ITMI20091465A1 - OXYGEN ABSORBER - Google Patents

OXYGEN ABSORBER Download PDF

Info

Publication number
ITMI20091465A1
ITMI20091465A1 IT001465A ITMI20091465A ITMI20091465A1 IT MI20091465 A1 ITMI20091465 A1 IT MI20091465A1 IT 001465 A IT001465 A IT 001465A IT MI20091465 A ITMI20091465 A IT MI20091465A IT MI20091465 A1 ITMI20091465 A1 IT MI20091465A1
Authority
IT
Italy
Prior art keywords
aluminosilicates
absorber
metal ions
divalent metal
exchanged
Prior art date
Application number
IT001465A
Other languages
Italian (it)
Inventor
Roberto Macchi
Juergen Sauer
Original Assignee
Getters Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Getters Spa filed Critical Getters Spa
Priority to IT001465A priority Critical patent/ITMI20091465A1/en
Priority to PCT/EP2010/061187 priority patent/WO2011018374A1/en
Publication of ITMI20091465A1 publication Critical patent/ITMI20091465A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B2/00Preservation of foods or foodstuffs, in general
    • A23B2/70Preservation of foods or foodstuffs, in general by treatment with chemicals
    • A23B2/704Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B2/708Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • A23B2/712Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O in which an absorbent is placed or used
    • A23B2/717Oxygen absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/183Composition or manufacture of getters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

“ASSORBITORE DI OSSIGENO” "OXYGEN ABSORBER"

La presente invenzione si riferisce ad un nuovo tipo di assorbitori di ossigeno, ad un metodo per la loro attivazione, ed all’utilizzo di tali assorbitori all' interno di ambienti anaerobici. The present invention refers to a new type of oxygen absorbers, to a method for their activation, and to the use of such absorbers within anaerobic environments.

Gli assorbitori di ossigeno comunemente identificati nel settore con il termine inglese di “oxygen scavengers” trovano svariate applicazioni. Tra le più comuni vi sono la conservazione di cibi e medicinali, mentre a livello industriale vi è un ampio spettro di possibili applicazioni, dalTutilizzo in condutture metalliche, quali quelle destinate al trasporto del petrolio, per prevenire la corrosione, all impiego in sistemi elettronici, siano essi a stato solido o di natura organica, per prevenire fenomeni di ossidazione e degrado di componentistica in essi presente. I dispositivi maggiormente importanti appartenenti a quest’ultima categoria sono gli schermi OLED (dalTinglese Organic Light Emitting Display) e le celle solari organiche OSC (Organic Solar Cells). Un altro ambito applicativo di particolare rilievo è dato da sintesi o preparazioni chimiche, che in fasi intermedie di processo possono prevedere la generazione di indesiderate quantità di ossigeno, da cui la necessità della sua rimozione. The oxygen absorbers commonly identified in the sector with the English term of "oxygen scavengers" find various applications. Among the most common are the preservation of food and medicines, while at an industrial level there is a wide spectrum of possible applications, from use in metal pipelines, such as those intended for the transport of oil, to prevent corrosion, to use in electronic systems, whether they are solid state or organic, to prevent oxidation and degradation of components present in them. The most important devices belonging to the latter category are OLED screens (Organic Light Emitting Display) and organic solar cells OSC (Organic Solar Cells). Another application area of particular importance is given by chemical syntheses or preparations, which in intermediate process stages may involve the generation of undesirable quantities of oxygen, hence the need for its removal.

Come assorbitore di ossigeno, nel settore, è noto Tutilizzo di zeoliti scambiate con un elemento metallico come descritto nel brevetto US 5,798,055 che descrive un processo produttivo per zeoliti scambiate con vari tipi di metalli portati allo stato di valenza 0 (zero, zerovalente) mediante una fase di riduzione in idrogeno. As an oxygen absorber, the use of zeolites exchanged with a metallic element is known in the sector as described in US patent 5,798,055 which describes a production process for zeolites exchanged with various types of metals brought to the 0 valence state (zero, zerovalent) by means of a reduction phase in hydrogen.

