ITMI20091764A1 - PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON - Google Patents

PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON Download PDF

Info

Publication number
ITMI20091764A1
ITMI20091764A1 IT001764A ITMI20091764A ITMI20091764A1 IT MI20091764 A1 ITMI20091764 A1 IT MI20091764A1 IT 001764 A IT001764 A IT 001764A IT MI20091764 A ITMI20091764 A IT MI20091764A IT MI20091764 A1 ITMI20091764 A1 IT MI20091764A1
Authority
IT
Italy
Prior art keywords
titanium dioxide
process according
carbon
organic compound
comprised
Prior art date
Application number
IT001764A
Other languages
Italian (it)
Inventor
Luca Bottalico
Luigi Cassar
Gian Luca Guerrini
Nicola Pernicone
Francesco Pinna
Valentina Trevisan
Original Assignee
Italcementi Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Italcementi Spa filed Critical Italcementi Spa
Priority to ITMI2009A001764A priority Critical patent/IT1396367B1/en
Priority to PCT/EP2010/006242 priority patent/WO2011045031A1/en
Publication of ITMI20091764A1 publication Critical patent/ITMI20091764A1/en
Application granted granted Critical
Publication of IT1396367B1 publication Critical patent/IT1396367B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

DESCRIZIONE DESCRIPTION

CAMPO DELL’INVENZIONE FIELD OF INVENTION

La presente invenzione riguarda il campo dei fotocatalizzatori e dei metodi per regolare e migliorare la loro capacità di abbattimento di inquinanti presenti nell’atmosfera. The present invention relates to the field of photocatalysts and methods for regulating and improving their abatement capacity of pollutants present in the atmosphere.

TECNICA NOTA TECHNIQUE NOTE

Il biossido di titanio, nella sua forma cristallina di anatasio, à ̈ un noto agente fotocatalitico. In presenza di luce catalizza rossidazione di contaminanti vari presenti nell’atmosfera, in particolare idrocarburi aromatici, favorendone il processo di abbattimento (v. ad es. Int. RILEM Seminar on Photocatalysis, Firenze, 8-9 Ott. 2007, Photocatalytic and Surface Abatement of Organic Hydrocarbons by Anatase). Titanium dioxide, in its crystalline form of anatase, is a well-known photocatalytic agent. In the presence of light it catalyzes the oxidation of various contaminants present in the atmosphere, in particular aromatic hydrocarbons, favoring their abatement process (see, for example, Int. RILEM Seminar on Photocatalysis, Florence, 8-9 Oct. 2007, Photocatalytic and Surface Abatement of Organic Hydrocarbons by Anatase).

Un limite caratteristico all’azione fotocatalitica del biossido di titanio à ̈ che esso utilizza solamente la componente ultravioletta della luce solare (circa il 4% della radiazione) e pertanto risulta fotocataliticamente poco attivo, soprattutto negli ambienti in cui la luce solare à ̈ ridotta. A characteristic limit to the photocatalytic action of titanium dioxide is that it uses only the ultraviolet component of sunlight (about 4% of the radiation) and therefore is photocatalytically not very active, especially in environments where sunlight is reduced. .

Per risolvere questo problema, si à ̈ cercato di modificare il biossido di titanio mediante dopaggio con altri elementi, rendendolo in grado di utilizzare la parte più consistente della luce solare cioà ̈ lo spettro della luce visibile, fra 400 e 700 nm. A questo scopo il biossido di titanio à ̈ stato dopato con ioni metallici quali lantanio e ferro, oppure con azoto (ad es. EP1 178011 e EP 1254863). I vantaggi conseguiti sono peraltro modesti. Un’altra possibilità à ̈ quella di dopare il biossido di titanio con carbonio; tuttavia i relativi metodi di dopaggio (v. US 2005/0226761, Kronos Inc.) risultano complessi e costosi; in particolare, essi richiedono di mescolare intimamente il biossido di titanio con composti contenenti carbonio, ad es. zuccheri; la miscela viene poi sottoposta a dispendiosi trattamenti termici (in genere tra 250 e 400°C) in atmosfera ossidante: questi trattamenti comportano una rilevante perdita di materiale carbonioso in forma di CO2 e/o CO; il trattamento comporta inoltre una sinterizzazione del fotocatalizzatore, con forte riduzione della sua superficie specifica e, conseguentemente, deirattività fotocatalitica; al termine del trattamento il prodotto deve essere sottoposto a macinazione per poter essere utilizzato. L’eventuale mescolamento con carboni attivi ad elevata area superficiale si à ̈ rivelato insufficiente ad ottenere prodotti significativamente attivi. To solve this problem, an attempt was made to modify titanium dioxide by doping it with other elements, making it able to use the most consistent part of sunlight, ie the spectrum of visible light, between 400 and 700 nm. For this purpose, titanium dioxide has been doped with metal ions such as lanthanum and iron, or with nitrogen (eg EP1 178011 and EP 1254863). The benefits achieved are, however, modest. Another possibility is to dop the titanium dioxide with carbon; however the related doping methods (see US 2005/0226761, Kronos Inc.) are complex and expensive; in particular, they require the titanium dioxide to be intimately mixed with carbon-containing compounds, e.g. sugars; the mixture is then subjected to expensive heat treatments (generally between 250 and 400 ° C) in an oxidizing atmosphere: these treatments involve a significant loss of carbonaceous material in the form of CO2 and / or CO; the treatment also involves a sintering of the photocatalyst, with a strong reduction of its specific surface and, consequently, of the photocatalytic activity; at the end of the treatment the product must be subjected to grinding in order to be used. Any mixing with active carbons with a high surface area has proved insufficient to obtain significantly active products.

