept under stirring at 50 ° C for a further 5 minutes. The organic phase is washed with water, anhydrified on Na2SO4, filtered and concentrated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: EtPet / AcOEt 3: 2). A yellow solid is obtained which is dissolved in MeOH (7 mL) and treated with 1 M NaOH. The mixture is kept under stirring at 20 ° C for 2 hours, then the solvent is evaporated under reduced pressure at 40 ° C. The residue is dissolved in H2O and treated dropwise with an aqueous solution of CaCl2 (103 mg, 0.93 mmol). A white solid is instantly formed, which is kept under stirring at 20 ° C for 10 hours. The precipitate is filtered, washed with H2O and dried under reduced pressure at 40 ° C for 4 hours. 348 mg of pitavastatin calcium salt are obtained as a white solid. ;; <1> H NMR (400 MHz, DMSO) Î ́: 7.80 (d, J = 8, 1H); 7.58 (t, J = 8.1H); 7.36-7.20 (m, 6H); 6.44 (d, J = 16.1H); 6.03 (bs, 1H); 5.56 (dd, J1 = 5, J2 = 16, 1H); 4.86 (bs, 1H); 4.11-4.07 (m, 1H); 3.58-3.56 (s, 1H); 2.04-2.00 (m, 1H); 1.89-1.83 (m, 1H); 1.38-1.33 (m, 1H); 1.19-1.04 (m, 2H); 1.00-0.97 (m, 2H); 0.83-0.77 (m, 2H). <13> C NMR (100 MHz, DMSO) Î ́: 178.13; 163.04; 160.59; 160.50; 145.94; 143.68; 142.28; 133.12; 132.19; 131.89; 129.67; 128.81; 128.39; 125.71; 123.10; 115.36; 115.15; 68.85; 65.67; 44.50; 43.79; 15.38; 10.75. MS (ES <+>): m / z 444 [M + Na] <+>. ; Example 7. Synthesis of a compound of formula (IV): Acid (R) -5- (terbuthyldimethylsilyloxy) -7-methoxy-3,7-dioxoheptanoic; A solution of the compound (V) prepared as in Example 2 (46, 8 g, 115 mmol) in AcOEt (1.3 L) is kept under stirring in an H2 atmosphere in the presence of 10% Pd / C (12.2 g, 5.75 mmol) at room temperature for 3 hours. The mixture is filtered on perlite and the solvent is evaporated under reduced pressure at 30 ° C. The reaction crude (36.6 g) is used without further purification in the subsequent preparation. ; MS (ES <+>): m / z 341 [M + Na] <+>. Example 8. Synthesis of a compound of formula (II): (R, E) -methyl 3 (tert-butyldimethylsilyloxy) -7- (2-cyclopropyl-4 - (- 4-fluorophenyl) quinolin-3-yl) - 5-oxoept-6-enoate; The compound (IV) obtained as in Example 7 (36.6 g, 115 mmol) is solubilized in toluene (550 mL) in an N2 atmosphere and 2-cyclopropyl-4- (4- fluorophenyl) quinoline-3-carbaldehyde (100.5 g, 345 mmol, 3 equivalents), 4 Ã… (70 g) molecular sieves and β-alanine (30.7 g, 345 mmol, 3 equivalents). The mixture is left under mechanical stirring at 40 ° C for 16 hours. The solution is filtered over perlite and concentrated under reduced pressure. The oil obtained is dissolved in AcOEt, washed with 1 N HCl and brine, dried over Na2SO4, filtered and concentrated at reduced pressure. Hexane (430 ml) is added to the reaction crude and the suspension is heated to 40 ° C for 3 hours and then left to cool at room temperature over a period of 16 hours. The solid is filtered, washed with hexane and the organic solution is evaporated under reduced pressure. The oil obtained is used without further purification in the subsequent preparation. Example 9. Synthesis of a compound of formula (IX): Acid (3R, 5S, E) -7- (2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl) -3,5-dihydroxyept- 6-enoic salt of (R) -NEA; A solution of (II) prepared as in Example 8 (27.9 g, 50.9 mmol) in MeOH (470 mL) is brought to 0 ° C and HCl 2 is added M (65 mL, 127.3 mmol, 2.5 equivalents) drop by drop. The mixture is left under stirring at 20 ° C for 16 hours. The organic solvent is evaporated under reduced pressure, AcOEt (500 ml) is added and the organic phase is washed with a saturated solution of NaHCO3, with brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The