In questo caso T assorbitore di ossigeno rimane essenzialmente inerte nei suoi confronti sino a quando non viene esposto ad una concentrazione significativa di umidità, che attiva la sua capacità di assorbitore di O2. In particolare in US 5,798,055 viene descritta una modalità di impiego preferita che prevede il riscaldamento dell’ assorbitore una volta installato nel dispositivo, per favorire la generazione di H 2O nell’ambiente anaerobico e quindi attivare la sua funzionalità. Questo tipo di soluzione presenta due differenti problemi, il primo relativo alla conservazione dell’assorbitore, che deve avvenire in atmosfera anidra per evitare la sua prematura attivazione con conseguente perdita di capacità; il secondo inconveniente è relativo alla modalità di attivazione più efficace, che in alcuni casi può non essere compatibile con l’applicazione finale. Un tipico esempio è fornito in questo caso dai dispositivi organo elettrici, dove la generazione di H20 è una fonte di degrado per le caratteristiche del dispositivo. In this case, the oxygen absorber remains essentially inert towards it until it is exposed to a significant concentration of humidity, which activates its capacity as an O2 absorber. In particular, in US 5,798,055 a preferred method of use is described which provides for the heating of the absorber once installed in the device, to favor the generation of H 2O in the anaerobic environment and thus activate its functionality. This type of solution presents two different problems, the first relating to the conservation of the absorber, which must take place in an anhydrous atmosphere to avoid its premature activation with consequent loss of capacity; the second drawback is related to the most effective activation method, which in some cases may not be compatible with the final application. A typical example is provided in this case by organ electrical devices, where the generation of H20 is a source of degradation for the characteristics of the device.

Scopo della presente invenzione è fornire un nuovo ed efficiente assorbitore di ossigeno, in grado di superare gli inconvenienti della tecnica nota, che in un suo primo aspetto consiste in un assorbitore di ossigeno comprendente aluminosilicati scambiati con ioni metallici bivalenti, caratterizzato dal fatto che detti aluminosilicati presentano un rapporto molare tra silice ed allumina compreso tra 1,5 e 5. The object of the present invention is to provide a new and efficient oxygen absorber, capable of overcoming the drawbacks of the known art, which in a first aspect consists of an oxygen absorber comprising aluminosilicates exchanged with divalent metal ions, characterized in that said aluminosilicates they have a molar ratio of silica to alumina between 1.5 and 5.

Zeoliti con rapporto molare tra silice ed allumina minore di 2, pur essendo utilizzabili per la realizzazione dell’invenzione, richiedono particolari accorgimenti per poter essere prodotte. Per tale motivo in una realizzazione preferita tale rapporto molare è compreso tra 2 e 2,5. Zeolites with a molar ratio of silica to alumina less than 2, although they can be used for the realization of the invention, require special precautions in order to be produced. For this reason, in a preferred embodiment, this molar ratio is between 2 and 2.5.

In una realizzazione preferita gli aluminosilicati sono scambiati con ioni bivalenti di cromo, manganese o combinazioni di ioni bivalenti di cromo e manganese. In a preferred embodiment, the aluminosilicates are exchanged with divalent chromium, manganese ions or combinations of divalent chromium and manganese ions.

Nella presente descrizione con la definizione di aluminosilicati si intendono anche strutture che possono opzionalmente comprendere altri metalli/sostituenti quali ad esempio germanio come sostituente nella struttura reticolare di alcuni atomi di silicio o gallio come sostituente di alcuni atomi di alluminio. In the present description, the definition of aluminosilicates also means structures that can optionally include other metals / substituents such as for example germanium as a substituent in the reticular structure of some silicon or gallium atoms as a substituent of some aluminum atoms.

Tra gli aluminosilicati utili per la realizzazione della presente invenzione vi sono le zeoliti, ossia aluminosilicati che comprendono cationi di sodio, potassio, calcio, stronzio, bario. A tale scopo risultano particolarmente atte alla realizzazione dell’invenzione le zeoliti nel settore note come Faujasite X, Faujasite Y e LTA, note nel settore anche con il termine di Linde tipo X, Y, A. Among the aluminosilicates useful for the realization of the present invention there are the zeolites, ie aluminosilicates which include cations of sodium, potassium, calcium, strontium, barium. For this purpose, the zeolites in the sector known as Faujasite X, Faujasite Y and LTA, known in the sector also by the term Linde type X, Y, A are particularly suitable for the realization of the invention.