Resta quindi tuttora non soddisfatta la necessità di procedimenti di dopaggio con carbonio che siano semplici, riproducibili, efficaci e poco costosi. Vi à ̈ inoltre la necessità di ottenere biossido di titanio dopato con carbonio avente un’elevata superficie specifica ed un attività fotocatalitica forte e stabile nel tempo. Therefore, the need for carbon doping procedures that are simple, reproducible, effective and inexpensive is still not satisfied. There is also the need to obtain carbon-doped titanium dioxide with a high specific surface and a strong and stable photocatalytic activity over time.

SOMMARIO SUMMARY

Oggetto della presente invenzione à ̈ un procedimento per la preparazione di biossido di titanio dopato con carbonio, comprendente rirradiare il biossido di titanio ad una lunghezza d’onda compresa tra 300 e 400 nm, detto biossido di titanio essendo esposto ad un flusso gassoso comprendente un gas inerte ed un composto organico. Si à ̈ osservato che il biossido di titanio così trattato acquisisce un elevato e stabile titolo di carbonio; inoltre, vantaggiosamente rispetto alla tecnica nota, non si assiste ad una diminuzione di superficie specifica, ma la stessa resta sostanzialmente inalterata: à ̈ quindi possibile, partendo da un biossido di titanio con un valore di superficie specifica desiderato, ottenere in maniera riproducibile un prodotto dopato con carbonio avente lo stesso valore di superficie specifica. Si evita così di dover ricorrere a complessi procedimenti di miscelazione in fase liquida, evaporazione, essiccamento, calcinazione ad alta temperatura, macinazione, i quali, oltre ad essere poco efficaci, complicano la metodologia e la rendono molto più costosa. L’economicità complessiva del processo à ̈ inoltre accresciuta dal fatto di evitare due fasi tipiche dei sistemi noti di dopaggio, ovvero la miscelazione preliminare di biossido di titanio e composto organico, e la successiva fase di trattamento termico spinto. In particolare, nella presente invenzione l’irradiamento avviene a temperatura tipicamente bassa, ad es. temperatura ambiente, ed il consumo di energia legato all’irradiamento à ̈ decisamente inferiore a quello necessario per i trattamenti termici descritti dal'arte nota. The object of the present invention is a process for the preparation of titanium dioxide doped with carbon, comprising rirradiating the titanium dioxide at a wavelength between 300 and 400 nm, said titanium dioxide being exposed to a gaseous flow comprising an inert gas and an organic compound. It has been observed that the titanium dioxide thus treated acquires a high and stable carbon content; moreover, advantageously with respect to the known technique, there is no decrease in the specific surface, but the same remains substantially unchanged: it is therefore possible, starting from a titanium dioxide with a desired specific surface value, to obtain a reproducible product doped with carbon having the same specific surface value. This avoids having to resort to complex processes of mixing in the liquid phase, evaporation, drying, high temperature calcination, grinding, which, in addition to being ineffective, complicate the methodology and make it much more expensive. The overall cost-effectiveness of the process is also increased by the fact of avoiding two typical phases of known doping systems, namely the preliminary mixing of titanium dioxide and organic compound, and the subsequent step of high heat treatment. In particular, in the present invention the irradiation occurs at a typically low temperature, eg. ambient temperature, and the energy consumption linked to irradiation is decidedly lower than that necessary for the heat treatments described in the known art.

DESCRIZIONE DELLE FIGURE DESCRIPTION OF THE FIGURES

Figura 1: Grafico TPO (ossidazione a temperatura programmata) relativo a biossido di titanio dopato in accordo con l’invenzione. Figure 1: TPO graph (oxidation at programmed temperature) related to doped titanium dioxide according to the invention.

DESCRIZIONE DETTAGLIATA DETAILED DESCRIPTION

Il termine “biossido di titanio dopato con carbonio†identifica un biossido di titanio contenente carbonio: esso può essere presente allo stato elementare e/o in forma di sostanza organica. Il titolo di carbonio (titolo di dopaggio), viene espresso come percentuale in peso di carbonio elementare rispetto al peso del biossido di titanio dopato: esso à ̈ misurabile mediante metodologie note quali l’ossidazione a temperatura programmata, come mostrato nella parte sperimentale. Il presente procedimento à ̈ particolarmente (ancorché non esclusivamente) adatto ad ottenere un titolo di dopaggio compreso tra 0.03% e 5%, preferibilmente tra 0.3 e 3%, più preferibilmente tra 1 e 1.6%. The term â € œtitanium dioxide doped with carbonâ € identifies a titanium dioxide containing carbon: it can be present in the elementary state and / or in the form of organic substance. The carbon title (doping title) is expressed as a percentage by weight of elemental carbon with respect to the weight of the doped titanium dioxide: it can be measured using known methods such as oxidation at programmed temperatures, as shown in the experimental part. The present process is particularly (though not exclusively) suitable for obtaining a doping titer between 0.03% and 5%, preferably between 0.3 and 3%, more preferably between 1 and 1.6%.