reaction crude is purified by flash chromatography on silica gel (eluent: toluene / AcOEt 8: 2). A solid (16.3 g, 37.6 mmol) is obtained which is dissolved in anhydrous THF (55 mL) and MeOH (55 mL). The solution is then added dropwise to a suspension of NaBH4 (2.0 g, 52.6 mmol, 1.4 equivalent) and 1 M diethylmethoxyborane in THF (38 mL, 37.6 mmol, 1 equivalent) in THF anhydrous (215 mL) maintained at -78 ° C. The reaction mixture is kept stirred at -78 ° C and after 1 hour it is treated with a saturated solution of NaHCO3 and extracted with AcOEt. The organic phase is washed with water, anhydrified on Na2SO4, filtered and concentrated under reduced pressure. The residue obtained is dissolved in AcOEt (230 mL) and the solution is heated to 50 ° C. A 35% aqueous solution of H2O2 (10.5 ml, 115.8 mmol, 3.08 equivalent) is added and the mixture is left under magnetic stirring at 50 ° C for 1 hour. Then brine (230 mL) is added and left at 50 ° C for 30 minutes; finally an aqueous solution of Na2S2O5 is added (6.6 g in 120 mL of H2O) and the mixture is kept under stirring at 50 ° C for a further 10 minutes. The organic phase is washed with brine, anhydrified on Na2SO4, filtered and concentrated under reduced pressure. The solid obtained is dissolved in MeOH (315 mL) and treated with 1 M NaOH (45 mL, 45 mmol, 1.2 equivalents). The mixture is kept under stirring at 20 ° C for 2 hours, then the organic solvent is evaporated under reduced pressure at 40 ° C. The resulting aqueous phase is washed with methyl t-butyl ether and AcOEt, treated with 1N HCl up to pH = 4.5 and extracted with dichloromethane. The organic solution is dried on Na2SO4, filtered and concentrated under reduced pressure; the residue is dissolved in acetone (40 mL) and a solution obtained by dissolving (R) -NEA (6.5 mL, 40.5 mmol, 1.1 equivalents) in acetone (18 mL) is added to this solution. At the end of the addition, the precipitation of a white solid is observed, hexane (50 mL) is added drop by drop and the suspension is left under stirring at 20 ° C for 16 hours. It is filtered and the solid is subsequently recrystallized several times from acetone and from isopropanol / water. 7.1 g of the title compound are obtained, as a white crystalline solid, having a degree of both chemical and optical purity, in both cases, equal to 99.5%. ;; <1> H NMR (300 MHz, CDCl3) Î ́: 7.97 (d, 1H); 7.95 (d, 1H); 7.82 (d, 1H); 7.76 (d, 1H); 7.64 (d, 1H); 7.61-7.43 (m, 5H); 7.33-7.29 (m, 2H); 7.19-7.08 (m, 4H); 6.55 (d, 1H); 5.54-5.47 (m, 4H); 5.11 (dd, 1H); 4.24-4.14 (m, 1H); 3.82-3.68 (m, 1H); 2.47-2.36 (m, 1H); 1.96 (d, 2H); 1.66 (d, 3H); 1.38-1.19 (m, 3H); 1.15-0.97 (m, 3H). Example 10. Synthesis of a compound of formula (I): (3R, 5S, E) -7- (2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl) -3,5-dihydroxyept-6 -enoic calcium salt (Pitavastatin calcium salt); The compound of formula (IX) obtained as in Example 9 (7.1 g, 12 mmol) is suspended in a biphasic water / AcOEt mixture (30ml / 90 ml). 1 N HCl is added up to pH = 4.1. The phases are separated and the aqueous phase is extracted with AcOEt; water (150 ml) and 30% NaOH are added to the combined organic phases up to pH = 10. The phases are separated and the aqueous phase is washed with AcOEt and methyl t-butyl ether. An aqueous solution of CaCl2 * 2H2O (530 mg, 3.6 mmol, 0.6 equivalent) is added to the aqueous solution by slow dripping. A white solid is instantly formed, which is kept under stirring at 20 ° C for 16 hours. The precipitate is filtered, washed with H2O and dried under reduced pressure at 40 ° C for 4 hours. 3.4 g (7.8 mmoles) of Pitavastatin calcium salt are obtained as a white solid.