L’utilizzo di aluminosilicati scambiati con cromo o rame e cromo come catalizzatori è descritto nel brevetto US 5,234,876, che mostra l’impiego di aluminosilicati scambiati con ioni trivalenti di cromo con un rapporto molare tra silice ed allumina compreso tra 3 e 200. Differentemente dall’oggetto della presente invenzione US 5,234,876 descrive materiali atti alla realizzazione di sistemi catalitici a nido d’ape, che presentano anche diverse proprietà, con particolare riferimento alla stabilità termica a temperature molto elevate, che possono raggiungere anche i 1000°C. The use of aluminosilicates exchanged with chromium or copper and chromium as catalysts is described in US patent 5,234,876, which shows the use of aluminosilicates exchanged with trivalent chromium ions with a molar ratio between silica and alumina between 3 and 200. Differently from The object of the present invention US 5,234,876 describes materials suitable for making catalytic honeycomb systems, which also have different properties, with particular reference to thermal stability at very high temperatures, which can even reach 1000 ° C.

Gli inventori invece hanno focalizzato i loro studi su una diversa applicazione e problema tecnico, la rimozione di ossigeno, per la quale hanno determinato che risulta particolarmente vantaggioso l’impiego di aluminosilicati scambiati con ioni metallici bivalenti, in cui gli aluminosilicati hanno un rapporto molare tra silice (Si02) ed allumina (A1203) compreso tra 1,5 e 5. The inventors, on the other hand, have focused their studies on a different application and technical problem, the removal of oxygen, for which they have determined that the use of aluminosilicates exchanged with divalent metal ions is particularly advantageous, in which the aluminosilicates have a molar ratio between silica (Si02) and alumina (A1203) between 1.5 and 5.

Gli aluminosilicati scambiati con ioni metallici bivalenti, oggetto della presente invenzione, sono tipicamente utilizzati in forma di polveri micrometriche disperse in una opportuna matrice polimerica. In una realizzazione preferita gli aluminosilicati sono utilizzati in forma di polveri nanometriche, anche in questo caso disperse in opportune matrici polimeriche, con dimensioni del singolo elemento inferiori a 400 nm. Con singolo elemento si intende la singola cella o cristallo dell’aluminosilicato. The aluminosilicates exchanged with divalent metal ions, object of the present invention, are typically used in the form of micrometric powders dispersed in a suitable polymeric matrix. In a preferred embodiment the aluminosilicates are used in the form of nanometric powders, also in this case dispersed in suitable polymeric matrices, with single element dimensions lower than 400 nm. By single element we mean the single cell or crystal of the aluminosilicate.

Come matrice polimerica possono venire utilizzati polimeri con caratteristiche termoplastiche o termoindurenti, e più in generale polimeri e loro precursori che non interferiscono con la funzionalità di assorbimento di ossigeno da parte del materiale disperso. Polymers with thermoplastic or thermosetting characteristics can be used as polymeric matrix, and more generally polymers and their precursors which do not interfere with the oxygen absorption functionality of the dispersed material.

Materiali polimerici atti alla realizzazione dell’invenzione sono, a titolo di esempio non limitante, polimeri vinilici, poliesteri, polieteri, poliammidi, polimeri derivanti dalla condensazione di fenolformaldeide, polisilossani, polimeri ionici, poliuretani, resine epossidiche, acrilati in generale e polimeri naturali quali la cellulosa. Particolarmente interessanti sono anche i polimeri scelti nella famiglia delle poliolefine, comprendenti anche copolimeri a blocchi delle stesse, tra questi quelli maggiormente rilevanti sono, la gomma butilica e copolimeri di etil-vinil acetato. Polymeric materials suitable for carrying out the invention are, by way of non-limiting example, vinyl polymers, polyesters, polyethers, polyamides, polymers deriving from the condensation of phenolformaldehyde, polysiloxanes, ionic polymers, polyurethanes, epoxy resins, acrylates in general and natural polymers such as cellulose. Particularly interesting are also the polymers selected from the family of polyolefins, also including block copolymers of the same, among these the most relevant are, butyl rubber and ethyl-vinyl acetate copolymers.

Per avere una azione particolarmente efficace di rimozione dell’ossigeno è necessario che la concentrazione in peso degli ioni metallici bivalenti negli aluminosilicati scambiati sia preferibilmente almeno il 5%. To have a particularly effective oxygen removal action, it is necessary that the weight concentration of the divalent metal ions in the exchanged aluminosilicates is preferably at least 5%.