Il biossido di titanio utilizzato come reagente di partenza può essere un qualsiasi biossido di titanio commerciale, presente almeno in parte nella forma di anatasio; à ̈ normalmente utilizzato in forma di polvere; convenientemente, presenta un valore di superficie specifica BET corrispondente a quello desiderato nel prodotto finale dopato: tale valore, dipendentemente dalle necessità, può essere scelto nel'intervallo tra 50 e 450 m<2>/g, preferibilmente tra 300 e 350 m<2>/g, ad es. 330 m<2>/g. The titanium dioxide used as starting reagent can be any commercial titanium dioxide, present at least in part in the form of anatase; It is normally used in powder form; conveniently, it has a specific BET surface value corresponding to that desired in the doped final product: this value, depending on the needs, can be chosen in the range between 50 and 450 m <2> / g, preferably between 300 and 350 m <2 > / g, e.g. 330 m <2> / g.

Il presente procedimento à ̈ risultato particolarmente utile ad ottenere biossido di titanio dopato con carbonio avente superficie specifica BET compresa tra 200 e 400 m<2>/g, preferibilmente tra 255 e 400 m<2>/g. The present process has proved particularly useful in obtaining carbon-doped titanium dioxide having a specific BET surface between 200 and 400 m <2> / g, preferably between 255 and 400 m <2> / g.

Il composto organico contenuto nel flusso gassoso (qui anche definito come composto carbonioso) può essere scelto tra quelli facilmente vaporizzabili, tali da essere convenientemente trasportati da un flusso gassoso; per il resto non vi à ̈ un limite particolare riguardo alla struttura chimica di questo composto: possono essere utilizzati ad es. idrocarburi o loro derivati eventualmente funzionalizzati con gruppi come alchile, idrossi, formile, acetile, carbossi, alcossicarbonile, arilossicarbonile, ammino, alchilammino, tio, alchiltio, ecc.: esempi di prodotti preferiti sono toluene, benzene, xilene, naftalene, loro derivati e loro miscele; un esempio particolarmente preferito à ̈ l’etilbenzene. The organic compound contained in the gaseous flow (here also defined as carbonaceous compound) can be chosen from those that can be easily vaporized, such as to be conveniently transported by a gaseous flow; for the rest there is no particular limit regarding the chemical structure of this compound: they can be used eg. hydrocarbons or their derivatives optionally functionalized with groups such as alkyl, hydroxy, formyl, acetyl, carboxy, alkoxycarbonyl, aryloxycarbonyl, amino, alkylamino, thio, alkylthio, etc .: examples of preferred products are toluene, benzene, xylene, naphthalene, their derivatives and their blends; a particularly preferred example is ethylbenzene.

Il carrier gassoso (gas vettore) utilizzato per trasportare i suddetti composti à ̈ un gas inerte, ad esempio azoto, elio, argon, ecc., o loro miscele, eventualmente miscelati con ulteriori gas; ad esempio à ̈ possibile, per comodità, utilizzare aria: tuttavia la presenza di gas reattivi (ossigeno o altri) come componenti del gas vettore non à ̈ in alcun modo indispensabile, in quanto il presente procedimento non necessita rossidazione del composto organico; in una specifica realizzazione dell’invenzione, il gas vettore à ̈ costituito esclusivamente da uno o più gas inerti. The gaseous carrier (carrier gas) used to transport the above compounds is an inert gas, for example nitrogen, helium, argon, etc., or their mixtures, possibly mixed with further gases; for example, it is possible, for convenience, to use air: however the presence of reactive gases (oxygen or others) as components of the carrier gas is in no way indispensable, as this process does not require oxidation of the organic compound; in a specific embodiment of the invention, the carrier gas consists exclusively of one or more inert gases.

La velocità del flusso gassoso può essere opportunamente scelta in funzione della quantità di titanio biossido da trattare, ad es. per quantità dell’ordine di 100-200 mg si utilizzano flussi preferibilmente compresi tra 5 e 30 cm<3>/min; evidentemente i flussi applicati e le concentrazioni di composti organici potranno essere aumentati o diminuiti, dovendo trattare quantitativi di biossido di titanio rispettivamente maggiori o minori. Ad esempio in caso di procedimenti su scala industriale, le concentrazioni di composto organico possono essere comprese tra 500 e 10000 ppm. The speed of the gaseous flow can be suitably chosen according to the quantity of titanium dioxide to be treated, eg. for quantities of the order of 100-200 mg, flows preferably between 5 and 30 cm <3> / min are used; evidently the applied fluxes and the concentrations of organic compounds can be increased or decreased, having to treat respectively higher or lower quantities of titanium dioxide. For example, in the case of processes on an industrial scale, the concentrations of organic compound can be between 500 and 10000 ppm.

Il flusso del gas vettore può essere assicurato da sistemi noti (pompe, contenitori sotto pressione, ecc.), opportunamente controllato ed eventualmente corretto mediante sistemi noti. In particolare, l’impianto di dopaggio può includere analizzatori in grado di valutare la quantità di composto carbonioso presente nel gas vettore prima e/o dopo il contatto con il biossido di titanio. Il differenziale tra le due concentrazioni, in particolare la variazione nel tempo di questo valore, à ̈ indice dell'andamento del procedimento di dopaggio: un differenziale variabile nel tempo indica che il procedimento à ̈ in corso; un differenziale stabile e diverso da zero indica che non vi à ̈ dopaggio in corso. The flow of the carrier gas can be ensured by known systems (pumps, containers under pressure, etc.), suitably controlled and possibly corrected by known systems. In particular, the doping plant may include analyzers capable of evaluating the quantity of carbonaceous compound present in the carrier gas before and / or after contact with titanium dioxide. The difference between the two concentrations, in particular the variation over time of this value, is an indication of the progress of the doping procedure: a time-varying differential indicates that the procedure is in progress; a stable, non-zero differential indicates that there is no doping in progress.