Claims (10)

RIVENDICAZIONI 1. Procedimento per la preparazione di un composto di formula (II), o un suo sale, O OP O R1 <A>O (II) dove A à ̈ il gruppo residuo di una statina, P à ̈ un gruppo protettivo, e R1à ̈ idrogeno, un gruppo C1-C12alchile opzionalmente sostituito, cicloalchile, arile, oppure un gruppo arile-C1-C12alchile opzionalmente sostituito; comprendente la condensazione di una aldeide di formula (III) <A CHO>(III) dove A à ̈ come prima definito, con un composto β-chetoacido di formula (IV), o un suo sale, O OOP O R1 H O<O> (IV) dove P e R1sono come prima definiti, in presenza di un amminoacido come catalizzatore, e, se necessario, in un solvente, e la successiva decarbossilazione. CLAIMS 1. Process for the preparation of a compound of formula (II), or a salt thereof, O OP O R1 <A> O (II) where A is the residual group of a statin, P is a protecting group, and R1 is hydrogen, an optionally substituted C1-C12alkyl group, cycloalkyl, aryl, or an optionally substituted aryl-C1-C12alkyl group; comprising the condensation of an aldehyde of formula (III) <A CHO> (III) where A is as defined above, with a β-ketoacid compound of formula (IV), or a salt thereof, O OOP O R1 H O <O> (IV) where P and R1 are defined as before, in the presence of an amino acid as catalyst, and, if necessary, in a solvent, and the subsequent decarboxylation. 2. Un procedimento in accordo alla rivendicazione 1, dove il catalizzatore amminoacido à ̈ un α-amminoacido, β-amminoacido, γ-amminoacido, Î ́−amminoacido, oppure un ε-amminoacido; dove detto α-amminoacido può avere in catena laterale un residuo di origine naturale o sintetica. 2. A process according to claim 1, where the amino acid catalyst is a Î ± -amino acid, β-amino acid, γ-amino acid, Î ́∠amino acid, or a ε-amino acid; where said Î ± -amino acid may have a residue of natural or synthetic origin in the side chain. 3. Un procedimento in accordo alla rivendicazione 2, dove il catalizzatore amminoacido à ̈ scelto nel gruppo comprendente glicina, α-alanina, valina, leucina, isoleucina, serina, treonina, fenilalanina, tirosina, prolina, acido aspartico, asparagina, acido glutammico, acido L,α-amminoadipico, β-alanina, acido γ-amminobutirrico, acido Î ́-amminovalerico, acido ε-amminocapronico, taurina e L-fenilserina. 3. A process according to claim 2, where the amino acid catalyst is selected from the group comprising glycine, Î ± -alanine, valine, leucine, isoleucine, serine, threonine, phenylalanine, tyrosine, proline, aspartic acid, asparagine, glutamic acid , L, Î ± -aminoadipic acid, β-alanine, γ-aminobutyric acid, Î ́-aminovaleric acid, ε-aminocapronic acid, taurine and L-phenylserine. 4. Un procedimento in accordo alla rivendicazione 3, dove il catalizzatore amminoacido à ̈ scelto nel gruppo comprendente glicina, α-alanina, β-alanina, acido Î ́-amminovalerico e’acido ε-amminocapronico; preferibilmente β-alanina. 4. A process according to claim 3, wherein the amino acid catalyst is selected from the group comprising glycine, Î ± -alanine, β-alanine, Î ́-aminovaleric acid and ε-aminocapronic acid; preferably β-alanine. 5. Un procedimento in accordo alla rivendicazione 1, dove il solvente à ̈ scelto tra un solvente polare aprotico; acetonitrile; dimetilsolfossido; un etere; un solvente clorurato; un estere; un solvente apolare aprotico; e un solvente polare protico; oppure una miscela di due o più, preferibilmente di due o tre, di detti solventi. 5. A process according to claim 1, where the solvent is selected from an aprotic polar solvent; acetonitrile; dimethyl sulfoxide; an ether; a chlorinated solvent; an ester; an apolar aprotic solvent; and a polar protic solvent; or a mixture of two or more, preferably two or three, of said solvents. 6. Un procedimento in accordo alla rivendicazione 1, comprendente inoltre la conversione di un composto di formula (II), o un suo sale, in una statina di formula (I), o un suo sale, OH OH O <A>OH (I) dove A à ̈ il gruppo residuo di una statina. 6. A process according to claim 1, further comprising the conversion of a compound of formula (II), or a salt thereof, into a statin of formula (I), or a salt thereof, OH OH O <A> OH (I) where A is the residual group of a statin. 7. Procedimento per la purificazione di Pitavastatina o un suo sale, comprendente la conversione di Pitavastatina, o un suo sale, in un sale di Pitavastatina con (R)-naftiletil ammina, l’isolamento in forma cristallina e la successiva conversione in Pitavastatina o in un altro suo sale. 7. Process for the purification of Pitavastatin or one of its salt, including the conversion of Pitavastatin, or one of its salt, into a salt of Pitavastatin with (R) -naphthylethyl amine, the isolation in crystalline form and the subsequent conversion into Pitavastatin or in another of its rooms. 8. Procedimento in accordo alla rivendicazione 7, dove il sale di Pitavastatina in forma purificata à ̈ il sale di calcio. 8. Process according to claim 7, wherein the Pitavastatin salt in purified form is the calcium salt. 9. Sale di Pitavastatina con (R)-naftiletil ammina in forma solida, preferibilmente in forma cristallina. 9. Pitavastatin salt with (R) -naphthylethyl amine in solid form, preferably in crystalline form. 10. Sale di Pitavastatina con (R)-naftiletil ammina, in accordo alla rivendicazione 9, avente un grado di purezza sia chimica che ottica, in entrambi i casi, uguale o superiore al 99%, preferibilmente uguale o superiore al 99,5%.10. Pitavastatin salt with (R) -naphthylethyl amine, according to claim 9, having a degree of both chemical and optical purity, in both cases, equal to or greater than 99%, preferably equal to or greater than 99.5% .
IT000397A 2010-04-30 2011-03-14 PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES ITMI20110397A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IT000397A ITMI20110397A1 (en) 2011-03-14 2011-03-14 PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES
EP11162992A EP2383260A3 (en) 2010-04-30 2011-04-19 Process for the preparation of statins
US13/092,171 US20110269962A1 (en) 2010-04-30 2011-04-22 Process for preparing statins
JP2011100741A JP2011236212A (en) 2010-04-30 2011-04-28 Process for preparing statin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000397A ITMI20110397A1 (en) 2011-03-14 2011-03-14 PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES

Publications (1)

Publication Number Publication Date
ITMI20110397A1 true ITMI20110397A1 (en) 2012-09-15

Family

ID=43977066

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000397A ITMI20110397A1 (en) 2010-04-30 2011-03-14 PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES

Country Status (1)

Country Link
IT (1) ITMI20110397A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087112A1 (en) * 2002-04-09 2003-10-23 Cls Laboratories, Inc. Chiral intermediate and process for the production thereof
US20090275752A1 (en) * 2006-05-03 2009-11-05 Manne Satyanarayana Reddy Novel Process for Statins and its Pharmaceutically Acceptable Salts Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087112A1 (en) * 2002-04-09 2003-10-23 Cls Laboratories, Inc. Chiral intermediate and process for the production thereof
US20090275752A1 (en) * 2006-05-03 2009-11-05 Manne Satyanarayana Reddy Novel Process for Statins and its Pharmaceutically Acceptable Salts Thereof

Similar Documents

Publication Publication Date Title
RU2335500C2 (en) Method of production of mevalonic acid derivatives inhibiting hmg-coa reductase
US20110269962A1 (en) Process for preparing statins
EP1833798B1 (en) A process for the preparation of (s)-(+)-10,11-dihydro-10-hydroxy-5h-dibenz[b,f]azepine-5-carboxamide
EP2914574B1 (en) New process
IL170829A (en) Process for the production of 9-cis retinoic acid
JP4303792B2 (en) Method for producing quinolone derivative
WO2009024323A2 (en) Process for preparing pyrimidine derivatives
JPH083138A (en) Cleavage reaction with ozone
US20030232989A1 (en) Process for the preparation of specific aromatic aldehydes
ITMI20110397A1 (en) PROCEDURE FOR THE PREPARATION OF PYAVASTATIN AND ANALOGUES
JPWO2014051077A1 (en) Method for producing high purity nitrogen-containing heterocyclic compound
JP4891068B2 (en) Process for producing 1,2-cis-2-fluorocyclopropane-1-carboxylic acid esters
US6414180B1 (en) Synthesis of chiral β-amino acids
ITMI20100753A1 (en) PROCEDURE FOR THE PREPARATION OF STATINES
EP1375467B1 (en) 2-Bromomethyl-6-methyl-benzoic acid and a process for the preparation thereof
JPH02290830A (en) Production of glutaric acid derivative
JP2009091290A (en) Method of producing dibenzoxepin compound
JP2958835B2 (en) Method for producing 4- (1-carboxyalkyl) azetidin-2-one derivative
KR100320772B1 (en) Process for Preparation of (S)-Benzoxazine Derivatives and Process for Racemization of (R)-Benzoxazine Derivatives
KR100466797B1 (en) Benzoazepin derivatives and process for production thereof using indium
KR20010090895A (en) New Synthetic Method for the Intermediate of Loxoprofen
KR19990080447A (en) Stereoselective synthesis of oxazoline derivatives equivalent to beta-amino-alpha-hydroxy acids
JP2017526750A (en) Novel process for the preparation of spiro [2.5] octane-5,7-dione and spiro [3.5] nonane-6,8-dione
JPWO2006126730A1 (en) Bicyclic pyrimidine compound and method for producing the same
JP2011074073A (en) Method for production of 2-(1-benzothiophen-5-yl) ethanol