In un suo secondo aspetto l’invenzione si riferisce ad un trattamento termico per l’attivazione di un assorbitore per ossigeno comprendente aluminosilicati con rapporto molare tra silice ed allumina compreso tra 1,5 e 5, detti aluminosilicati scambiati con ioni metallici bivalenti, in cui detto assorbitore di ossigeno perde tra il 5% ed il 20% in peso rispetto alla quantità di aluminosilicato presente nell’assorbitore. In a second aspect, the invention relates to a heat treatment for the activation of an oxygen absorber comprising aluminosilicates with a molar ratio of silica to alumina between 1.5 and 5, said aluminosilicates exchanged with divalent metal ions, in which said oxygen absorber loses between 5% and 20% by weight with respect to the quantity of aluminosilicate present in the absorber.

Tra i vantaggi derivanti dall’impiego dell’assorbitore dell’invenzione, vi è la possibilità di poterli immagazzinare e spedire senza particolari cautele nei confronti dell’ esposizione all’aria. Questi assorbitori risultano inertizzati nei confronti della stessa in quanto, essendo pre-saturati con H20 in conseguenza del processo produttivo degli aluminosilicati scambiati, tale H20 occupa essenzialmente tutti i siti attivi per l’assorbimento di 02. Among the advantages deriving from the use of the absorber of the invention, there is the possibility of being able to store and ship them without special precautions against exposure to air. These absorbers are inerted towards it since, being pre-saturated with H20 as a result of the production process of the exchanged aluminosilicates, this H20 essentially occupies all the active sites for the absorption of 02.

Questo meccanismo competitivo viene poi sfruttato per una veloce e semplice riattivazione in situ, in quanto la rimozione di H20 ripristina l’attività dell’assorbitore nei confronti di 02. In questo caso è molto importante individuare le corrette caratteristiche del processo di attivazione. Infatti se si rimuove poca H20, il meccanismo di competizione sui siti attivi tra H20 ed ossigeno porta ad avere un assorbitore con capacità ridotta, mentre un meccanismo di attivazione che porti ad una rimozione eccessiva di H20 pregiudica la capacità di rimozione di 02, per via dell’azione catalitica svolta dall’acqua nel suo meccanismo di assorbimento. This competitive mechanism is then exploited for a quick and simple reactivation in situ, as the removal of H20 restores the activity of the absorber against 02. In this case it is very important to identify the correct characteristics of the activation process. In fact, if a little H20 is removed, the competition mechanism on the active sites between H20 and oxygen leads to an absorber with reduced capacity, while an activation mechanism that leads to an excessive removal of H20 jeopardizes the removal capacity of 02, by way of of the catalytic action carried out by water in its absorption mechanism.

In particolare con gli aluminosilicati oggetto della presente invenzione, si è riscontrato che un efficiente processo di attivazione, dopo che si sono saturati con H20, porta alla loro perdita in peso compresa tra il 5 ed il 20%. In particular with the aluminosilicates object of the present invention, it has been found that an efficient activation process, after they are saturated with H 2 0, leads to their weight loss of between 5 and 20%.

Ovviamente nel caso di sistemi compositi, che comprendono gli aluminosilicati della presente invenzione, il calcolo della perdita in peso percentuale deve essere effettuato rispetto alla quantità totale di aluminosilicati. Obviously in the case of composite systems, which include the aluminosilicates of the present invention, the calculation of the percentage weight loss must be carried out with respect to the total amount of aluminosilicates.

Tale perdita in peso può essere ottenuta tramite un opportuno riscaldamento, anche in aria, ad esempio scaldando per tempi variabili tra 5 e 30 minuti a temperature comprese tra 120°C e 300°C. Ovviamente quando si utilizzano basse temperature di attivazione i corrispondenti tempi sono quelli più lunghi; un tipico processo di attivazione, con perdita in peso del 7%, si ottiene scaldando a 200°C per 10 minuti. This weight loss can be obtained by means of suitable heating, also in air, for example by heating for times ranging from 5 to 30 minutes at temperatures between 120 ° C and 300 ° C. Obviously, when low activation temperatures are used, the corresponding times are the longest; a typical activation process, with a weight loss of 7%, is obtained by heating at 200 ° C for 10 minutes.

In un suo terzo aspetto l’invenzione si riferisce all’utilizzo di aluminosilicati scambiati con ioni metallici bivalenti per la rimozione di 02da ambienti anaerobici, caratterizzato dal fatto che detti aluminosilicati hanno un rapporto molare tra silice ed allumina compreso tra 1,5 e 5. In a third aspect, the invention refers to the use of aluminosilicates exchanged with divalent metal ions for the removal of O2 from anaerobic environments, characterized by the fact that said aluminosilicates have a molar ratio between silica and alumina between 1.5 and 5.