La modalità di contatto tra il gas ed il biossido di titanio non à ̈ in sé determinante e può essere opportunamente variata con soluzioni reattoristiche ben note agli esperti del ramo. The mode of contact between the gas and the titanium dioxide is not decisive in itself and can be suitably varied with reactor solutions well known to those skilled in the art.

Un aspetto importante del presente procedimento à ̈ lirradiamento del biossido di titanio, il quale deve avvenire contemporaneamente al flusso di composto carbonioso sullo stesso. L'irradiamento à ̈ risultato importante per ottenere un adeguato dopaggio del biossido di titanio, ottenendo un titolo di dopaggio consistente e stabile. L’irradiamento à ̈ effettuato in una fascia specifica della luce ultravioletta, quella compresa tra le lunghezze d’onda di 300 e 400 nm. A tale scopo si utilizzano lampade di adeguata potenza, poste ad un’adeguata distanza dal biossido di titanio, ad es. tra 5 e 25 cm o anche immerse nel medesimo. L’intensità di irradiamento sul biossido di titanio à ̈ preferibilmente compresa tra 10 e 1000 W/m<2>. An important aspect of the present process is the irradiation of titanium dioxide, which must occur simultaneously with the flow of carbonaceous compound thereon. The irradiation was important for obtaining an adequate doping of the titanium dioxide, obtaining a consistent and stable doping titer. The irradiation is carried out in a specific band of ultraviolet light, the one between the wavelengths of 300 and 400 nm. For this purpose, lamps of adequate power are used, placed at an adequate distance from titanium dioxide, eg. between 5 and 25 cm or even immersed in the same. The intensity of irradiation on titanium dioxide is preferably between 10 and 1000 W / m <2>.

La temperatura di trattamento, cioà ̈ quella dell’ambiente di reazione e del biossido di titanio, non à ̈ determinante; essa può essere ad es. inferiore a 50°C, includendo, convenientemente, la temperatura ambiente. Intervalli di temperatura utili sono ad es. 10-50°C, oppure 20-40°C, ecc. La temperatura di reazione può essere controllata termo statando il reattore entro cui avviene il contatto tra biossido di titanio e gas vettore; la miscela gassosa flussata à ̈ utilizzata in una fascia di temperatura tale che la temperatura nel reattore si mantenga nellintervallo desiderato. The treatment temperature, ie that of the reaction environment and of the titanium dioxide, is not decisive; it can be eg. below 50 ° C, conveniently including the ambient temperature. Useful temperature ranges are e.g. 10-50 ° C, or 20-40 ° C, etc. The reaction temperature can be controlled by thermally controlling the reactor within which the contact between titanium dioxide and carrier gas occurs; the fluxed gaseous mixture is used in a temperature range such that the temperature in the reactor is maintained in the desired range.

Il procedimento viene eseguito in una quantità di tempo adeguata, ad es. tra 100 e 400 minuti, fino a raggiungere il titolo di dopaggio desiderato. Il biossido di titanio dopato secondo l’invenzione presenta un’attività fotocatalitica superiore rispetto a quella conferita dal biossido di titanio C-dopato secondo la tecnica nota. Tale proprietà, sfruttata per la preparazione di prodotti e manufatti cementizi ad attività fotocatalitica prolungata, à ̈ oggetto di domanda co-pendente a nome della Richiedente. The procedure is carried out in an adequate amount of time, eg. between 100 and 400 minutes, until the desired doping title is reached. The doped titanium dioxide according to the invention has a higher photocatalytic activity than that conferred by the C-doped titanium dioxide according to the known technique. This property, exploited for the preparation of cementitious products and products with prolonged photocatalytic activity, is the subject of a co-pending application in the name of the Applicant.

L’invenzione viene qui illustrata a titolo non limitativo mediante i seguenti esempi. The invention is illustrated here without limitation by means of the following examples.

PARTE SPERIMENTALE EXPERIMENTAL PART

Esempio 1 Example 1

Preparazione di biossido di titanio dopato Preparation of doped titanium dioxide

Condizioni operative: Operating conditions:

Biossido di titanio: anatasio, PC-500 (Millenium) 150 mg (diametro medio 0.2-0. 3 mm / 50- 70 mesh). Composizione del gas: ossigeno-elio 3: 1 Concentrazione etilbenzene: 1000 ppm Titanium dioxide: anatase, PC-500 (Millenium) 150 mg (average diameter 0.2-0.3 mm / 50- 70 mesh). Gas composition: oxygen-helium 3: 1 Ethylbenzene concentration: 1000 ppm

Velocità di flusso: 16 cm<3>/min Flow rate: 16 cm <3> / min

Lunghezza d’onda irraggiamento: 315-400 nm. Irradiation wavelength: 315-400 nm.

Intensità irradiamento: 20-21 W/m<2>Irradiation intensity: 20-21 W / m <2>

Temperatura reattore: 45° C. Reactor temperature: 45 ° C.

Il reattore à ̈ costituito da un portacampioni a U (altezza ca. 15 cm; diametro medio interno 2 mm). A circa 15 cm di distanza à ̈ situata una lampada UV a vapori di Hg da 125 W (mod. GN 125, Helios Interquartz) che lo irradia frontalmente. The reactor consists of a U-shaped sample holder (height approx. 15 cm; average internal diameter 2 mm). At a distance of about 15 cm there is a 125 W Hg vapor UV lamp (mod. GN 125, Helios Interquartz) which radiates it from the front.