In una realizzazione preferita il metodo prevede l’impiego di aluminosilicati scambiati con ioni bivalenti di cromo, manganese o combinazioni di ioni bivalenti di cromo e manganese. In a preferred embodiment, the method involves the use of aluminosilicates exchanged with divalent ions of chromium, manganese or combinations of divalent chromium and manganese ions.

In un’altra realizzazione preferita gli aluminosilicati sono utilizzati in forma di polvere dispersa in un'opportuna matrice polimerica, anche se eventualmente tali aluminosilicati possono essere utilizzati entro opportuni contenitori permeabili. In another preferred embodiment the aluminosilicates are used in the form of powder dispersed in a suitable polymeric matrix, even if, if necessary, such aluminosilicates can be used in suitable permeable containers.

Il metodo può essere vantaggiosamente applicato nel caso di confezionamento di cibi, medicinali, utilizzato per la rimozione di ossigeno dall’ atmosfera interna di dispositivi elettronici od organo elettronici quali schermi OLED e celle solari organiche. The method can be advantageously applied in the case of packaging of foods, medicines, used for the removal of oxygen from the internal atmosphere of electronic devices or electronic organs such as OLED screens and organic solar cells.

Il metodo trova anche un vantaggioso impiego nella rimozione di ossigeno in sintesi o preparazioni chimiche. The method also finds an advantageous use in the removal of oxygen in synthesis or chemical preparations.

Claims (16)

RIVENDICAZIONI 1. Assorbitore di ossigeno comprendente aluminosilicati scambiati con ioni metallici bivalenti, caratterizzato dal fatto che detti aluminosilicati presentano un rapporto molare tra silice ed allumina compreso tra 1,5 e 5. CLAIMS 1. Oxygen absorber comprising aluminosilicates exchanged with divalent metal ions, characterized in that said aluminosilicates have a molar ratio of silica to alumina between 1.5 and 5. 2. Assorbitore secondo la rivendicazione 1, in cui detto rapporto molare tra silice ed allumina è compreso tra 2 e 2,5. 2. Absorber according to claim 1, wherein said molar ratio of silica to alumina is comprised between 2 and 2.5. 3. Assorbitore secondo la rivendicazione 1, in cui detti ioni metallici bivalenti sono ioni Cr<2+>, Mn<2+>, o loro combinazioni. Absorber according to claim 1, wherein said divalent metal ions are Cr <2+>, Mn <2+> ions, or combinations thereof. 4. Assorbitore secondo la rivendicazione 1, in cui detti aluminosilicati sono zeoliti. 4. Absorber according to claim 1, wherein said aluminosilicates are zeolites. 5. Assorbitore secondo la rivendicazione 4, in cui dette zeoliti sono scelte tra Fauj asite X, Fauj asite Y, LTA. 5. Absorber according to claim 4, wherein said zeolites are selected from Fauj asite X, Fauj asite Y, LTA. 6. Assorbitore secondo la rivendicazione 1, in cui detti aluminosilicati scambiati con ioni metallici bivalenti sono utilizzati in forma di polveri micrometriche disperse in una matrice polimerica. 6. Absorber according to claim 1, wherein said aluminosilicates exchanged with divalent metal ions are used in the form of micrometric powders dispersed in a polymeric matrix. 7. Assorbitore secondo la rivendicazione 1, in cui detti aluminosilicati scambiati con ioni metallici bivalenti sono utilizzati in forma di polveri nanometriche con dimensioni della singola cella inferiori a 400 nm disperse in una matrice polimerica. 7. Absorber according to claim 1, wherein said aluminosilicates exchanged with divalent metal ions are used in the form of nanometric powders with single cell dimensions lower than 400 nm dispersed in a polymeric matrix. 8. Assorbitore secondo la rivendicazione 1, in cui la percentuale in peso degli ioni metallici bivalenti scambiati è superiore al 5% rispetto al peso totale degli aluminosilicati presenti. 8. Absorber according to claim 1, in which the percentage by weight of the exchanged divalent metal ions is greater than 5% with respect to the total weight of the aluminosilicates present. 9. Processo per l’attivazione di un assorbitore per ossigeno comprendente aluminosilicati con rapporto molare tra silice ed allumina compreso tra 1,5 e 5, detti aluminosilicati essendo scambiati con ioni metallici bivalenti, mediante un trattamento termico, in cui detto assorbitore di ossigeno perde tra il 5% ed il 20% in peso rispetto alla quantità di aluminosilicato presente nell’assorbitore. 9. Process for activating an oxygen absorber comprising aluminosilicates with a molar ratio of silica to alumina between 1.5 and 5, said aluminosilicates being exchanged with divalent metal ions, by means of a thermal treatment, in which said oxygen absorber loses between 5% and 20% by weight with respect to the quantity of aluminosilicate present in the absorber. 10. Processo secondo la rivendicazione 9, in cui detto trattamento termico avviene ad una temperatura compresa tra 120°C e 300°C per tempi compresi tra 5 e 30 minuti. 10. Process according to claim 9, wherein said heat treatment takes place at a temperature ranging from 120 ° C to 300 ° C for times ranging from 5 to 30 minutes. 11. Uso di aluminosilicati scambiati con ioni metallici bivalenti per la rimozione di 02da ambienti anaerobici, caratterizzato dal fatto che detti aluminosilicati hanno un rapporto molare tra silice ed allumina compreso tra 1,5 e 5. 11. Use of aluminosilicates exchanged with divalent metal ions for the removal of O2 from anaerobic environments, characterized in that said aluminosilicates have a molar ratio of silica to alumina between 1.5 and 5. 12. Uso secondo la rivendicazione 11, in cui detti ioni metallici bivalenti sono ioni Cr<2+>, Mn<2+>, o loro combinazioni. Use according to claim 11, wherein said divalent metal ions are Cr <2+>, Mn <2+> ions, or combinations thereof. 13. Uso secondo la rivendicazione 11, in cui detti ambienti anaerobici sono contenitori di cibi o medicinali. 13. Use according to claim 11, wherein said anaerobic environments are food or medicine containers. 14. Uso secondo la rivendicazione 11, in cui detti ambienti anaerobici sono dispositivi elettronici od organo elettronici. 14. Use according to claim 11, wherein said anaerobic environments are electronic devices or electronic organ. 15. Uso secondo la rivendicazione 14, in cui detti dispositivi organo elettronici sono schermi OLED. 15. Use according to claim 14, wherein said electronic organ devices are OLED screens. 16. Uso secondo la rivendicazione 14, in cui detti dispositivi organo elettronici sono celle solari organiche.Use according to claim 14, wherein said electronic organ devices are organic solar cells.
IT001465A 2009-08-12 2009-08-12 OXYGEN ABSORBER ITMI20091465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT001465A ITMI20091465A1 (en) 2009-08-12 2009-08-12 OXYGEN ABSORBER
PCT/EP2010/061187 WO2011018374A1 (en) 2009-08-12 2010-08-02 Oxygen scavengers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001465A ITMI20091465A1 (en) 2009-08-12 2009-08-12 OXYGEN ABSORBER

Publications (1)

Publication Number Publication Date
ITMI20091465A1 true ITMI20091465A1 (en) 2011-02-13

Family

ID=41718849

Family Applications (1)

Application Number Title Priority Date Filing Date
IT001465A ITMI20091465A1 (en) 2009-08-12 2009-08-12 OXYGEN ABSORBER

Country Status (2)

Country Link
IT (1) ITMI20091465A1 (en)
WO (1) WO2011018374A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503901A (en) * 1969-01-13 1970-03-31 Union Carbide Corp Chemical reaction catalyst and its preparation
WO1997006104A1 (en) * 1995-08-07 1997-02-20 Saes Getters S.P.A. Process for removing oxygen from ammonia at room temperature
WO1999047351A1 (en) * 1998-03-19 1999-09-23 W.R. Grace & Co.-Conn. Oxygen scavenging compositions and methods for making same
WO2007013118A1 (en) * 2005-07-29 2007-02-01 Saes Getters S.P.A. Getter systems comprising a gas-sorbing phase in the pores of a porous material distributed in a permeable means