Accanto al campione sono posizionate una sonda UV per misurare l’intensità di irradiamento (W/m<2>) ed una termocoppia per misurare la temperatura. Il reattore à ̈ dotato di bypass per analizzare la miscela gassosa prima e dopo il campione, registrando le relative concentrazioni di etilbenzene. La miscela gassosa viene analizzata mediante analisi gas cromatografica (colonna PORAPAK Q). Next to the sample are positioned a UV probe to measure the intensity of irradiation (W / m <2>) and a thermocouple to measure the temperature. The reactor is equipped with a bypass to analyze the gaseous mixture before and after the sample, recording the relative concentrations of ethylbenzene. The gaseous mixture is analyzed by gas chromatographic analysis (PORAPAK Q column).

All’inizio si mette il reattore in bypass: si apre il saturatore e si invia la miscela di reazione (1000 ppm EB O2 He). Quando il sistema si à ̈ stabilizzato (valori di EB constanti), si inserisce il reattore inviando la miscela sul campione irradiato. In uscita dal reattore non si rileva la presenza dell’idrocarburo, ciò indica che il dopaggio à ̈ in corso. Dopo un determinato tempo, l’idrocarburo in uscita ritorna ad essere misurabile, crescendo fino a raggiungere un valore costante; ciò indica che il processo di dopaggio à ̈ concluso. At the beginning, the reactor is placed in bypass: the saturator is opened and the reaction mixture is sent (1000 ppm EB O2 He). When the system has stabilized (EB values constant), the reactor is switched on, sending the mixture on the irradiated sample. At the exit of the reactor the presence of the hydrocarbon is not detected, which indicates that the doping is in progress. After a certain time, the outgoing hydrocarbon becomes measurable again, growing until it reaches a constant value; this indicates that the doping process is over.

Esempio 2 Example 2

Valutazione del grado di dopaggio. Assessment of the degree of doping.

Le analisi di ossidazione a temperatura programmata vengono condotte per quantificare la presenza di carbonio nel campione trattato nell’esempio 1. La procedura comprende il riscaldare il campione in corrente di una miscela ossidante (5% O2/He) ed analizzare in continuo la quantità di ossigeno consumato. Viene così registrata una banda positiva corrispondente all'ossidazione dei differenti componenti ossidabili presenti. L'area sottesa dalla banda, corrispondente all’ossigeno consumato, viene tarata opportunamente con un campione noto. The oxidation analyzes at programmed temperature are carried out to quantify the presence of carbon in the sample treated in example 1. The procedure includes heating the sample under current of an oxidizing mixture (5% O2 / He) and continuously analyzing the quantity of oxygen consumed. A positive band is thus recorded corresponding to the oxidation of the different oxidizable components present. The area subtended by the band, corresponding to the oxygen consumed, is suitably calibrated with a known sample.

Il sistema à ̈ dotato di un regolatore di flusso collegato ad una bombola di miscela ossidante 5% O2/He. Il reattore à ̈ costituito da un portacampioni a U in quarzo inserito in un forno collegato ad un programmatore di temperatura (Eurotherm 808). La temperatura del campione viene monitorata mediante una termocoppia inserita nel campione stesso. Dopo il portacampioni à ̈ situata una trappola riempita di calce sodata e anidrone (solfato di magnesio anidro) che permette di bloccare CO2 ed H2O formate durante la reazione. Il gas in uscita viene inviato ad un rilevatore a termoconducibilità interfacciato con un computer. The system is equipped with a flow regulator connected to a 5% O2 / He oxidant mixture cylinder. The reactor consists of a quartz U-shaped sample holder inserted in an oven connected to a temperature programmer (Eurotherm 808). The temperature of the sample is monitored by means of a thermocouple inserted in the sample itself. After the sample holder there is a trap filled with soda lime and anhydrous (anhydrous magnesium sulphate) which allows to block CO2 and H2O formed during the reaction. The outgoing gas is sent to a heat conductivity detector interfaced with a computer.

Condizioni operative: Operating conditions:

Quantità di campione: 50 mg (diametro medio 0.2-0. 3 mm / 50- 70 mesh) Sample quantity: 50 mg (average diameter 0.2-0. 3 mm / 50- 70 mesh)

Velocità di flusso: 40 cm<3>/min Flow rate: 40cm <3> / min

Velocità di riscaldamento: 10° C/min fino a 800° C Heating speed: 10 ° C / min up to 800 ° C

Il test di ossidazione effettuato sul prodotto dell’esempio 1 ha evidenziato la presenza di carbonio in quantità pari a 1.3%. The oxidation test carried out on the product of example 1 highlighted the presence of carbon in a quantity equal to 1.3%.

Esempio 3 Example 3

Caraterizzazione del prodoto Characterization of the product

La superficie specifica BET del biossido di titanio à ̈ stata determinata mediante adsorbimento di azoto, prima e dopo il procedimento di dopaggio effettuato nell’esempio 1. Il valore delle due misurazioni à ̈ risultato lo stesso, pari a 330 m<2>/g. Il metodo di dopaggio utilizzato non ha quindi comportato alcuna riduzione della superficie specifica del fotocatalizzatore. The specific BET surface of titanium dioxide was determined by nitrogen adsorption, before and after the doping procedure carried out in example 1. The value of the two measurements was the same, equal to 330 m <2> / g. The doping method used did not therefore lead to any reduction of the specific surface of the photocatalyst.