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013982A (en) * 1958-09-24 1961-12-19 Union Carbide Corp Metal loading of molecular sieves
US5234876A (en) 1992-10-20 1993-08-10 Corning Incorporated Thermally stable chromium-exchanged zeolites and method of making same
US5798055A (en) 1995-12-15 1998-08-25 Blinka; Thomas Andrew Oxygen scavenging metal-loaded ion-exchange compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503901A (en) * 1969-01-13 1970-03-31 Union Carbide Corp Chemical reaction catalyst and its preparation
WO1997006104A1 (en) * 1995-08-07 1997-02-20 Saes Getters S.P.A. Process for removing oxygen from ammonia at room temperature
WO1999047351A1 (en) * 1998-03-19 1999-09-23 W.R. Grace & Co.-Conn. Oxygen scavenging compositions and methods for making same
WO2007013118A1 (en) * 2005-07-29 2007-02-01 Saes Getters S.P.A. Getter systems comprising a gas-sorbing phase in the pores of a porous material distributed in a permeable means

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELLERMAN R; HUTTA PJ; KLIER K: "Reversible Oxygen Binding by Divalent Chromium(II) Ion Exchanged Molecular Sieve", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 96, no. 18, 4 September 1974 (1974-09-04), pages 5946 - 5947, XP002573247, ISSN: 0002-7863, DOI: 10.1021/ja00825a048 *
QIU L; LAWS PA; BI-ZENG Z; WHITE MA: "Thermodynamic investigations of zeolites NaX and NaY", CANADIAN JOURNAL OF CHEMISTRY, vol. 84, 22 February 2006 (2006-02-22), pages 134 - 139, XP002573246, ISSN: 1480-3291, DOI: 10.1139/V05-244 *
SEBASTIAN J; PILLAI R S; SUNIL AP; JASRA R V: "Sorption of N2, O2, and Ar in Mn(II)-Exchanged Zeolites A and X Using Volumetric Measurements and Grand Canonical Monte Carlo Simulation", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 46, no. 19, 9 August 2007 (2007-08-09), pages 6293 - 6302, XP002573245, ISSN: 0888-5885, DOI: 10.1021/ie070067w *

Also Published As

Publication number Publication date
WO2011018374A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Gu et al. MOF‐templated synthesis of ultrasmall photoluminescent carbon‐nanodot arrays for optical applications
Soldan et al. Gold doping of silver nanoclusters: A 26‐fold enhancement in the luminescence quantum yield
Jiu et al. The effect of light and humidity on the stability of silver nanowire transparent electrodes
Jia et al. Smart MOF‐on‐MOF Hydrogel as a Simple Rod‐shaped Core for Visual Detection and Effective Removal of Pesticides
Liu et al. Dramatically enhanced luminescence of layered terbium hydroxides as induced by the synergistic effect of Gd3+ and organic sensitizers
Fang et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications
TW200711187A (en) Photonic material having regularly arranged cavities
BR112012013840A2 (en) compact metal powder nanomatrix
WO2007036538A3 (en) Substrate with a coating and its production process
Kong et al. Enhancing the water‐stability of 1D hybrid manganese halides by a cationic engineering strategy
ITMI20120601A1 (en) DRIING COMPOSITION FOR HUMIDITY SENSITIVE ELECTRONIC DEVICES
Lintang et al. Metal‐Ion Permeation in Congested Nanochannels: The Exposure Effect of Ag+ Ions on the Phosphorescent Properties of a Gold (I)–Pyrazolate Complex that is Confined in the Nanoscopic Channels of Mesoporous Silica
Mackenzie Innovative applications of inorganic polymers (geopolymers)
JP5952417B2 (en) Improved composite getter
Naorem et al. Photoluminescence studies of Ce3+ ion‐doped BiPO4 phosphor and its photocatalytic activity
SA116380024B1 (en) Method of fabricating macroporous carbon capsules from pollen grains
JP2013094072A (en) Mycotoxin adsorbent
Rehana et al. Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M= Zn, Cd or Pb) core/shell nanoparticles
ITMI20091465A1 (en) OXYGEN ABSORBER
WO2004066409A1 (en) Encapsulation for an organic electronics component and production method therefor
ITMI20100264U1 (en) OXYGEN ABSORBER
Kumar et al. Ethylcellulose‐Encapsulated Inorganic Lead Halide Perovskite Nanoparticles for Printing and Optoelectronic Applications
Rehman et al. Engineering in ceramic albite morphology by the addition of additives: Carbon nanotubes and graphene oxide for energy applications
Shahzadi et al. Kinetic studies of NiO-rGO hybrid nanocomposite for the treatment of organic toxic effluents and oxidative stress
Odoom‐Wubah et al. Synthesis of ZnO micro‐flowers assisted by a plant‐mediated strategy