In parallelo à ̈ stato verificato l’effetto prodotto sulla superficie specifica dal trattamento termico descritto nel metodo di preparazione di cui in US 2005/0226761. La superficie specifica prima e dopo tale trattamento termico à ̈ risultata rispettivamente pari a 330 m<2>/g e 160 m<2>/g. Il metodo descritto in US 2005/0226761 ha quindi comportato una riduzione della superficie specifica del fotocatalizzatore pari a 170 m<2>/g. In parallel, the effect produced on the specific surface by the heat treatment described in the preparation method referred to in US 2005/0226761 was verified. The specific surface before and after this heat treatment was respectively 330 m <2> / g and 160 m <2> / g. The method described in US 2005/0226761 therefore resulted in a reduction of the specific surface of the photocatalyst equal to 170 m <2> / g.

Esempio 4 Example 4

Valutazione dell ’attività fotocatalitica Evaluation of the photocatalytic activity

II sistema à ̈ dotato di due regolatori di flusso collegati rispettivamente ad una bombola con 1000 ppb NO/aria e ad una bombola di aria. In tal modo, mediante adeguata diluizione, à ̈ possibile inviare all’analizzatore di NOx una miscela con concentrazione nota di NO/aria (circa 100 ppb NO/aria, ottenuti diluendo 1/ 10 la miscela iniziale). La parte dell’impianto relativa al reattore à ̈ costituita da un portacampioni a U (altezza circa 15 cm; diametro interno 2 mm). A circa 15 cm di distanza à ̈ situata una lampada visibile (basso consumo, 14 W) che lo irradia frontalmente. Accanto al campione sono posizionate una sonda nel visibile (400-1050 nm) per misurare l’intensità di irradiamento (W/m<2>) ed una termocoppia per misurare la temperatura. The system is equipped with two flow regulators connected respectively to a cylinder with 1000 ppb NO / air and to an air cylinder. In this way, by means of adequate dilution, it is possible to send to the NOx analyzer a mixture with a known concentration of NO / air (about 100 ppb NO / air, obtained by diluting the initial mixture 1/10). The reactor part of the plant consists of a U-shaped sample holder (height approx. 15 cm; internal diameter 2 mm). About 15 cm away there is a visible lamp (low consumption, 14 W) which radiates it from the front. Next to the sample are positioned a probe in the visible (400-1050 nm) to measure the intensity of irradiation (W / m <2>) and a thermocouple to measure the temperature.

Il reattore à ̈ dotato di bypass per analizzare la miscela gassosa prima e dopo rinvio al campione, registrando le relative concentrazioni di NO. Il reattore viene mantenuto coperto per non fare arrivare luce al campione prima dell’inizio della reazione. The reactor is equipped with a bypass to analyze the gaseous mixture before and after returning it to the sample, recording the relative concentrations of NO. The reactor is kept covered in order not to let light reach the sample before the start of the reaction.

Dopo la fase di preriscaldamento dell’analizzatore e prima di iniziare la misura, l’intera linea ed il campione vengono puliti in flusso d’aria cromatografica (almeno 1000 ml/min). In seguito si invia in bypass la miscela di reazione. Quando il sistema si à ̈ stabilizzato si invia la miscela di NO /aria al campione. Una volta stabilizzato il valore di NO letto (NOiniziale) si accende la lampada nel visibile, si scopre il reattore e si irradia il campione. Si nota una veloce diminuzione della quantità di After the analyzer preheating phase and before starting the measurement, the entire line and the sample are cleaned in a flow of chromatographic air (at least 1000 ml / min). The reaction mixture is then sent to the bypass. When the system has stabilized, the NO / air mixture is sent to the sample. Once the read NO value (initial NO) has been stabilized, the visible lamp is turned on, the reactor is discovered and the sample is irradiated. There is a rapid decrease in the amount of

NO, che arriva ad un minimo in pochi minuti (NO . Il valore della conversione % di NO Ã ̈ calcolato sulla base del valore di NOinizialee dal valore di NO secondo la formula: NO, which reaches a minimum in a few minutes (NO. The% NO conversion value is calculated on the basis of the initial NO value and the NO value according to the formula:

conversione % = [ (NOiniziale- NOminimo) / NOiniziale] X 100 conversion% = [(initial NO- minimum NO) / initial NO] X 100

Condizioni operative: Operating conditions:

Quantità di campione: 100 mg (50-70 mesh). Sample quantity: 100 mg (50-70 mesh).

Velocità di flusso: 1000 ml/ min totale Flow rate: 1000 ml / min total

Intensità irradiamento: 7W/m<2>Irradiation intensity: 7W / m <2>

Temperatura: 23-25° C. Temperature: 23-25 ° C.

Il prodotto dopato ottenuto secondo l’esempio 1, sottoposto al test di attività fotocatalitica sopra descritto, ha mostrato una conversione di NO dell’88%. The doped product obtained according to example 1, subjected to the photocatalytic activity test described above, showed a NO conversion of 88%.

In analoghe condizioni à ̈ stato testato il prodotto di riferimento ottenuto secondo l’esempio 1 descritto in US 2005/0226761: in questo caso la conversione di NO à ̈ risultata solo del 10%. In similar conditions, the reference product obtained according to example 1 described in US 2005/0226761 was tested: in this case the NO conversion was only 10%.

In parallelo, à ̈ stato preparato un ulteriore prodotto utilizzando le stesse metodologie e componenti dell'esempio 1 , con l’unica differenza che la miscela (O2 He) à ̈ stata sostituita da azoto. Questo prodotto, testato nelle stesse condizioni operative, ha mostrato una conversione di NO del 91%. Questo risultato dimostra che la presenza di ossigeno nel gas vettore non contribuisce all’ottenimento del prodotto dopato secondo l’invenzione. In parallel, a further product was prepared using the same methodologies and components of example 1, with the only difference that the mixture (O2 He) was replaced by nitrogen. This product, tested under the same operating conditions, showed a 91% NO conversion. This result shows that the presence of oxygen in the carrier gas does not contribute to obtaining the doped product according to the invention.

Claims (14)

RIVENDICAZIONI 1. Procedimento per la preparazione di biossido di titanio dopato con carbonio, comprendente l'irradiare biossido di titanio ad una lunghezza d'onda compresa tra 300 e 400 nm, detto biossido di titanio essendo esposto ad un flusso gassoso comprendente un gas inerte ed un composto organico. CLAIMS 1. Process for the preparation of carbon-doped titanium dioxide, comprising irradiating titanium dioxide at a wavelength between 300 and 400 nm, said titanium dioxide being exposed to a gaseous flow comprising an inert gas and a organic compound. 2. Procedimento secondo la rivendicazione 1, dove l'intensità di irradiamento à ̈ compresa tra 10 e 1000 W/m<2>. 2. Process according to claim 1, wherein the irradiation intensity is between 10 and 1000 W / m <2>. 3. Procedimento secondo le rivendicazioni 1-2, in cui il composto organico à ̈ scelto tra idrocarburi o loro derivati eventualmente funzionalizzati con uno o più gruppi scelti tra alchile, idrossi, formile, carbossi, alcossicarbonile, arilossicarbonile, ammino, alchilammino, tio, alchiltio. 3. Process according to claims 1-2, wherein the organic compound is selected from hydrocarbons or their derivatives optionally functionalized with one or more groups selected from alkyl, hydroxy, formyl, carboxy, alkoxycarbonyl, aryloxycarbonyl, amino, alkylamino, thio, alkylthio. 4. Procedimento secondo le rivendicazioni 1-3, in cui il composto organico à ̈ scelto tra toluene, benzene, xilene, naftalene, loro derivati e loro miscele. 4. Process according to claims 1-3, wherein the organic compound is selected from among toluene, benzene, xylene, naphthalene, their derivatives and their mixtures. 5. Procedimento secondo le rivendicazioni 1-4, in cui il composto organico à ̈ etilbenzene. 5. Process according to claims 1-4, wherein the organic compound is ethylbenzene. 6. Procedimento secondo le rivendicazioni 1-5, in cui il flusso gassoso include il composto organico ad una concentrazione compresa tra 500 e 10000 ppm. 6. Process according to claims 1-5, wherein the gaseous stream includes the organic compound at a concentration comprised between 500 and 10000 ppm. 7. Procedimento secondo le rivendicazioni 1-6, in cui il valore di superficie specifica BET del biossido di titanio prima e dopo il procedimento resta sostanzialmente invariato. Method according to claims 1-6, wherein the BET specific surface value of the titanium dioxide before and after the process remains substantially unchanged. 8. Procedimento secondo la rivendicazione 7, dove il valore sostanzialmente invariato di superficie specifica BET à ̈ compreso tra 50 e 450 m<2>/g. 8. Process according to claim 7, wherein the substantially unchanged value of specific surface BET is comprised between 50 and 450 m <2> / g. 9. Procedimento secondo la rivendicazione 7, dove il valore sostanzialmente invariato di superficie specifica BET à ̈ compreso tra 300 e 350 m<2>/g. 9. Process according to claim 7, wherein the substantially unchanged value of specific surface BET is comprised between 300 and 350 m <2> / g. 10. Procedimento secondo le rivendicazioni 1-9, dove il biossido di titanio ottenuto ha un contenuto di carbonio compreso tra 0.03 e 5% in peso. 10. Process according to claims 1-9, wherein the obtained titanium dioxide has a carbon content comprised between 0.03 and 5% by weight. 11. Procedimento secondo le rivendicazioni 1-9, dove il biossido di titanio ottenuto ha un contenuto di carbonio compreso tra 0.3% e 3 % in peso. 11. Process according to claims 1-9, wherein the obtained titanium dioxide has a carbon content comprised between 0.3% and 3% by weight. 12. Procedimento secondo le rivendicazioni 1-9, dove il biossido di titanio ottenuto ha un contenuto di carbonio compreso tra 1% e 1.6 % in peso. 12. Process according to claims 1-9, wherein the obtained titanium dioxide has a carbon content comprised between 1% and 1.6% by weight. 13. Biossido di titanio dopato con carbonio, ottenuto secondo il procedimento descritto nelle rivendicazioni 1-12. 13. Carbon doped titanium dioxide, obtained according to the process described in claims 1-12. 14. Biossido di titanio secondo la rivendicazione 13, caratterizzato dal tracciato di ossidazione a temperatura programmata della figura 1.14. Titanium dioxide according to claim 13, characterized by the oxidation pattern at programmed temperature of Figure 1.
ITMI2009A001764A 2009-10-14 2009-10-14 PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON. IT1396367B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ITMI2009A001764A IT1396367B1 (en) 2009-10-14 2009-10-14 PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON.
PCT/EP2010/006242 WO2011045031A1 (en) 2009-10-14 2010-10-13 Process for the preparation of carbon-doped titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITMI2009A001764A IT1396367B1 (en) 2009-10-14 2009-10-14 PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON.

Publications (2)

Publication Number Publication Date
ITMI20091764A1 true ITMI20091764A1 (en) 2011-04-15
IT1396367B1 IT1396367B1 (en) 2012-11-19

Family

ID=41716207

Family Applications (1)

Application Number Title Priority Date Filing Date
ITMI2009A001764A IT1396367B1 (en) 2009-10-14 2009-10-14 PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON.

Country Status (2)

Country Link
IT (1) IT1396367B1 (en)
WO (1) WO2011045031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083273A (en) * 2021-04-13 2021-07-09 四川微纳之光科技有限公司 Method for modifying titanium dioxide by plasma-induced carbon doping and photocatalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146957A (en) * 1978-05-10 1979-11-16 Hitachi Ltd Doping gas cntrol method in semiconductor process
US6232207B1 (en) * 1995-09-18 2001-05-15 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Doping process for producing homojunctions in semiconductor substrates
US20050227854A1 (en) * 2004-04-07 2005-10-13 Jurgen Orth-Gerber Titanium dioxide photocatalyst containing carbon and method for its production
JP2006066686A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Method and apparatus for introducing impurities
US20080011195A1 (en) * 2004-06-04 2008-01-17 Peter Grochal Coating Composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001228849A1 (en) 2000-01-31 2001-08-14 Ecodevice Laboratory Co., Ltd Visible light responsive type material and method of manufacturing same
US6726891B2 (en) 2000-07-31 2004-04-27 Sumitomo Chemical Company, Limited Titanium oxide production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146957A (en) * 1978-05-10 1979-11-16 Hitachi Ltd Doping gas cntrol method in semiconductor process
US6232207B1 (en) * 1995-09-18 2001-05-15 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Doping process for producing homojunctions in semiconductor substrates
US20050227854A1 (en) * 2004-04-07 2005-10-13 Jurgen Orth-Gerber Titanium dioxide photocatalyst containing carbon and method for its production
US20080011195A1 (en) * 2004-06-04 2008-01-17 Peter Grochal Coating Composition
JP2006066686A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Method and apparatus for introducing impurities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. DONG ET AL.: "One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity", JOURNAL OF PHYSICAL CHEMISTRY, vol. 113, 31 August 2009 (2009-08-31), pages 16717 - 16723, XP002571383 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083273A (en) * 2021-04-13 2021-07-09 四川微纳之光科技有限公司 Method for modifying titanium dioxide by plasma-induced carbon doping and photocatalyst
CN113083273B (en) * 2021-04-13 2023-04-07 四川微纳之光科技有限公司 Method for modifying titanium dioxide by plasma-induced carbon doping and photocatalyst

Also Published As

Publication number Publication date
WO2011045031A8 (en) 2011-06-30
IT1396367B1 (en) 2012-11-19
WO2011045031A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
Zhao et al. Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant
Forni et al. Catalytic combustion of hydrocarbons over perovskites
Tang et al. An ethanol sensor based on cataluminescence on ZnO nanoparticles
Ye et al. The use of vacuum ultraviolet irradiation to oxidize SO2 and NOx for simultaneous desulfurization and denitrification
JP4840516B2 (en) Method and apparatus for analyzing sulfur in metal samples
Zhang et al. TiO2 mesocrystal with nitrogen and fluorine codoping during topochemical transformation: Efficient visible light induced photocatalyst with the codopants
Liao et al. Enhancement of photocatalytic property of ZnO for gaseous formaldehyde degradation by modifying morphology and crystal defect
Huang et al. Selective catalytic reduction of NO with NH3 over V2O5 supported on TiO2 and Al2O3: A comparative study
Naydenov et al. Decomposition of ozone on Ag/SiO2 catalyst for abatement of waste gases emissions
Luan et al. Long-lived photogenerated charge carriers of 0 0 1-facet-exposed TiO2 with enhanced thermal stability as an efficient photocatalyst
Rosso et al. Sulphur poisoning of LaMn1− xMgxO3 catalysts for natural gas combustion
JP5001419B2 (en) Heated combustion tube, pyrolysis device and mercury analyzer for mercury analysis
Sha et al. Development of cataluminescence sensor system for benzene and toluene determination
EP3032254B1 (en) Method and device for detection of elemental gaseous mercury in air or in other gases
Xu et al. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential
Tryba et al. The inflence of TiO2 structure on the complete decomposition of acetaldehyde gas
Wang et al. Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
ITMI20091764A1 (en) PROCEDURE FOR THE PREPARATION OF DOPED TITANIUM DIOXIDE WITH CARBON
KR101113262B1 (en) Apparatus for measuring total mercury amount
Mokoena et al. Influence of exposure time and bias voltage on the response kinetics of toluene vapour on Ho3+-doped NiO chemiresistive sensors: Yellow-emitter nanophosphors
Wang et al. On-line measurement of mercury in simulated flue gas
Haidry et al. Optimization of the specific surface area of ordered mesoporous TiO2 yields a high response to humidity
JP5684674B2 (en) Analysis method and analyzer
ITMI20091766A1 (en) PRODUCTS AND CEMENT ITEMS CONTAINING TITANIUM DOPED DIOXIDE WITH CARBON